Scy1112 General Chemistry Ii
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Problem the Diols, Such As Ethane-1,2-Diol, Which Are The
The problem The diols, such as ethane-1,2-diol, which are the products of the reaction with cold dilute potassium manganate(VII), are themselves quite easily oxidised by manganate(VII) ions. That means that the reaction won't stop at this point unless the potassium manganate(VII) solution is very dilute, very cold, and preferably not under acidic conditions. If you are using hot concentrated acidified potassium manganate(VII) solution, what you finally end up with depends on the arrangement of groups around the carbon-carbon double bond. Writing a structural formula to represent any alkene The formula below represents a general alkene. In organic chemistry, the symbol R is used to represent hydrocarbon groups or hydrogen in a formula when you don't want to talk about specific compounds. If you use the symbol more than once in a formula (as here), the various groups are written as R1, R2, etc. In this particular case, the double bond is surrounded by four such groups, and these can be any combination of same or different - so they could be 2 hydrogens, a methyl and an ethyl, or 1 hydrogen and 3 methyls, or 1 hydrogen and 1 methyl and 1 ethyl and 1 propyl, or any other combination you can think of. In other words, this formula represents every possible simple alkene: The first stage of the extended oxidation The acidified potassium manganate(VII) solution oxidises the alkene by breaking the carbon-carbon double bond and replacing it with two carbon-oxygen double bonds. 1 The products are known as carbonyl compounds because they contain the carbonyl group, C=O. -
Abstract Superacid Catalyzed Reactions
ABSTRACT SUPERACID CATALYZED REACTIONS: GENERATION OF REACTIVE INTERMEDIATES AND THEIR CHEMISTRY Makafui Gasonoo, Ph.D. Department of Chemistry and Biochemistry Northern Illinois University, 2017 Douglas A. Klumpp, Director This dissertation describes the use of triflic acid as catalyst for generating reactive intermediates and studying their reactivities under varying reaction conditions. The first chapter is an introduction to the types of organic reactions and acids. This chapter also discusses generation and reactivities of superelectrophiles as well. Chapter 2 discusses the synthesis of 3,3-disubstituted-2-oxindoles from the reaction of a series of acetonyl-substituted 3-hydroxy-2-oxindoles with arene in the presence of triflic acid. These reactions are performed under mild conditions and products isolated in decent yields. In chapter 3, the effects of charge migration in a tetra- and pentacationic superelectrophile is studied. These highly reactive intermediates are reacted with benzene at elevated temperatures. In the absence of benzene, cyclization occurs to produce novel N- heterocyclic compounds. Alcohol precursors are also ionized to generate these reactive intermediates and studied using low-temperature NMR. Chapter 4 talks about the effects of charge-charge repulsion on the aromaticity and anti- aromaticity in fluorenyl and dibenzosuberenyl cations respectively. These cations are generated from ionization of the respective biaryl ketones and dibenzosuberenols with superacid. With increasing charge, there is a corresponding increase in the aromaticity or anti-aromaticity of the respective system. Chapter 5 describes the superacid-promoted synthesis of heterocycle-containing 9,9- diarylfluorenes from biaryl ketones. Products are generally isolated in good yields using mild reaction conditions. Some of these compounds are used in the manufacture of organic light emitting diodes (OLEDs) and other organic-based electronics. -
Tetrakis[Triorganylphosphineaurio(I
