Recession and Ice Surface Elevation Changes of Baranowski Glacier and Its Impact on Proglacial Relief (King George Island, West Antarctica)

Total Page:16

File Type:pdf, Size:1020Kb

Recession and Ice Surface Elevation Changes of Baranowski Glacier and Its Impact on Proglacial Relief (King George Island, West Antarctica) geosciences Article Recession and Ice Surface Elevation Changes of Baranowski Glacier and Its Impact on Proglacial Relief (King George Island, West Antarctica) Joanna Sziło 1,* and Robert Józef Bialik 2 1 Institute of Geophysics, Polish Academy of Sciences, ul. Ksi˛eciaJanusza 64, 01-452 Warsaw, Poland 2 Institute of Biochemistry and Biophysics, Polish Academy of Sciences, ul. Pawi´nskiego 5a, 02-106 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-504-595-266 Received: 27 July 2018; Accepted: 18 September 2018; Published: 20 September 2018 Abstract: Glacial forefields areas are dynamic landscapes, and due to the glacier frontal position changes, they are sensitive to climatic fluctuations. The results of the analysis of aerial photos, satellite imagery, archival maps, and terrestrial laser scanning surveys are presented. These investigations reveal that the ice surface decreased during the period 1989–2001, when almost the entire current forefield was already uncovered. Moreover, it is shown that, since 1969, there has been a relationship between the changes in air temperature and the changes of the annual front position rate of Baranowski Glacier. Specifically, the results demonstrate that during the cooling observed for the Antarctic Peninsula Regions since 2000, there is a deceleration of the recession rate and ice surface elevation changes of Baranowski Glacier. It is also shown that the fluctuation of the areal extent of the glacier as well as ice surface elevation changes are closely associated with proglacial relief. Moreover, it is shown that the difference in the retreat of the northern and southern tongue of the glacier can be explained by the presence of relatively warm water in the shallow bay, which can enhance the melting process of the northern part. In addition, existence of long flutes and crevasse fill ridges on the analyzed forefield of Baranowski Glacier suggest that the former episodes of its surge, which could happen at least in the northern part of the forefield and middle part of the southern forefield of the glacier. Keywords: deglaciation; proglacial landform; ice surface elevation changes; terrestrial laser scanning 1. Introduction Melting glaciers and changes in the frozen ground conditions, primarily controlled by climate changes, strongly influence the geomorphological processes occurring in ice-free areas [1] defined here as glacial forefields. Moreover, glaciers in polar regions play important roles in the functions of local [2] and global ecosystems [3]. Thus, studies on the reaction of glaciers to climate fluctuations [4–6] and their impacts on the regional environment are exceptionally important [7]. Since the 1950’s, regional warming has been observed on the Antarctic Peninsula [8–12] with an increased in air temperature of 0.32 ◦C/decade from 1979 to 1997 [13]. Nevertheless, several authors [13,14] have reported a cooling trend over the last 20 years, with a decreased air temperature of −0.47 ◦C/decade over the period 1999–2014 [13]. These findings, however, depend on data interpretation. For Bellingshausen Station on King George Island (KGI), the air temperature reached a maximum in 1989 and the relatively stable fluctuations of air temperature were observed until 2009 (Figure1;[ 15]). Based on these data, the cooling noted above could be suggested for only the summer months during the period 2012–2015, as shown by P˛etlicki et al. [16]. Oliva et al. [13] suggested that the Geosciences 2018, 8, 355; doi:10.3390/geosciences8100355 www.mdpi.com/journal/geosciences Geosciences 2018, 8, x 355 FOR PEER REVIEW 22 of 1817 the recent cooling was amplified by an increasing extent of sea ice, which, in 2014 [17], reached its highestrecent cooling value since was amplified 1979. However, by an increasing the difference extent of of mean sea ice, annual which, temperature in 2014 [17], between reached its2015 highest and 2016value sincewas 1979.1.2 However,°C (Figure the difference1, [15]), of meanwhereas annual the temperature mean betweenannual 2015air andtemperature 2016 was for1.2 ◦FieldesC (Figure Peninsula1,[ 15]), was