Biofuels for the Marine Shipping Sector

Total Page:16

File Type:pdf, Size:1020Kb

Biofuels for the Marine Shipping Sector Biofuels for the marine shipping sector Front cover information panel IEA Bioenergy: Task 39: xxxx: xx Biofuels for the marine shipping sector An overview and analysis of sector infrastructure, fuel technologies and regulations Chia-wen Carmen Hsieh, University of Copenhagen Claus Felby, University of Copenhagen Acknowledgements. This report is supported by funding from Innovation Fund Denmark and the International Energy Agency Bioenergy Task 39. Copyright © 2017 IEA Bioenergy. All rights Reserved Published by IEA Bioenergy IEA Bioenergy, also known as the Technology Collaboration Programme (TCP) for a Programme of Research, Development and Demonstration on Bioenergy, functions within a Framework created by the International Energy Agency (IEA). Views, findings and publications of IEA Bioenergy do not necessarily represent the views or policies of the IEA Secretariat or of its individual Member countries. Contents Summary ........................................................................................................................ 5 1. Introduction and overview ........................................................................................... 9 2. The shipping sector .................................................................................................. 11 2.1. Shipping vessels ................................................................................................ 13 2.2. Classification of Shipping vessels ......................................................................... 14 2.3. Short vs. deep sea shipping ................................................................................ 15 2.4. Shipping routes ................................................................................................. 16 2.5. Life cycle of shipping vessels ............................................................................... 16 3. Marine propulsion technology ..................................................................................... 17 3.1. Diesel engines ................................................................................................... 18 3.2. Multifuel engines ............................................................................................... 20 3.3. Petrol, gas and electric engines............................................................................ 21 3.4. The fuel oil system............................................................................................. 22 4. Current marine fuels ................................................................................................. 23 4.1. Marine fuel standards and classifications ............................................................... 23 4.2. Properties of marine fuels ................................................................................... 25 4.3. Liquefied natural gas .......................................................................................... 26 4.4. Other fuels ....................................................................................................... 27 4.5. Fuel heating value ............................................................................................. 27 4.6. Fuel specific GHG emissions ................................................................................ 28 4.7. The marine fuel market ...................................................................................... 29 4.8. Marine fuel regulations ....................................................................................... 31 4.9. Fuel transport infrastructure (ports) ..................................................................... 37 5. Marine biofuels and conversion technologies ................................................................ 39 5.1. Current Biomass-derived diesel fuels .................................................................... 40 5.2. Drop-in fuels ..................................................................................................... 43 5.3. Advanced biofuel production technologies ............................................................. 44 5.3.1. Oleochemical .................................................................................................... 44 5.3.2. Upgrading of pulping residues ............................................................................. 47 5.3.3. Thermochemical ................................................................................................ 48 5.3.4. Hybrid technologies ........................................................................................... 53 5.3.5. Bioethanol ........................................................................................................ 53 5.3.6. BioMethanol and biogas ...................................................................................... 55 5.3.7. Emulsion biofuels .............................................................................................. 56 5.4. Biofuel blending ................................................................................................ 57 6. Status of marine biofuels .......................................................................................... 60 1 6.1. Marine biofuel production start-up ........................................................................ 62 6.2. Biofuel feedstocks .............................................................................................. 62 6.3. Fuel and feedstock potentials .............................................................................. 