Order Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Calibrating Determinacy Strength in Levels of the Borel Hierarchy
CALIBRATING DETERMINACY STRENGTH IN LEVELS OF THE BOREL HIERARCHY SHERWOOD J. HACHTMAN Abstract. We analyze the set-theoretic strength of determinacy for levels of the Borel 0 hierarchy of the form Σ1+α+3, for α < !1. Well-known results of H. Friedman and D.A. Martin have shown this determinacy to require α+1 iterations of the Power Set Axiom, but we ask what additional ambient set theory is strictly necessary. To this end, we isolate a family of Π1-reflection principles, Π1-RAPα, whose consistency strength corresponds 0 CK exactly to that of Σ1+α+3-Determinacy, for α < !1 . This yields a characterization of the levels of L by or at which winning strategies in these games must be constructed. When α = 0, we have the following concise result: the least θ so that all winning strategies 0 in Σ4 games belong to Lθ+1 is the least so that Lθ j= \P(!) exists + all wellfounded trees are ranked". x1. Introduction. Given a set A ⊆ !! of sequences of natural numbers, consider a game, G(A), where two players, I and II, take turns picking elements of a sequence hx0; x1; x2;::: i of naturals. Player I wins the game if the sequence obtained belongs to A; otherwise, II wins. For a collection Γ of subsets of !!, Γ determinacy, which we abbreviate Γ-DET, is the statement that for every A 2 Γ, one of the players has a winning strategy in G(A). It is a much-studied phenomenon that Γ -DET has mathematical strength: the bigger the pointclass Γ, the stronger the theory required to prove Γ -DET. -
(Aka “Geometric”) Iff It Is Axiomatised by “Coherent Implications”
GEOMETRISATION OF FIRST-ORDER LOGIC ROY DYCKHOFF AND SARA NEGRI Abstract. That every first-order theory has a coherent conservative extension is regarded by some as obvious, even trivial, and by others as not at all obvious, but instead remarkable and valuable; the result is in any case neither sufficiently well-known nor easily found in the literature. Various approaches to the result are presented and discussed in detail, including one inspired by a problem in the proof theory of intermediate logics that led us to the proof of the present paper. It can be seen as a modification of Skolem's argument from 1920 for his \Normal Form" theorem. \Geometric" being the infinitary version of \coherent", it is further shown that every infinitary first-order theory, suitably restricted, has a geometric conservative extension, hence the title. The results are applied to simplify methods used in reasoning in and about modal and intermediate logics. We include also a new algorithm to generate special coherent implications from an axiom, designed to preserve the structure of formulae with relatively little use of normal forms. x1. Introduction. A theory is \coherent" (aka \geometric") iff it is axiomatised by \coherent implications", i.e. formulae of a certain simple syntactic form (given in Defini- tion 2.4). That every first-order theory has a coherent conservative extension is regarded by some as obvious (and trivial) and by others (including ourselves) as non- obvious, remarkable and valuable; it is neither well-enough known nor easily found in the literature. We came upon the result (and our first proof) while clarifying an argument from our paper [17]. -
Relations-Handoutnonotes.Pdf
Introduction Relations Recall that a relation between elements of two sets is a subset of their Cartesian product (of ordered pairs). Slides by Christopher M. Bourke Instructor: Berthe Y. Choueiry Definition A binary relation from a set A to a set B is a subset R ⊆ A × B = {(a, b) | a ∈ A, b ∈ B} Spring 2006 Note the difference between a relation and a function: in a relation, each a ∈ A can map to multiple elements in B. Thus, Computer Science & Engineering 235 relations are generalizations of functions. Introduction to Discrete Mathematics Sections 7.1, 7.3–7.5 of Rosen If an ordered pair (a, b) ∈ R then we say that a is related to b. We [email protected] may also use the notation aRb and aRb6 . Relations Relations Graphical View To represent a relation, you can enumerate every element in R. A B Example a1 b1 a Let A = {a1, a2, a3, a4, a5} and B = {b1, b2, b3} let R be a 2 relation from A to B as follows: a3 b2 R = {(a1, b1), (a1, b2), (a1, b3), (a2, b1), a4 (a3, b1), (a3, b2), (a3, b3), (a5, b1)} b3 a5 You can also represent this relation graphically. Figure: Graphical Representation of a Relation Relations Reflexivity On a Set Definition Definition A relation on the set A is a relation from A to A. I.e. a subset of A × A. There are several properties of relations that we will look at. If the ordered pairs (a, a) appear in a relation on a set A for every a ∈ A Example then it is called reflexive. -