whereas −2.3 °C the for mean the period annual 1969–2017. air temperature Simultaneously, for Fieldes the Peninsula Antarctic was ice− extent2.3 ◦C wasfor theminimal period 1969–2017.in 2016–2017 Simultaneously, [17]. In addition, the Antarctic during iceyears extent of wassuggeste minimald cooling, in 2016–2017 decreased [17]. precipitationIn addition, during has been years reported of suggested (Figure cooling, 1). decreased precipitation has been reported (Figure1). Figure 1. MeanMean annual annual air air temperature temperature and and sum sum of of the the pr precipitationecipitation at at Bellingshausen Bellingshausen Station Station (Fieldes (Fieldes Peninsula) in the period 1969–2017 [15]. [15]. The reactions of glaciers, generally generally in in the the form form of of mass mass loss loss [18], [18], glacier glacier recession recession [13], [13], and decreased decreased ice ice surface surface elevation elevation [16], [16 have], have been been observed, observed, especially especially for those for thoselocated located in the inSouth the ShetlandSouth Shetland Islands Islands [18–23]. [18 –Since23]. Since1956, 1956, climate climate warming warming has hasbeen been the the main main factor factor causing causing these changes. Special Special attention attention has has been been paid paid to to the gl glaciersaciers located within Admiralty Bay [16,19,24–31] [16,19,24–31] and others that drain drain the the Warszawa Warszawa Ice field field [20,32,33]. [20,32,33]. The The effects effects of of climate climate change change were were confirmed, confirmed, for example,example, on on the the Ecology Ecology and Sphinxand Sphinx glaciers glac betweeniers between 2012 and 20132012 inand the form2013 ofin a short-termthe form ofnegative a short-term mass balancenegative [ 24mass]. Importantly, balance [24]. most Importan of thetly, glaciers most of covering the glaciers KGI covering terminate KGI in terminate tidewater insettings tidewater with recessionsettings with not yet recession leading tonot the yet development leading to of the subaerially development exposed of forefields,subaerially whereas exposed for forefields,land-based whereas glaciers, for front land-based position changes glaciers, are front substantial position and changes are directly are substantial associated and with are periglacial directly associatedprocesses, permafrostwith periglacial degradation processes, and permafrost the spread ofdegradation vegetation and on the the newly spread ice-free of vegetation areas [1 ,34on– 37the]. newlyWhile ice-free many areas studies [1,34–37]. have been carried out on KGI, not enough attention has been devoted to the BaranowskiWhile many Glacier, studies the have central been glacier carried located out on on KGI, the Western not enough shore attention of Admiralty has been Bay. Sincedevoted the toearly the 1980s,Baranowski this glacier Glacier, has the terminated central glacier on land. loca Theted basin on the is aWestern unique shore region of with Admiralty a large proportionBay. Since theof ice-freeearly 1980s, area onthis which glacier climatic has terminated fluctuations on andland. glacial The basin evolution is a impactunique theregion recent with proglacial a large proportionlandscape [38of ,39ice-free]. Geomorphological area on which climatic observations fluctuations were conducted and glacial in evolution this area betweenimpact the 1984 recent and proglacial1986 [40] and landscape from 1990 [38,39]. to 1992 Geom duringorphological the Polish observations expeditions were to KGI conducted [38,41,42 in]. Sincethis area then, between due to 1984the recession and 1986 of [40] the and glacier, from the 1990 forefield to 1992 has during changed the Polish considerably. expeditions Therefore, to KGI the[38,41,42]. main goals Since of then, this dueresearch to the are recession (1) to present of the glacier, the relationships the forefield between has changed the recession considerably. of Baranowski Therefore, Glacier the main and goals the ofavailable this research climate are data (1) to from present KGI sincethe relationsh 1956; (2)ips to supplementbetween the ourrecession knowledge of Baranowski about the Glacier ice surface and theelevation available changes climate of data the from glaciers KGI located since 1956; on KGI, (2) to based supplement on the our observation knowledge of about Baranowski the ice surface Glacier elevationsince 1989; changes and (3) of to improvethe glaciers our located understanding on KGI, ofbased the relief on the of thisobservation proglacial of regionBaranowski in front Glacier of the sinceBaranowski 1989; Glacier.and (3) to improve our understanding of the relief of this proglacial region in front of the Baranowski Glacier. 