63 7. Marine biofuel regulations ......................................................................................... 66 7.1. Marine biofuel deployment initiatives .................................................................... 66 7.2. Biofuel deployment challenges ............................................................................. 71 8. Conclusions ............................................................................................................. 73 9. References .............................................................................................................. 76 2 Figures Figure 1. Merchant shipping routes around the world11. ........................................................ 12 Figure 2. Container ship fuel consumption as a function of speed25 ........................................ 20 Figure 3. Fuel oil system for a two-stroke marine diesel engine28. .......................................... 22 Figure 4. Price of marine fuels (residual fuel RMG 380 and distillate fuel MDO) in US$ per metric tonne compared to the price of crude oil in US$ per barrel43 ................................................. 30 Figure 5. Sulphur and nitrogen oxide emission control areas (ECA)49. The Baltic and North Sea will be ECAs-NOx from 2021. ................................................................................................. 32 Figure 6. Nitrogen oxide emission standards inside and outside ECAs in accordance to MARPOL Annex VI. The emission limits expressed are a function of the engine speed in revolutions per minute (rpm). Tier I and Tier II limits are global. ................................................................ 35 Figure 7. IMO agreement on technical regulations to reduce CO2 emissions: MARPOL Annex VI, chapter 4 adopted July 2011, entered into force in January 2015 ........................................... 36 Figure 8. Overview of different feedstock conversion routes to marine biofuels including both conventional and advanced biofuels. ................................................................................. 40 Figure 9 Transesterification of triglycerides with methanol to glycerol and methyl esters for the production of fatty acid methyl esters (FAME) ..................................................................... 41 Figure 10. SWOT analysis of marine fuels from biomass. ...................................................... 74 Tables Table 1. Merchant shipping vessel classifications20 ............................................................... 14 Table 2. Classification of merchant vessels by size20 ............................................................ 15 Table 3. Common types of marine engines and their fuel compatibility. HFO: Heavy fuel oil, MDO: Marine diesel oil, LSHFO: Low Sulphur Heavy Fuel Oil, LNG: Liquefied Natural Gas ................... 17 Table 4. Types of diesel engines according to speed ............................................................ 19 Table 5. ISO distillate marine fuel specifications3 ................................................................. 24 Table 6. ISO residual marine fuel specifications3 ................................................................. 25 Table 7. Energy content and density of select marine fuels34 ................................................. 28 31,39,40 Table 8. Mass of CO2 emitted per quantity of energy for various fuels ............................. 29 Table 9. Average world marine fuel prices October 201543 .................................................... 31 Table 10. Sulphur emission standards inside and outside ECAs .............................................. 33 Table 11. Oil yield per year of common crops for biodiesel61 .................................................. 43 Table 12. Comparison of fuel consumption in the maritime and aviation sectors with current and potential biofuel production based on current crops and feedstocks from
Recommended publications
  • The Potential for Biofuels Alongside the EU-ETS
    The potential for biofuels alongside the EU-ETS Stefan Boeters, Paul Veenendaal, Nico van Leeuwen and Hugo Rojas-Romagoza CPB Netherlands Bureau for Economic Policy Analysis Paper for presentation at the Eleventh Annual GTAP Conference ‘Future of Global Economy’, Helsinki, June 12-14, 2008 1 Table of contents Summary 3 1 The potential for biofuels alongside the EU-ETS 6 1.1 Introduction 6 1.2 Climate policy baseline 7 1.3 Promoting the use of biofuels 10 1.4 Increasing transport fuel excises as a policy alternative from the CO 2-emission reduction point of view 22 1.5 Conclusions 23 Appendix A: Characteristics of the WorldScan model and of the baseline scenario 25 A.1 WorldScan 25 A.2 Background scenario 27 A.3 Details of biofuel modelling 28 A.4 Sensitivity analysis with respect to land allocation 35 References 38 2 Summary The potential for biofuels alongside the EU-ETS On its March 2007 summit the European Council agreed to embark on an ambitious policy for energy and climate change that establishes several targets for the year 2020. Amongst others this policy aims to reduce greenhouse gas emissions by at least 20% compared to 1990 and to ensure that 20% of total energy use comes from renewable sources, partly by increasing the share of biofuels up to at least 10% of total fuel use in transportation. In meeting the 20% reduction ceiling for greenhouse gas emissions the EU Emissions Trading Scheme (EU-ETS) will play a central role as the ‘pricing engine’ for CO 2-emissions. The higher the emissions price will be, the sooner technological emission reduction options will tend to be commercially adopted.