Geometry and Categoricity∗
Geometry and Categoricity∗ John T. Baldwiny University of Illinois at Chicago July 5, 2010 1 Introduction The introduction of strongly minimal sets [BL71, Mar66] began the idea of the analysis of models of categorical first order theories in terms of combinatorial geometries. This analysis was made much more precise in Zilber’s early work (collected in [Zil91]). Shelah introduced the idea of studying certain classes of stable theories by a notion of independence, which generalizes a combinatorial geometry, and characterizes models as being prime over certain independent trees of elements. Zilber’s work on finite axiomatizability of totally categorical first order theories led to the development of geometric stability theory. We discuss some of the many applications of stability theory to algebraic geometry (focusing on the role of infinitary logic). And we conclude by noting the connections with non-commutative geometry. This paper is a kind of Whig history- tying into a (I hope) coherent and apparently forward moving narrative what were in fact a number of independent and sometimes conflicting themes. This paper developed from talk at the Boris-fest in 2010. But I have tried here to show how the ideas of Shelah and Zilber complement each other in the development of model theory. Their analysis led to frameworks which generalize first order logic in several ways. First they are led to consider more powerful logics and then to more ‘mathematical’ investigations of classes of structures satisfying appropriate properties. We refer to [Bal09] for expositions of many of the results; that’s why that book was written. It contains full historical references. -
On the Satisfiability Problem for Fragments of the Two-Variable Logic
ON THE SATISFIABILITY PROBLEM FOR FRAGMENTS OF TWO-VARIABLE LOGIC WITH ONE TRANSITIVE RELATION WIESLAW SZWAST∗ AND LIDIA TENDERA Abstract. We study the satisfiability problem for two-variable first- order logic over structures with one transitive relation. We show that the problem is decidable in 2-NExpTime for the fragment consisting of formulas where existential quantifiers are guarded by transitive atoms. As this fragment enjoys neither the finite model property nor the tree model property, to show decidability we introduce a novel model con- struction technique based on the infinite Ramsey theorem. We also point out why the technique is not sufficient to obtain decid- ability for the full two-variable logic with one transitive relation, hence contrary to our previous claim, [FO2 with one transitive relation is de- cidable, STACS 2013: 317-328], the status of the latter problem remains open. 1. Introduction The two-variable fragment of first-order logic, FO2, is the restriction of classical first-order logic over relational signatures to formulas with at most two variables. It is well-known that FO2 enjoys the finite model prop- erty [23], and its satisfiability (hence also finite satisfiability) problem is NExpTime-complete [7]. One drawback of FO2 is that it can neither express transitivity of a bi- nary relation nor say that a binary relation is a partial (or linear) order, or an equivalence relation. These natural properties are important for prac- arXiv:1804.09447v3 [cs.LO] 9 Apr 2019 tical applications, thus attempts have been made to investigate FO2 over restricted classes of structures in which some distinguished binary symbols are required to be interpreted as transitive relations, orders, equivalences, etc. -
The Development of Mathematical Logic from Russell to Tarski: 1900–1935