2. Materials and Methods 2.2.1. Materials Study Site and Methods 2.1. StudyThe Baranowski Site Glacier is located on the Western shore of Admiralty Bay on KGI (West Antarctica), the largest island of the South Shetland Islands archipelago (Figure2a). The island is separated from The Baranowski Glacier is located on the Western shore of Admiralty Bay on KGI (West the Antarctic Peninsula by the Bransfield Strait by a distance of approximately 120–130 km. The total Antarctica), the largest island of the South Shetland Islands archipelago (Figure 2a). The island area of the island is 1250 km2, and almost the entire island is covered by ice caps (Figure2b). The glacier is separated
Recommended publications
  • Responses of Antarctic Tundra Ecosystem to Climate Change and Human Activity
    PAPERS on GLOBAL CHANGE, 17, 43–52, 2010 DOI: 10.2478/v10190-010-0004-4 RESPONSES OF ANTARCTIC TUNDRA ECOSYSTEM TO CLIMATE CHANGE AND HUMAN ACTIVITY MARIA OLECH Institute of Botany, Jagiellonian University, Kopernika 27, 31-501 Cracow, Poland, Department of Antarctic Biology, Polish Academy of Sciences, Ustrzycka 10/12, 02-141 Warsaw, Poland e-mail: [email protected] ABSTRACT: Over the last couple of years the Antarctic Peninsula region has been one of the fastest warming regions on the Earth. Rapidly proceeding deglaciation uncovers new areas for colonisation and formation of Antarctic tundra communities. The most evi- dent dynamics, i.e. changes in both biodiversity and structure of tundra communities, are observed in the forefi elds of retreating glaciers. This paper presents examples of changes in biodiversity and in the direction and rate of succession changes taking place due to climate warming compounded by synanthropization in the maritime Antarctic. KEY WORDS: Antarctic, climate change, colonisation, tundra ecosystem, bio- diversity, alien species. INTRODUCTION Development of vegetation in the Antarctic is limited to ice-free surfaces of the land, which account for only a few percent (2–5%) of the total area. The Antarctic tundra ecosystem is mainly made up of cryptogams, i.e. lichens, bryophytes, algae and fungi, while at the same time it is extremely defi cient in vascular plants, of which only two species are found: a grass Deschampsia antarctica Desv. (Poace- ae) and Colobanthus quitensis (Kunth). Bartl. (Caryophyllaceae). Occurrence of both species is limited to the climatically favourable sites in the maritime Antarctic (Olech 2002).
    [Show full text]
  • List of Place-Names in Antarctica Introduced by Poland in 1978-1990
    POLISH POLAR RESEARCH 13 3-4 273-302 1992 List of place-names in Antarctica introduced by Poland in 1978-1990 The place-names listed here in alphabetical order, have been introduced to the areas of King George Island and parts of Nelson Island (West Antarctica), and the surroundings of A. B. Dobrowolski Station at Bunger Hills (East Antarctica) as the result of Polish activities in these regions during the period of 1977-1990. The place-names connected with the activities of the Polish H. Arctowski Station have been* published by Birkenmajer (1980, 1984) and Tokarski (1981). Some of them were used on the Polish maps: 1:50,000 Admiralty Bay and 1:5,000 Lions Rump. The sheet reference is to the maps 1:200,000 scale, British Antarctic Territory, South Shetland Islands, published in 1968: King George Island (sheet W 62 58) and Bridgeman Island (Sheet W 62 56). The place-names connected with the activities of the Polish A. B. Dobrowolski Station have been published by Battke (1985) and used on the map 1:5,000 Antarctic Territory — Bunger Oasis. Agat Point. 6211'30" S, 58'26" W (King George Island) Small basaltic promontory with numerous agates (hence the name), immediately north of Staszek Cove. Admiralty Bay. Sheet W 62 58. Polish name: Przylądek Agat (Birkenmajer, 1980) Ambona. 62"09'30" S, 58°29' W (King George Island) Small rock ledge, 85 m a. s. 1. {ambona, Pol. = pulpit), above Arctowski Station, Admiralty Bay, Sheet W 62 58 (Birkenmajer, 1980). Andrzej Ridge. 62"02' S, 58° 13' W (King George Island) Ridge in Rose Peak massif, Arctowski Mountains.