    [Show full text]
  • The Sustainability of Cellulosic Biofuels
    The Sustainability of Cellulosic Biofuels All biofuels, by definition, are made from plant material. The main biofuel on the U.S. market is corn ethanol, a type of biofuel made using the starch in corn grain. But only using grain to produce biofuels can lead to a tug of war between food and fuel sources, as well as other environmental and economic challenges. Biofuels made from cellulosic sources – the leaves, stems, and other fibrous parts of a plant – have been touted as a promising renewable energy source. Not only is cellulose the most abundant biological material on Earth, but using cellulose to produce biofuels instead of grain can have environmental benefits. Cellulosic biofuel sources offer a substantially greater energy return on investment compared to grain-based sources. However, environmental benefits are not guaranteed. The environmental success of cellulosic biofuels will depend on 1) which cellulosic crops are grown, 2) the practices used to manage them, and 3) the geographic location of crops. Both grain-based and cellulosic biofuels can help lessen our use of fossil fuels and can help offset carbon dioxide emissions. But cellulosic biofuels are able to offset more gasoline than can grain-based biofuels – and they do so with environmental co-benefits. Cellulosic Biofuels Help Reduce Competition for Land Cellulosic fuel crops can grow on lands that are not necessarily suitable for food crops and thereby reduce or avoid food vs. fuel competition. If grown on land that has already been cleared, cellulosic crops do not further contribute to the release of carbon to the atmosphere. Because many cellulosic crops are perennial and roots are always present, they guard against soil erosion and better retain nitrogen fertilizer.
    [Show full text]
  • Submission to the Senate Select Committee on Fuel and Energy
    29 August 2008 Senator Mathias Cormann Chair, Senate Select Committee on Fuel and Energy PO Box 6100 Parliament House CANBERRA ACT 6100 Dear Senator Cormann RACQ Submission to the Senate Select Committee on Fuel and Energy Thank you for your letter of 8 July 2008 inviting the RACQ to forward a submission to the above inquiry. Rather than address all of the inquiry’s terms of reference in turn, attached are copies of relevant documents setting out the RACQ’s position on a number of policy issues relating to fuel supply and affordability for motorists. I trust that this information is of assistance to the Committee. Yours faithfully Gary Fites General Manager External Relations Enclosures: • Submission to the Garnaut Climate Change Review • Submission to Senate Standing Committee on Economics: FuelWatch • RACQ FuelWatch Position Statement • Proposed Ethanol Mandate For Queensland: RACQ Position Paper • Biofuels: Suitability and Sustainability: RACQ Research Paper 18 April 2008 Garnaut Review Secretariat Level 2, 1 Treasury Place East Melbourne, Victoria 3002 Response to the Garnaut Climate Change Review Emissions Trading Scheme Discussion Paper Issues paper - Forum 5 - Transport, Planning and the Built Environment from Royal Automobile Club of Queensland (RACQ) Submitted by email Reducing Passenger Transport Greenhouse Gas Emissions 1 Introduction This submission addresses the issue of passenger transport emission reductions through the design and coverage of a national emissions trading scheme. The RACQ seeks to maintain the viability of motor vehicle transport on behalf of its 1.2 million members. Notwithstanding this, the Club recognises the adverse effect of vehicle greenhouse gas emissions and believes it is essential to reduce the environmental impact of cars.