1,1,1,1 -Tetrakis[triorganylphosphineaurio(I)]ethanium(+) Tetrafluoroborates - Hypercoordinated Species Containing [H3C-C(AuL)4I+ Cations Oliver Steigeimann, Peter Bissinger, and Hubert Schmidbaur* Anorganisch-chemisches Institut der Technischen Universität München, Lichtenbergstraße 4, D-W-8046 Garching Z. Naturforsch. 48b, 72-78 (1993); received September 10, 1992 Auriophilicity, Gold(I) Phosphine Complexes, Ethane-tetraaurio(I) Compounds, X-Ray Hypercoordinate, tetraaurated carbon-complexes of the type [H 3C -C (A uP R 3)4]+BF4~, R = Ph (1), R = C6H u (2), (PR3)2 = l,2-C 6H4(CH 2CH 2PPh 2)2 (3) have been prepared by the reac tion of the appropriate (phosphane)gold(I) chlorides with l,l,l-tris(dimethoxyboryl)ethane H 3C -C [B(O M e)2]3 in the presence of CsF. The products have been characterized by standard analytical and spectroscopic methods, including single crystal X-ray analyses of 1 and 2. In each case the pentacoordinated carbon atoms have been located at the centre of a square pyr- amide built up by a methyl group at the apex and four gold atoms forming the base with short Au ••• Au distances of about 2.85 A, which strongly contribute to the formation and stability of these species. Introduction The special position of gold in the Periodic gation of complex units L -A u-X of phosphane Table is largely based on relativistic effects [1], gold compounds [3], but also to a clustering of which modify significantly the properties of the gold(I) atoms at or around a main group element valence electrons of Post-Lanthanide elements. -
General Concepts in Organic Chemistry
General Organic Chemistry-Part I 1 General Concepts in Organic Chemistry (A) Types of Organic Reactions: There six common types of organic reactions for the purpose of a beginner. (a) Substitution (b) Addition (c) Elimination (d) Oxidation (e) Reduction (f) Molecular Rearrangement Substitution Reactions: One group or atom is substituted by another group or atom. heat/ R H ++ Br R Br HBr 2 light R Br ++ KOH R OH KBr In the first example, H atom has been substituted by Br atom, so that an alkane is converted to alkyl bromide. In the second example, a Br atomm is substituted by OH group, so that an alkyl bromide has been converted to an alcohol. Addition Reactions: A double bond or a triple bond in a molecule gets added up with another molecule(addendum). Hence the unsaturation in the molecule is vanished or reduced. Br Br CH2 CH2 + Br2 CH2 CH2 Cl CH CH + HCl CH2 CH In the first example, an alkene(ethene) adds with a Br2 molecule, each carbon atom joins with one Br atom to give 1,2-dibromoethane. Thus the unsaturation is vanished. In the second example, alkyne(ethyne) adds onto one HCl molecule, one carbon joins with H atom and the other with Cl atom to give ethenyl chloride(vinyl chloride). Thus degree of unsaturation is reduced. Note that other conditions of the reactions are not given here. It is just an introduction. Elimination Reactions: One molecule is eliminated from the organic molecule to increase the degree of unsaturation. A saturated compound gives an alkene and an alkene gives an alkyne. -
GLOSSARY of CLASS NAMES of ORGANIC COMPOUNDS and REACTIVE INTERMEDIATES BASED on STRUCTURE (IUPAC Recommendations 1995)
Pure &App/. Chem., Vol. 67, Nos 819, pp. 1307-1375, 1995. Printed in Great Britain. (B 1995 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ORGANIC CHEMISTRY DMSION COMMISSION ON NOMENCLATURE OF ORGANIC CHEMISTRY (III. 1) COMMISSION ON PHYSICAL ORGANIC CHEMISTRY (III.2) GLOSSARY OF CLASS NAMES OF ORGANIC COMPOUNDS AND REACTIVE INTERMEDIATES BASED ON STRUCTURE (IUPAC Recommendations 1995) Prepared for publication by G.P. MOSS, P.A.S. SMITH and D. TAVERNIER Cornpodtion of the ZZZ.1 & 111.2 Working Party (1980-1994): H.J.T. Bos, A.J. Boulton, E.W. Godly, P. Griinanger, A.D. McNaught, G.P. Moss, R. PanicO, J. Rigaudy, P.A.S. Smith (Conwnorfiom ZZZ, I), J.H. Stocker, D. Tavernier, R.A.Y. Jones, J. March, J.M. McBnde, P. Miiller (Conwnorfim 111.2). Membership of the Commission