    [Show full text]
  • Western Shore of Admiralty Bay, King George Island, South Shetland Islands
    Measure 4 (2014) Annex Management Plan for Antarctic Specially Protected Area No 128 WESTERN SHORE OF ADMIRALTY BAY, KING GEORGE ISLAND, SOUTH SHETLAND ISLANDS Introduction The Western Shore of Admiralty Bay is located on King George Island, South Shetland Islands, ~125 kilometers from the northern Antarctic Peninsula. Approximate area and coordinates: 16.8 km2 (centered at 58° 27' 40" W, 62° 11' 50" S). The Area is wholly terrestrial, and the primary reasons for designation are its diverse avian and mammalian fauna and locally rich vegetation, providing a representative sample of the maritime Antarctic ecosystem. Long term scientific research has been conducted on the animals within the Area. The Area is relatively accessible to nearby research stations and tourist ships regularly visit Admiralty Bay, and the ecological and scientific values of the area need protection from potential disturbance. The Area was originally designated as Site of Special Scientific Interest (SSSI) No. 8 in Recommendation X-5 (1979, SSSI No. 8) after a proposal by Poland. The SSSI designation was extended through Recommendation XII-5 (1983), Recommendation XIII-7 (1985) and Resolution 7 (1995). A revised Management Plan was adopted through Measure 1 (2000). The site was renamed and renumbered as Antarctic Specially Protected Area (ASPA) No 128 by Decision 1 (2002). The Area lies within Antarctic Specially Managed Area (ASMA) No. 1 Admiralty Bay, King George Island, South Shetland Islands, designated under Measure 2 (2006). The biological and scientific values of the Area are vulnerable to human disturbance (e.g. oversampling, disturbance to wildlife, introduction of non-native species). Therefore, it is important that human activities in the Area are managed to minimize the risk of impacts.
    [Show full text]
  • Grain Size Distribution of Bedload Transport in a Glaciated Catchment (Baranowski Glacier, King George Island, Western Antarctica)
    water Article Grain Size Distribution of Bedload Transport in a Glaciated Catchment (Baranowski Glacier, King George Island, Western Antarctica) Joanna Sziło 1,* and Robert Józef Bialik 2 1 Institute of Geophysics, Polish Academy of Sciences, 01-452 Warsaw, Poland 2 Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-504-595-266 Received: 20 February 2018; Accepted: 20 March 2018; Published: 23 March 2018 Abstract: The relationships among grain size distribution (GSD), water discharge, and GSD parameters are investigated to identify regularities in the evolution of two gravel-bed proglacial troughs: Fosa Creek and Siodło Creek. In addition, the potential application of certain parameters obtained from the GSD analysis for the assessment of the formation stage of both creeks is comprehensively discussed. To achieve these goals, River Bedload Traps (RBTs) were used to collect the bedload, and a sieving method for dry material was applied to obtain the GSDs. Statistical comparisons between both streams showed significant differences in flow velocity; however, the lack of significant differences in bedload transport clearly indicated that meteorological conditions are among the most important factors in the erosive process for this catchment. In particular, the instability of flow conditions during high water discharge resulted in an increase in the proportion of medium and coarse gravels. The poorly sorted fine and very fine gravels observed in Siodło Creek suggest that this trough is more susceptible to erosion and less stabilized than Fosa Creek. The results suggest that GSD analyses can be used to define the stage of development of riverbeds relative to that of other riverbeds in polar regions.
