Geologic Map of Detrital, Hualapai, and Sacramento Valleys and Surrounding Areas, Northwest Arizona

Total Page:16

File Type:pdf, Size:1020Kb

Geologic Map of Detrital, Hualapai, and Sacramento Valleys and Surrounding Areas, Northwest Arizona Geologic Map of Detrital, Hualapai, and Sacramento Valleys and Surrounding Areas, Northwest Arizona Pamphlet to accompany Open-File Report 2011–1225 U.S. Department of the Interior U.S. Geological Survey This page intentionally left blank Geologic Map of Detrital, Hualapai, and Sacramento Valleys and Surrounding Areas, Northwest Arizona By L. Sue Beard, Jeffrey Kennedy, Margot Truini, and Tracey Felger Pamphlet to accompany Open-File Report 2011–1225 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia 2011 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation: Beard, L. Sue, Kennedy, Jeffrey, Truini, Margot, and Felger, Tracey, 2011, Geologic map of Detrital, Hualapai, and Sacramento Valleys and surrounding areas, northwest Arizona: U.S. Geological Survey Open-File Report 2011-1225, pamphlet 43 p., 1 map sheet, scale 1:250,000, available at http://pubs.usgs.gov/of/2011/1225/ Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Contents Introduction ......................................................................................................................................................................1 Physiography .......................................................................................................................................................... 1 Gravity Modeling ..................................................................................................................................................... 2 Geology ...........................................................................................................................................................................3 Introduction ............................................................................................................................................................. 3 Geologic Units ........................................................................................................................................................ 3 Proterozoic Basement Rocks ......................................................................................................................... 4 Paleozoic Sedimentary Rocks ........................................................................................................................ 4 Mesozoic and Cenozoic Intrusive Rocks ........................................................................................................ 5 Cenozoic Volcanic and Sedimentary Rocks ................................................................................................... 5 Pre-extension Sedimentary and Volcanic Rocks .................................................................................... 5 Syn-extensional Sedimentary and Volcanic Rocks ................................................................................ 6 Late-stage Interior Basin-fill Deposits ..................................................................................................... 6 Surficial Geology .................................................................................................................................... 7 Correlation of Cenozoic Sedimentary Rocks to Alluvial Aquifer Units of Previous Hydrogeologic Studies .... 7 Structure ................................................................................................................................................................. 7 Faults ............................................................................................................................................................ 8 Detachment Faults ................................................................................................................................. 8 Moderate- to High-angle Normal Faults ................................................................................................. 9 Inferred Basin Faults ............................................................................................................................ 10 Hualapai Valley ............................................................................................................................. 10 Detrital Valley .............................................................................................................................. 11 Sacramento Valley ........................................................................................................................ 11 Accommodation zone ................................................................................................................................... 11 Description of Subbasins Identified from Depth-to-bedrock Gravity Model .......................................................... 12 Detrital Valley ................................................................................................................................................ 12 Northern Detrital Subbasin ................................................................................................................... 12 Central Detrital Subbasin ...................................................................................................................... 13 Southern Detrital Subbasin ................................................................................................................... 14 Hualapai Valley ............................................................................................................................................. 14 Hualapai Subbasin ............................................................................................................................... 15 Kingman Subbasin ............................................................................................................................... 16 Southern Gregg Subbasin .................................................................................................................... 16 Sacramento Valley ........................................................................................................................................ 17 Chloride Subbasin ................................................................................................................................ 18 Golden Valley Subbasin ....................................................................................................................... 18 Dutch Flat Subbasin ............................................................................................................................. 18 Geologic History ............................................................................................................................................................19 Acknowledgments .........................................................................................................................................................21 Description of Map Units ...............................................................................................................................................21 Surficial Deposits (Quaternary and Pliocene) ....................................................................................................... 