The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu Richard Zach Calixto Badesa The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu (University of California, Berkeley) Richard Zach (University of Calgary) Calixto Badesa (Universitat de Barcelona) Final Draft—May 2004 To appear in: Leila Haaparanta, ed., The Development of Modern Logic. New York and Oxford: Oxford University Press, 2004 Contents Contents i Introduction 1 1 Itinerary I: Metatheoretical Properties of Axiomatic Systems 3 1.1 Introduction . 3 1.2 Peano’s school on the logical structure of theories . 4 1.3 Hilbert on axiomatization . 8 1.4 Completeness and categoricity in the work of Veblen and Huntington . 10 1.5 Truth in a structure . 12 2 Itinerary II: Bertrand Russell’s Mathematical Logic 15 2.1 From the Paris congress to the Principles of Mathematics 1900–1903 . 15 2.2 Russell and Poincar´e on predicativity . 19 2.3 On Denoting . 21 2.4 Russell’s ramified type theory . 22 2.5 The logic of Principia ......................... 25 2.6 Further developments . 26 3 Itinerary III: Zermelo’s Axiomatization of Set Theory and Re- lated Foundational Issues 29 3.1 The debate on the axiom of choice . 29 3.2 Zermelo’s axiomatization of set theory . 32 3.3 The discussion on the notion of “definit” . 35 3.4 Metatheoretical studies of Zermelo’s axiomatization . 38 4 Itinerary IV: The Theory of Relatives and Lowenheim’s¨ Theorem 41 4.1 Theory of relatives and model theory . 41 4.2 The logic of relatives . -
Math 475 Homework #3 March 1, 2010 Section 4.6
Student: Yu Cheng (Jade) Math 475 Homework #3 March 1, 2010 Section 4.6 Exercise 36-a Let ͒ be a set of ͢ elements. How many different relations on ͒ are there? Answer: On set ͒ with ͢ elements, we have the following facts. ) Number of two different element pairs ƳͦƷ Number of relations on two different elements ) ʚ͕, ͖ʛ ∈ ͌, ʚ͖, ͕ʛ ∈ ͌ 2 Ɛ ƳͦƷ Number of relations including the reflexive ones ) ʚ͕, ͕ʛ ∈ ͌ 2 Ɛ ƳͦƷ ƍ ͢ ġ Number of ways to select these relations to form a relation on ͒ 2ͦƐƳvƷͮ) ͦƐ)! ġ ͮ) ʚ ʛ v 2ͦƐƳvƷͮ) Ɣ 2ʚ)ͯͦʛ!Ɛͦ Ɣ 2) )ͯͥ ͮ) Ɣ 2) . b. How many of these relations are reflexive? Answer: We still have ) number of relations on element pairs to choose from, but we have to 2 Ɛ ƳͦƷ ƍ ͢ include the reflexive one, ʚ͕, ͕ʛ ∈ ͌. There are ͢ relations of this kind. Therefore there are ͦƐ)! ġ ġ ʚ ʛ 2ƳͦƐƳvƷͮ)Ʒͯ) Ɣ 2ͦƐƳvƷ Ɣ 2ʚ)ͯͦʛ!Ɛͦ Ɣ 2) )ͯͥ . c. How many of these relations are symmetric? Answer: To select only the symmetric relations on set ͒ with ͢ elements, we have the following facts. ) Number of symmetric relation pairs between two elements ƳͦƷ Number of relations including the reflexive ones ) ʚ͕, ͕ʛ ∈ ͌ ƳͦƷ ƍ ͢ ġ Number of ways to select these relations to form a relation on ͒ 2ƳvƷͮ) )! )ʚ)ͯͥʛ )ʚ)ͮͥʛ ġ ͮ) ͮ) 2ƳvƷͮ) Ɣ 2ʚ)ͯͦʛ!Ɛͦ Ɣ 2 ͦ Ɣ 2 ͦ . d. -
Extending Partial Isomorphisms of Finite Graphs
S´eminaire de Master 2`emeann´ee Sous la direction de Thomas Blossier C´edricMilliet — 1er d´ecembre 2004 Extending partial isomorphisms of finite graphs Abstract : This paper aims at proving a theorem given in [4] by Hrushovski concerning finite graphs, and gives a generalization (with- out any proof) of this theorem for a finite structure in a finite relational language. Hrushovski’s therorem is the following : any finite graph G embeds in a finite supergraph H so that any local isomorphism of G extends to an automorphism of H. 1 Introduction In this paper, we call finite graph (G, R) any finite structure G with one binary symmetric reflexive relation R (that is ∀x ∈ G xRx and ∀x, y xRy =⇒ yRx). We call vertex of such a graph any point of G, and edge, any couple (x, y) such that xRy. Geometrically, a finite graph (G, R) is simply a finite set of points, some of them being linked by edges (see picture 1 ). A subgraph (F, R0) of (G, R) is any subset F of G along with the binary relation R0 induced by R on F . H H H J H J H J H J Hqqq HJ Hqqq HJ ¨ ¨ q q ¨ q q q q q Picture 1 — A graph (G, R) and a subgraph (F, R0) of (G, R). We call isomorphism between two graphs (G, R) and (G0,R0) any bijection that preserves the binary relations, that is, any bijection σ that sends an edge on an edge along with σ−1. If (G, R) = (G0,R0), then such a σ is called an automorphism of (G, R). -
PROBLEM SET THREE: RELATIONS and FUNCTIONS Problem 1