on Nomenclature of Organic Chemistry during the preparation of this document (1980-1994) was as follows: Titular Members: 0. Achmatowicz (Poland) 1979-1987; H. J. T. Bos (Netherlands) 1987- , Vice-Chairman, 1991- ; J. R. Bull (Republic of South Africa) 1987-1993; H. A. Favre (Canada) 1989- , Chairman, 1991- ; P. M. Giles, Jr. (USA) 1989- ; E. W. Godly (UK) 1987-1993. Secretary, 1989-1993 ; D. Hellwinkel (Federal Republic of Germany) 1979-1987, Vice- Chairman, 1981-1987; B. J. Herold (Portugal) 1994- ; K. Hirayama (Japan) 1975-1983; M. V. KisakUrck (Switizrland) 1994- ; A. D. McNaught (UK) 1979-1987; G. P. Moss (UK) 1977- 1987, Chairinan, 1981- 1987, Vice-Chainnun, 1979-1981; R. Panico (Francc) 1981-1991, Vice- Chairman, 1989-1991; W. H. Powell (USA) Secretary, 1979-1989; J. -
WO 2016/171769 Al 27 October 2016 (27.10.2016) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/171769 Al 27 October 2016 (27.10.2016) P O P C T (51) International Patent Classification: land, WA 99354 (US). CHOUYYOK, Wilaiwan G01L 5/(94 (2006.01) [US/US]; 2177 Crestview Avenue, Richland, WA 99354 (US). ATKINSON, David A. [US/US]; 178 Sell Lane, (21) International Application Number: Richland, WA 99354 (US). PCT/US20 16/00003 8 (74) Agent: PAYNTER, Leland Scott; Leland Scott Paynter IP (22) International Filing Date: Law LLC, 7730 North Whittier Place, Indianapolis, IN 2 1 April 2016 (21 .04.2016) 46250 (US). English (25) Filing Language: (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 14/692,371 2 1 April 2015 (21.04.2015) US DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, 14/692,460 2 1 April 2015 (21.04.2015) US HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (71) Applicant: BATTELLE MEMORIAL INSTITUTE KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, [US/US]; 902 Battelle Blvd., P.O. Box 999, Richland, WA MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 99352 (US). PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (72) Inventors; and TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. -
Synthesis, Structure, and Reactivity Studies of Ketenylidene, Carbide, Carbynoid, Carbenoid, and Tetrazolyl Complexes of Gold
SYNTHESIS, STRUCTURE, AND REACTIVITY STUDIES OF KETENYLIDENE, CARBIDE, CARBYNOID, CARBENOID, AND TETRAZOLYL COMPLEXES OF GOLD A Dissertation Presented to The Academic Faculty by Nicholas T. Daugherty In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the School of Chemistry and Biochemistry Georgia Institute of Technology August 2018 Copyright © 2018 by Nicholas T. Daugherty SYNTHESIS, STRUCTURE, AND REACTIVITY STUDIES OF KETENYLIDENE, CARBIDE, CARBYNOID, CARBENOID, AND TETRAZOLYL COMPLEXES OF GOLD Approved by: Dr. Joseph P. Sadighi, Advisor Dr. Z. John Zhang School of Chemistry and Biochemistry School of Chemistry and Biochemistry Georgia Institute of Technology Georgia Institute of Technology Dr. Angus P. Wilkinson Dr. Carsten Sievers School of Chemistry and Biochemistry School of Chemical and Biomolecular Georgia Institute of Technology Engineering Georgia Institute of Technology Dr. Jake D. Soper Dr. Christopher W. Jones School of Chemistry and Biochemistry School of Chemical and Biomolecular Georgia Institute of Technology Engineering Georgia Institute of Technology Date Approved: May 2, 2018 To my wife, Veronica Daugherty ACKOWLEDGEMENTS I thank my research advisor, Professor Joseph Sadighi, for the opportunity to work and learn in his research group. Joseph has taught me a great deal about developing strategies for making and breaking bonds, and he has set an example of honest, responsible, dedicated leadership. Joseph is truly interested in the success of his students, not only in terms of the science, but also at a personal level. I also want to thank Joseph for the occasional cup of coffee and unexpected group-meeting reference to Monty Python. It has truly been a pleasure to work for him.