    [Show full text]
  • Variabilidade Da Cobertura De Gelo Marinho E As Colônias De Pygoscelidae Na Costa Oeste Da Baia Do Almirantado, Ilha Rei George, Antártica
    UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS PROGRAMA DE PÓS-GRADUAÇÃO EM GEOCIÊNCIAS Variabilidade da cobertura de gelo marinho e as colônias de Pygoscelidae na costa oeste da baia do Almirantado, ilha Rei George, Antártica Ricardo Burgobraga Orientador: Prof. Dr. Jefferson Cardia Simões Banca examinadora: Prof. Dr. Elírio Toldo Júnior (UFRGS) Profa. Dr. Larissa de Oliveira Rosa (UNISINOS) Prof. Dr. Jean Carlos Budke (URI) Porto Alegre, janeiro de 2010 UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE GEOCIÊNCIAS Programa de Pós-Graduação em Geociências Variabilidade da cobertura de gelo marinho e as colônias de Pygoscelidae na costa oeste da baía do Almirantado, ilha Rei George, Antártica Ricardo Burgobraga Orientador: Prof. Dr. Jefferson Cardia Simões Banca examinadora: Prof. Dr. Elírio Toldo Júnior (UFRGS) Profa. Dra. Larissa de Oliveira Rosa (UNISINOS) Prof. Dr. Jean Carlos Budke (URI) Dissertação de Mestrado submetida como requisito para obtenção do título de Mestre em Geociências. Porto Alegre, janeiro de 2010 ii Foto da capa: Anne Frolich (novembro de 2004) Um Pygoscelis antarctica descansando sobre um grunhão encalhado na ponta Demay, costa oeste da baía do Almirantado - ASPA 128. Dedico este trabalho à minha esposa Eloísa, que faz tudo isso ter mais sentido; aos meus pais, Rebeca e José e ao meu irmão, Regis. Todos ofertaram todo o amor, paciência e apoio durante esse projeto. Estes são os meus esteios. iii AGRADECIMENTOS Agradeço muitíssimo ao meu orientador, o Prof. Dr. Jefferson Cardia Simões, por ter me delegado toda a liberdade de conduzir este projeto, além das inúmeras oportunidades de treinamento e colaboração no Núcleo de Pesquisas Antárticas e Climáticas – NUPAC.
    [Show full text]
  • Anatomy of a Glacial Meltwater Discharge Event in An
    Downloaded from http://rsta.royalsocietypublishing.org/ on May 22, 2018 Anatomy of a glacial meltwater discharge event rsta.royalsocietypublishing.org in an Antarctic cove Michael P.Meredith1, Ulrike Falk2,3, Anna Valeria Research Bers3,†, Andreas Mackensen3, Irene R. Schloss4,5,6, 4 3 Cite this article: Meredith MP,Falk U, Bers Eduardo Ruiz Barlett , Kerstin Jerosch , Adrián Silva AV, Mackensen A, Schloss IR, Ruiz Barlett E, Busso7 and Doris Abele3 Jerosch K, Silva Busso A, Abele D. 2018 Anatomy of a glacial meltwater discharge 1British Antarctic Survey, High Cross, Madingley Road, Cambridge eventinanAntarcticcove.Phil.Trans.R.Soc.A CB3 0ET, UK 376: 20170163. 2University of Bremen, Bremen, Germany http://dx.doi.org/10.1098/rsta.2017.0163 3Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am alten Hafen 24/Am Handelshafen 12, Accepted: 19 January 2018 27570 Bremerhaven, Germany 4Instituto Antártico Argentino, Buenos Aires, Argentina One contribution of 14 to a theme issue ‘The 5Centro Austral de Investigaciones Científicas (CADIC, CONICET), marine system of the West Antarctic Ushuaia, Argentina Peninsula: status and strategy for progress in a 6Universidad Nacional de Tierra del Fuego, Ushuaia, Argentina region of rapid change’. 7University of Buenos Aires, 1053 Buenos Aires, Argentina Subject Areas: MPM, 0000-0002-7342-7756;KJ,0000-0003-0728-2154 geochemistry, atmospheric science, biogeochemistry, glaciology, oceanography, Glacial meltwater discharge from Antarctica is a meteorology key influence on the marine environment, impacting ocean circulation, sea level and productivity of Keywords: the pelagic and benthic ecosystems. The responses elicited depend strongly on the characteristics of the glacial discharge, Antarctica, geochemical meltwater releases, including timing, spatial structure tracers, stable isotopes and geochemical composition.