PROBLEM SET THREE: RELATIONS AND FUNCTIONS Problem 1 a. Prove that the composition of two bijections is a bijection. b. Prove that the inverse of a bijection is a bijection. c. Let U be a set and R the binary relation on ℘(U) such that, for any two subsets of U, A and B, ARB iff there is a bijection from A to B. Prove that R is an equivalence relation. Problem 2 Let A be a fixed set. In this question “relation” means “binary relation on A.” Prove that: a. The intersection of two transitive relations is a transitive relation. b. The intersection of two symmetric relations is a symmetric relation, c. The intersection of two reflexive relations is a reflexive relation. d. The intersection of two equivalence relations is an equivalence relation. Problem 3 Background. For any binary relation R on a set A, the symmetric interior of R, written Sym(R), is defined to be the relation R ∩ R−1. For example, if R is the relation that holds between a pair of people when the first respects the other, then Sym(R) is the relation of mutual respect. Another example: if R is the entailment relation on propositions (the meanings expressed by utterances of declarative sentences), then the symmetric interior is truth- conditional equivalence. Prove that the symmetric interior of a preorder is an equivalence relation. Problem 4 Background. If v is a preorder, then Sym(v) is called the equivalence rela- tion induced by v and written ≡v, or just ≡ if it’s clear from the context which preorder is under discussion. -
Equivalents to the Axiom of Choice and Their Uses A
EQUIVALENTS TO THE AXIOM OF CHOICE AND THEIR USES A Thesis Presented to The Faculty of the Department of Mathematics California State University, Los Angeles In Partial Fulfillment of the Requirements for the Degree Master of Science in Mathematics By James Szufu Yang c 2015 James Szufu Yang ALL RIGHTS RESERVED ii The thesis of James Szufu Yang is approved. Mike Krebs, Ph.D. Kristin Webster, Ph.D. Michael Hoffman, Ph.D., Committee Chair Grant Fraser, Ph.D., Department Chair California State University, Los Angeles June 2015 iii ABSTRACT Equivalents to the Axiom of Choice and Their Uses By James Szufu Yang In set theory, the Axiom of Choice (AC) was formulated in 1904 by Ernst Zermelo. It is an addition to the older Zermelo-Fraenkel (ZF) set theory. We call it Zermelo-Fraenkel set theory with the Axiom of Choice and abbreviate it as ZFC. This paper starts with an introduction to the foundations of ZFC set the- ory, which includes the Zermelo-Fraenkel axioms, partially ordered sets (posets), the Cartesian product, the Axiom of Choice, and their related proofs. It then intro- duces several equivalent forms of the Axiom of Choice and proves that they are all equivalent. In the end, equivalents to the Axiom of Choice are used to prove a few fundamental theorems in set theory, linear analysis, and abstract algebra. This paper is concluded by a brief review of the work in it, followed by a few points of interest for further study in mathematics and/or set theory. iv ACKNOWLEDGMENTS Between the two department requirements to complete a master's degree in mathematics − the comprehensive exams and a thesis, I really wanted to experience doing a research and writing a serious academic paper. -
Fundamental Theorems in Mathematics
SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635]. -
Mereology Then and Now
Logic and Logical Philosophy Volume 24 (2015), 409–427 DOI: 10.12775/LLP.2015.024 Rafał Gruszczyński Achille C. Varzi MEREOLOGY THEN AND NOW Abstract. This paper offers a critical reconstruction of the motivations that led to the development of mereology as we know it today, along with a brief description of some questions that define current research in the field. Keywords: mereology; parthood; formal ontology; foundations of mathe- matics 1. Introduction Understood as a general theory of parts and wholes, mereology has a long history that can be traced back to the early days of philosophy. As a formal theory of the part-whole relation or rather, as a theory of the relations of part to whole and of part to part within a whole it is relatively recent and came to us mainly through the writings of Edmund Husserl and Stanisław Leśniewski. The former were part of a larger project aimed at the development of a general framework for formal ontology; the latter were inspired by a desire to provide a nominalistically acceptable alternative to set theory as a foundation for mathematics. (The name itself, ‘mereology’ after the Greek word ‘µρoς’, ‘part’ was coined by Leśniewski [31].) As it turns out, both sorts of motivation failed to quite live up to expectations. Yet mereology survived as a theory in its own right and continued to flourish, often in unexpected ways. Indeed, it is not an exaggeration to say that today mereology is a central and powerful area of research in philosophy and philosophical logic. It may be helpful, therefore, to take stock and reconsider its origins.