    [Show full text]
  • Scheme Principles for GHG Calculation
    Scheme principles for GHG calculation Version EU 05 Scheme principles for GHG calculation © REDcert GmbH 2021 This document is publicly accessible at: www.redcert.org. Our documents are protected by copyright and may not be modified. Nor may our documents or parts thereof be reproduced or copied without our consent. Document title: „Scheme principles for GHG calculation” Version: EU 05 Datum: 18.06.2021 © REDcert GmbH 2 Scheme principles for GHG calculation Contents 1 Requirements for greenhouse gas saving .................................................... 5 2 Scheme principles for the greenhouse gas calculation ................................. 5 2.1 Methodology for greenhouse gas calculation ................................................... 5 2.2 Calculation using default values ..................................................................... 8 2.3 Calculation using actual values ...................................................................... 9 2.4 Calculation using disaggregated default values ...............................................12 3 Requirements for calculating GHG emissions based on actual values ........ 13 3.1 Requirements for calculating greenhouse gas emissions from the production of raw material (eec) .......................................................................................13 3.2 Requirements for calculating greenhouse gas emissions resulting from land-use change (el) ................................................................................................17 3.3 Requirements for
    [Show full text]
  • ACEA – E10 Petrol Fuel: Vehicle Compatibility List
    List of ACEA member company petrol vehicles compatible with using ‘E10’ petrol 1. Important notes applicable for the complete list hereunder The European Union Fuel Quality Directive (1) introduced a new market petrol specification from 1st January 2011 that may contain up to 10% ethanol by volume (10 %vol). Such petrol is commonly known as ‘E10’. It is up to the individual country of the European Union and fuel marketers to decide if and when to introduce E10 petrol to the market and so far E10 petrol has only been introduced in Finland, France, Germany and Belgium. For vehicles equipped with a spark-ignition (petrol) engine introduced into the EU market, this list indicates their compatibility (or otherwise) with the use of E10 petrol. 2. Note In countries that offer E10 petrol, before you fill your vehicle with petrol please check that your vehicle is compatible with the use of E10 petrol. If, by mistake, you put E10 petrol into a vehicle that is not declared compatible with the use of E10 petrol, it is recommended that you contact your local vehicle dealer, the vehicle manufacturer or roadside assistance provider who may advise that the fuel tank be drained. If it is necessary to drain the fuel from the tank then you should ensure it is done by a competent organisation and the tank is refilled with the correct grade of petrol for your vehicle. Owners experiencing any issues when using E10 petrol are advised to contact their local vehicle dealer or vehicle manufacturer and to use instead 95RON (or 98RON) petrol that might be identified by ‘E5’ (or have no specific additional marking) in those countries that offer E10 petrol.
    [Show full text]
  • Internal and External Combustion Engine Classifications: Gasoline
    Internal and External Combustion Engine Classifications: Gasoline and diesel engine classifications: A gasoline (Petrol) engine or spark ignition (SI) burns gasoline, and the fuel is metered into the intake manifold. Spark plug ignites the fuel. A diesel engine or (compression ignition Cl) bums diesel oil, and the fuel is injected right into the engine combustion chamber. When fuel is injected into the cylinder, it self ignites and bums. Preparation of fuel air mixture (gasoline engine): * High calorific value: (Benzene (Gasoline) 40000 kJ/kg, Diesel 45000 kJ/kg). * Air-fuel ratio: A chemically correct air-fuel ratio is called stoichiometric mixture. It is an ideal ratio of around 14.7:1 (14.7 parts of air to 1 part fuel by weight). Under steady-state engine condition, this ratio of air to fuel would assure that all of the fuel will blend with all of the air and be burned completely. A lean fuel mixture containing a lot of air compared to fuel, will give better fuel economy and fewer exhaust emissions (i.e. 17:1). A rich fuel mixture: with a larger percentage of fuel, improves engine power and cold engine starting (i.e. 8:1). However, it will increase emissions and fuel consumption. * Gasoline density = 737.22 kg/m3, air density (at 20o) = 1.2 kg/m3 The ratio 14.7 : 1 by weight equal to 14.7/1.2 : 1/737.22 = 12.25 : 0.0013564 The ratio is 9,030 : 1 by volume (one liter of gasoline needs 9.03 m3 of air to have complete burning).