    [Show full text]
  • How the Western Frontiers Were Won with the Help of Geophysics
    1 Controls on microalgal community structures in cryoconite 2 holes upon high Arctic glaciers, Svalbard 3 4 T.R. Vonnahme1,2,*, M. Devetter1,3, J. D. Žárský1,4, M. Šabacká1,5, J. Elster1,6 5 [1] {Centre for Polar Ecology, Faculty of Science, University of South Bohemia, České 6 Budějovice, Czech Republic} 7 [2] {University of Konstanz, Constance, Germany} 8 [3] {Biology Centre of the Academy of Science of the Czech Republic, Institute of Soil Biology, 9 České Budějovice, Czech Republic} 10 [4] {Department of Ecology, Charles University, Prague, Czech Republic} 11 [5] {British Antarctic Survey, Cambridge, UK} 12 [6] {Institute of Botany, Academy of the Science of the Czech Republic, Třeboň, Czech Republic} 13 [*] {now at: Max Planck Institute for Marine Microbiology, Bremen, Germany} 14 Correspondence to: J. Elster ([email protected]) 15 16 Abstract 17 Glaciers are known to harbor surprisingly complex ecosystems. On their surface, distinct 18 cylindrical holes filled with meltwater and sediments are considered as hot spots for microbial life. 19 The present paper addresses possible biological interactions within the community of prokaryotic 20 cyanobacteria and eukaryotic microalgae (microalgae) and relations to their potential grazers, such 21 as tardigrades and rotifers, additional to their environmental controls. Svalbard glaciers with 22 substantial allochthonous input of material from local sources reveal high microalgal densities. 23 Small valley glaciers with high sediment coverages and high impact of birds show high biomasses 24 and support a high biological diversity. Invertebrate grazer densities do not show any significant 25 negative correlation with microalgal abundances, but a positive correlation with eukaryotic 26 microalgae.
    [Show full text]
  • Multi-Year Analysis of Distributed Glacier Mass Balance Modelling and Equilibrium Line Altitude on King George Island, Antarctic Peninsula
    The Cryosphere, 12, 1211–1232, 2018 https://doi.org/10.5194/tc-12-1211-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Multi-year analysis of distributed glacier mass balance modelling and equilibrium line altitude on King George Island, Antarctic Peninsula Ulrike Falk1,2, Damián A. López2,3, and Adrián Silva-Busso4,5 1Climate Lab, Institute for Geography, Bremen University, Bremen, Germany 2Center for Remote Sensing of Land Surfaces (ZFL), Bonn University, Bonn, Germany 3Institute of Geology and Mineralogy, University Cologne, Cologne, Germany 4Faculty of Exact and Natural Sciences, University Buenos Aires, Buenos Aires, Argentina 5Instituto Nacional de Agua (INA), Ezeiza, Buenos Aires, Argentina Correspondence: Ulrike Falk ([email protected]) Received: 12 October 2017 – Discussion started: 1 December 2017 Revised: 15 March 2018 – Accepted: 19 March 2018 – Published: 10 April 2018 Abstract. The South Shetland Islands are located at the seen over the course of the 5-year model run period. The win- northern tip of the Antarctic Peninsula (AP). This region ter accumulation does not suffice to compensate for the high was subject to strong warming trends in the atmospheric sur- variability in summer ablation. The results are analysed to as- face layer. Surface air temperature increased about 3K in sess changes in meltwater input to the coastal waters, specific 50 years, concurrent with retreating glacier fronts, an in- glacier mass balance and the equilibrium line altitude (ELA). crease in melt areas, ice surface lowering and rapid break- The Fourcade Glacier catchment drains into Potter cove, has up and disintegration of ice shelves.