    [Show full text]
  • Biodiesel from Argentina and Indonesia
    Biodiesel From Argentina And Indonesia Investigation Nos. 731-TA-1347-1348 (Final) Publication 4775 April 2018 U.S. International Trade Commission Washington, DC 20436 U.S. International Trade Commission COMMISSIONERS Rhonda K. Schmidtlein, Chairman David S. Johanson, Vice Chairman Irving A. Williamson Meredith M. Broadbent Jason E. Kearns Catherine DeFilippo Director of Operations Staff assigned Nathanael Comly, Investigator Philip Stone, Industry Analyst Cindy Cohen, Economist Charles Yost, Accountant Russell Duncan, Senior Statistician Carolyn Holmes, Statistical Assistant Roop Bhatti, Attorney Elizabeth Haines, Supervisory Investigator Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Biodiesel From Argentina And Indonesia Investigation Nos. 731-TA-1347-1348 (Final) Publication 4775 April 2018 CONTENTS Page Determinations ............................................................................................................................... 1 Views of the Commission ............................................................................................................... 3 Part I: Introduction .............................................................................................................. I-1 Background ................................................................................................................................ I-1 Nature and extent of sales at
    [Show full text]
  • Biomass Basics: the Facts About Bioenergy 1 We Rely on Energy Every Day
    Biomass Basics: The Facts About Bioenergy 1 We Rely on Energy Every Day Energy is essential in our daily lives. We use it to fuel our cars, grow our food, heat our homes, and run our businesses. Most of our energy comes from burning fossil fuels like petroleum, coal, and natural gas. These fuels provide the energy that we need today, but there are several reasons why we are developing sustainable alternatives. 2 We are running out of fossil fuels Fossil fuels take millions of years to form within the Earth. Once we use up our reserves of fossil fuels, we will be out in the cold - literally - unless we find other fuel sources. Bioenergy, or energy derived from biomass, is a sustainable alternative to fossil fuels because it can be produced from renewable sources, such as plants and waste, that can be continuously replenished. Fossil fuels, such as petroleum, need to be imported from other countries Some fossil fuels are found in the United States but not enough to meet all of our energy needs. In 2014, 27% of the petroleum consumed in the United States was imported from other countries, leaving the nation’s supply of oil vulnerable to global trends. When it is hard to buy enough oil, the price can increase significantly and reduce our supply of gasoline – affecting our national security. Because energy is extremely important to our economy, it is better to produce energy in the United States so that it will always be available when we need it. Use of fossil fuels can be harmful to humans and the environment When fossil fuels are burned, they release carbon dioxide and other gases into the atmosphere.
    [Show full text]
  • Jamaican Domestic Ethanol Fuel Feasibility and Benefits Analysis
    Jamaican Domestic Ethanol Fuel Feasibility and Benefits Analysis Caley Johnson, Anelia Milbrandt, Yimin Zhang, Rob Hardison, and Austen Sharpe National Renewable Energy Laboratory NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-5400-76011 Operated by the Alliance for Sustainable Energy, LLC May 2020 This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications. Contract No. DE-AC36-08GO28308 Jamaican Domestic Ethanol Fuel Feasibility and Benefits Analysis Caley Johnson, Anelia Milbrandt, Yimin Zhang, Rob Hardison, and Austen Sharpe National Renewable Energy Laboratory Suggested Citation Johnson, Caley, Anelia Milbrandt, and Yimin Zhang, Rob Hardison, and Austen Sharpe. 2020. Jamaican Domestic Ethanol Fuel Feasibility and Benefits Analysis. Golden, CO: National Renewable Energy Laboratory. NREL/TP-5400-76011. https://www.nrel.gov/docs/fy20osti/76011.pdf NREL is a national laboratory of the U.S. Department of Energy Technical Report Office of Energy Efficiency & Renewable Energy NREL/TP-5400-76011 Operated by the Alliance for Sustainable Energy, LLC May 2020 This report is available at no cost from the National Renewable Energy National Renewable Energy Laboratory Laboratory (NREL) at www.nrel.gov/publications. 15013 Denver West Parkway Contract No. DE-AC36-08GO28308 Golden, CO 80401 303-275-3000 • www.nrel.gov NOTICE This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36- 08GO28308. Funding provided by the U.S. Department of State.