    [Show full text]
  • Different Feeding Strategies in Antarctic Scavenging Amphipods and Their
    Seefeldt et al. Frontiers in Zoology (2017) 14:59 DOI 10.1186/s12983-017-0248-3 RESEARCH Open Access Different feeding strategies in Antarctic scavenging amphipods and their implications for colonisation success in times of retreating glaciers Meike Anna Seefeldt1,2*, Gabriela Laura Campana3,4, Dolores Deregibus3, María Liliana Quartino3,5, Doris Abele2, Ralph Tollrian1 and Christoph Held2 Abstract Background: Scavenger guilds are composed of a variety of species, co-existing in the same habitat and sharing the same niche in the food web. Niche partitioning among them can manifest in different feeding strategies, e.g. during carcass feeding. In the bentho-pelagic realm of the Southern Ocean, scavenging amphipods (Lysianassoidea) are ubiquitous and occupy a central role in decomposition processes. Here we address the question whether scavenging lysianassoid amphipods employ different feeding strategies during carcass feeding, and whether synergistic feeding activities may influence carcass decomposition. To this end, we compared the relatively large species Waldeckia obesa with the small species Cheirimedon femoratus, Hippomedon kergueleni, and Orchomenella rotundifrons during fish carcass feeding (Notothenia spp.). The experimental approach combined ex situ feeding experiments, behavioural observations, and scanning electron microscopic analyses of mandibles. Furthermore, we aimed to detect ecological drivers for distribution patterns of scavenging amphipods in the Antarctic coastal ecosystems of Potter Cove. In Potter Cove, the climate-driven rapid retreat of the Fourcade Glacier is causing various environmental changes including the provision of new marine habitats to colonise. While in the newly ice- free areas fish are rare, macroalgae have already colonised hard substrates. Assuming that a temporal dietary switch may increase the colonisation success of the most abundant lysianassoids C.
    [Show full text]
  • Winter Melt Conditions of the Inland Ice Cap on King George Island, Antarctic Peninsula
    2015 Vol. 69 · No. 4 · 341–363 WINTER MELT CONDITIONS OF THE INLAND ICE CAP ON KING GEORGE ISLAND, ANTARCTIC PENINSULA ULRIKE FALK and HERNÁN SALA With 13 figures, 1 table and 2 photos Received 23 June 2015 · Accepted 26 November 2015 Summary: The South Shetland Islands are located at the northern tip of the Antarctic Peninsula (AP) which is among the fastest warming regions on Earth. Surface air temperature increases (~3 K in 50 years) are concurrent with retreating glacier fronts, an increase in melt areas, ice surface lowering and rapid break-up and disintegration of ice shelves. We have com- piled a unique meteorological dataset for the King George Island (KGI)/Isla 25 de Mayo, the largest of the South Shetland Islands. It comprises high-temporal resolution and spatially distributed observations of surface air temperature, wind direc- tions and wind velocities, glacier ice temperatures in profile with a fully equipped automatic weather station as well as snow accumulation and ablation measurements on the Warszawa Icefield, since November 2010 and ongoing. In combination with long-term synoptic datasets (40 and 10 years, respectively) and atmospheric circulation indices datasets, we have looked at changes in the climatological drivers of the glacial melt processes, and the sensitivity of the inland ice cap with regard to winter melting periods and pressure anomalies. The analysis has revealed a positive trend of 5 K over four decades in minimum surface air temperatures for winter months, clearly exceeding the published annual mean statistics, associated to a negative trend in mean monthly winter sea level pressure.
    [Show full text]
  • Em Áreas Livres De Gelo Nas Ilhas Nelson E Rei George, Antártica Marítima
    Revista Brasileira de Geomorfologia v. 22, nº 3 (2021) http://lsie.unb.br/ugb/ ISSN 2236-5664 http://dx.doi.org/10.20502/rbg.v22i3.1911 Artigo de Pesquisa Mudanças recentes (1988-2018) em áreas livres de gelo nas ilhas Nelson e Rei George, Antártica Marítima Recent changes (1988-2018) in ice-marginal environments of the King George and Nelson Island ice-free land areas, Maritime Antarctica Manoela Araujo Gonçalves de Oliveira(1), Kátia Kellem da Rosa(2), Carina Petsch(3), Rosemary Vieira(4), Felipe Casanova(5), Jefferson Cardia Simões (6) 1 Centro Polar e Climático, Programa de Pós-Graduação em Geografia - UFRGS, Porto Alegre, RS, Brasil. [email protected] ORCID: https://orcid.org/0000-0003-4661-7316 2 Departamento de Geografia, Centro Polar e Climático, Programa de Pós-Graduação em Geografia - UFRGS, Porto Alegre, RS, Brasil. [email protected] ORCID: https://orcid.org/0000-0003-0977-9658 3 Departamento de Geociências – UFSM, Santa Maria, RS, Brasil. Centro Polar e Climático, UFRGS, Porto Alegre, RS, Brasil. [email protected] ORCID: http://orcid.org/0000-0002-1079-0080 4 Laboratório de Processos Sedimentares e Ambientais, Depto de Geografia – UFF, Niterói, RJ, Brasil [email protected] ORCID: https://orcid.org/0000-0003-0312-2890 5 Centro Polar e Climático, UFRGS, Porto Alegre, RS, Brasil, [email protected] ORCID: https://orcid.org/0000-0002-3626-7853 6 Departamento de Geografia, Centro Polar e Climático, Programa de Pós-Graduação em Geografia - UFRGS, Porto Alegre, RS, Brasil. jefferson.simõ[email protected] ORCID: https://orcid.org/0000-0001-5555-3401 Recebido: 11/12/2020; Aceito: 17/05/2021; Publicado: 01/07/2021 Resumo: O objetivo deste trabalho é comparar as variações dos lagos e geleiras apresentadas por diferentes setores de áreas livres de gelo nas ilhas Rei George (IRG) e Nelson (IN) no período 1988-2018.
    [Show full text]
  • Download This PDF File
    POLSKA AKADEMIA NAUK . KOMITET NAUK GEOLOGICZNYCH acta geologica flAlIIsTWOWE WYDAWNICTWO NAUKOWE. WARSZAWA polonica Vol. 35, No. 1-2 Warszawa 1 985 KRZYSzrOF BIRKENMAJER Onset of Tertiary continental glaciation in the Antarctic Peninsula sector (West Antarctica) ABSTRACT: At the close of the Cretaceous, the Antarctic Peninsula sector had a rather warm and dry climate, differentiated into summer and winter seasons, as indicated by annual growth­ -rings in petrified logs. Vegetation cover was probably patchy due to low amount of precipitation. -There is no indication of contemporaneous continental glaciation, however small ice-caps may have grown on tops of stratovolcanoes and in high mountain groups. The Early Tertiary saw climatic and environmental conditions initially similar to the precedent -ones. Increase in amount of rainfall with time resulted in wide spreading of vegetation cover, with Nothofagus forests rich in fern undergrowth, including tree ferns, and with Araucaria, during Pala­ -eocene and Eocene, followed by Nothofagus-podocarp forests poorer in fern undergrowth during Oligocene. Climatic seasonality is well marked in petrified wood logs as annual growth-rings. Ter­ restrial animaI life (marsupials, large birds) is recorded at the beginning of PaIaeogene. There is no indication of continental glaciation in the Antarctic Peninsula sector during the whole Palaeogene. The uppermost Oligocene plant-bearing beds (dated at about 24.5 Ma) still evidence a non-glacial -climate. There are, however, evidences from lahar-type debris-flow agglomerates of existence of local ice-caps on tops of stratovolcanoes. The onset of continental glaciation (ice-sheet at sea level) in the Antarctic Peninsula sector, :slightly post-dates the Oligocene/Miocene boundary.
    [Show full text]