    [Show full text]
  • Commercialization and Deployment at NREL: Advancing Renewable
    Commercialization and Deployment at NREL Advancing Renewable Energy and Energy Efficiency at Speed and Scale Prepared for the State Energy Advisory Board NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Management Report NREL/MP-6A42-51947 May 2011 Contract No. DE-AC36-08GO28308 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Available electronically at http://www.osti.gov/bridge Available for a processing fee to U.S. Department of Energy and its contractors, in paper, from: U.S. Department of Energy Office of Scientific and Technical Information P.O. Box 62 Oak Ridge, TN 37831-0062 phone: 865.576.8401 fax: 865.576.5728 email: mailto:[email protected] Available for sale to the public, in paper, from: U.S.
    [Show full text]
  • Burning Land, Burning the Climate: the Biofuel Industry's Capture of EU
    OXFAM BRIEFING PAPER OCTOBER 2016 Lunjuk village, Indonesia, 2016. A local farmer was forced to put up barbed wire to protect his land after it was cleared to make way for a plantation supplying global palm oil company Wilmar. Photo: Kemal Jufri/Panos/OxfamAUS. BURNING LAND, BURNING THE CLIMATE The biofuel industry's capture of EU bioenergy policy EMBARGOED UNTIL 00:01 CEST 26 OCTOBER 2016 There is overwhelming evidence of the harm caused by the European Union’s current bioenergy policy to people in developing countries, to the climate and to Europe’s own sustainable development. The policy is on a collision course with the Paris climate agreement and United Nations 2030 Sustainable Development Goals. This briefing follows the trail of destruction left by the policy on three continents. It assesses the extraordinary lobbying ‘firepower’ and powerful network of influence at the disposal of the European biofuel industry and its allies, which is blocking reform. In the past year alone, actors in the biofuel value chain – from feedstock growers to biofuel producers – spent over €14m and hired nearly 400 lobbyists. Biofuel producers spend as much on EU influencing as the tobacco lobby. EU decision makers must free themselves from the stranglehold of powerful corporate groups – and choose genuinely sustainable and renewable energy to meet their 2030 climate and energy goals. www.oxfam.org SUMMARY The EU‟s current bioenergy policy has left a trail of destruction around the planet. This briefing follows this trail on three continents. It analyses the corporate capture hampering the reform of this destructive policy.
    [Show full text]
  • Overview of Sustainable Aviation Fuels with Emission
    energies Article Overview of Sustainable Aviation Fuels with Emission Characteristic and Particles Emission of the Turbine Engine Fueled ATJ Blends with Different Percentages of ATJ Fuel Paula Kurzawska * and Remigiusz Jasi ´nski Faculty of Civil and Transport Engineering, Poznan University of Technology, 60-965 Poznan, Poland; [email protected] * Correspondence: [email protected] Abstract: The following article focuses on sustainable aviation fuels, which include first and second generation biofuels and other non-biomass fuels that meet most of environmental, operational and physicochemical requirements. Several of the requirements for sustainable aviation fuels are discussed in this article. The main focus was on researching the alcohol-to-jet (ATJ) alternative fuel. The tests covered the emission of harmful gaseous compounds with the Semtech DS analyzer, as well as the number and mass concentration of particles of three fuels: reference fuel Jet A-1, a mixture of Jet A-1 and 30% of ATJ fuel, and mixture of Jet A-1 and 50% of ATJ fuel. The number concentration of particles allowed us to calculate, inter alia, the corresponding particle number index and particle mass index. The analysis of the results made it possible to determine the effect of the content of alternative fuel in a mixture with conventional fuel on the emission of harmful exhaust compounds and the concentration of particles. One of the main conclusion is that by using a 50% blend of ATJ Citation: Kurzawska, P.; Jasi´nski,R. Overview of Sustainable Aviation and Jet A-1, the total number and mass of particulate matter at high engine loads can be reduced by Fuels with Emission Characteristic almost 18% and 53%, respectively, relative to pure Jet A-1 fuel.
    [Show full text]