21 Consolidated Basin-fill Deposits (Pliocene, Miocene, and Oligocene) ................................................................. 23 i Volcanic Rocks (Pliocene, Miocene, and Oligocene) ........................................................................................... 25 Intrusive Rocks (Miocene and Cretaceous) .......................................................................................................... 27 Paleozoic Sedimentary Rocks .............................................................................................................................. 28 Proterozoic Crystalline Rocks ............................................................................................................................... 29 References Cited .................................................................................................................................................. 30 Figures 1. Shaded-relief map showing hydrologic basin boundary of Detrital, Hualapai, and Sacramento valley basins, and highways, towns, and other physiographic and cultural features referred to in text. ............................... 36 2. Depth-to-bedrock gravity model showing subbasins and estimated thickness of basin fill beneath Hualapai, Detrital, and Sacramento Valley basins.. ....................................................................................................... 37 3. Gravity data used to create depth-to-bedrock model, overlain by outline of map area. .......................................... 38 4. Regional geologic map showing major geologic features referred to in text. .........................................................
Recommended publications
  • Mineral Resources of the Harquahala Mountains Wilderness Study Area, La Paz and Maricopa Counties, Arizona
    2.SOB nH in ntoiOGIGM. JAN 3 1 1989 Mineral Resources of the Harquahala Mountains Wilderness Study Area, La Paz and Maricopa Counties, Arizona U.S. GEOLOGICAL SURVEY BULLETIN 1701-C Chapter C Mineral Resources of the Harquahala Mountains Wilderness Study Area, La Paz and Maricopa Counties, Arizona By ED DE WITT, S.M. RICHARD, J.R. HASSEMER, and W.F. HANNA U.S. Geological Survey J.R. THOMPSON U.S. Bureau of Mines U.S. GEOLOGICAL SURVEY BULLETIN 1701 MINERAL RESOURCES OF WILDERNESS STUDY AREAS- WEST-CENTRAL ARIZONA AND PART OF SAN BERNARDINO COUNTY, CALIFORNIA U. S. GEOLOGICAL SURVEY Dallas L Peck, Director UNITED STATES GOVERNMENT PRINTING OFFICE: 1988 For sale by the Books and Open-File Reports Section U.S. Geological Survey Federal Center Box 25425 Denver, CO 80225 Library of Congress Cataloging-in-Publlcatlon Data Mineral resources of the Harquahala Mountains wilderness study area, La Paz and Maricopa counties, Arizona. (Mineral resources of wilderness study areas west-central Arizona and part of San Bernardino County, California ; ch. C) (U.S. Geological Survey bulletin ; 1701-C) Bibliography: p. Supt. of Docs, no.: I 19.3:1701-C 1. Mines and mineral resources Arizona Harquahala Mountains Wilderness. 2. Harquahala Mountains (Ariz.) I. DeWitt, Ed. II. Series. III. Series: U.S. Geological Survey bulletin ; 1701. QE75.B9 no. 1701-C 557.3 s [553'.09791'72] 88-600012 [TN24.A6] STUDIES RELATED TO WILDERNESS Bureau of Land Management Wilderness Study Areas The Federal Land Policy and Management Act (Public Law 94-579, October 21, 1976) requires the U.S. Geological Survey and the U.S.
    [Show full text]
  • The Dolan Springs Volcanic Field, Northwestern Arizona
    UNLV Theses, Dissertations, Professional Papers, and Capstones 12-1995 Geochemical evolution of a mid-miocene synextensional volcanic complex: The Dolan Springs volcanic field, northwestern Arizona Scott Michael McDaniel University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Geochemistry Commons, Geology Commons, and the Volcanology Commons Repository Citation McDaniel, Scott Michael, "Geochemical evolution of a mid-miocene synextensional volcanic complex: The Dolan Springs volcanic field, northwestern Arizona" (1995). UNLV Theses, Dissertations, Professional Papers, and Capstones. 1451. http://dx.doi.org/10.34917/3434922 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. Geochemical Evolution of a Mid-Miocene Synextensional Volcanic Complex: The Dolan Springs Volcanic Field, Northwestern Arizona by Scott Michael McDaniel A thesis submitted in partial fulfillment of the requirements for the degree of Masters of Science in Geology Department of Geoscience University of Nevada, Las Vegas December, 1995 © 1995 Scott Michael McDaniel All Rights Reserved The thesis of Scott Michael McDaniel for the degree of Masters in Science in Geology is approved.
    [Show full text]
  • Ambient Groundwater Quality of the Detrital Valley Basin: an ADEQ 2002 Baseline Study
    Ambient Groundwater Quality of the Detrital Valley Basin: An ADEQ 2002 Baseline Study normal pool elevation of Lake Mead. Dolan Springs is the largest community in the basin. In the DET, 27 percent of land is managed by the National Park Service as part of the Lake Mead National Recreational Area. The remainder is managed by the Bureau of Land Management (42 percent) and State Trust land (9 percent) or consists of private lands (22 percent). III. Hydrology Groundwater from the alluvial aquifer underneath Detrital Valley is the principle water source in the basin and has the ability to supply up to 150 gallons per minute (gpm).3 However, depths to groundwater, approaching 800 feet below land surface (bls) in the valley, make tapping this aquifer for 2 Figure 1. In a bit of hydrologic serendipity, during the course of ADEQ’s study of the Detrital domestic use an expensive proposition. Valley basin, Lake Mead receeded to levels low enough to expose Monkey Cove Spring for the first time since July 1969. The spring flowed at an amazing 1,200 gallons per minute in 1964. I. Introduction factsheet reports upon the results of groundwater quality investigations in The Detrital Valley Groundwater Basin the DET and is a summary of the more (DET), traversed by U.S. Highway 93, extensive report produced by the is roughly located between the city of Arizona Department of Environmental Kingman and Hoover Dam on the Quality (ADEQ).1 Colorado River in northwestern Arizona (Map 1). Although lightly populated II. Background with retirement and recreation-oriented communities, the recent decision to The DET is approximately 50 miles construct a Hoover Dam bypass route long (north to south) and 15 miles wide for U.S.
    [Show full text]
  • People of Snowy Mountain, People of the River: a Multi-Agency Ethnographic Overview and Compendium Relating to Tribes Associated with Clark County, Nevada
    Portland State University PDXScholar Anthropology Faculty Publications and Presentations Anthropology 2012 People of Snowy Mountain, People of the River: A Multi-Agency Ethnographic Overview and Compendium Relating to Tribes Associated with Clark County, Nevada Douglas Deur Portland State University, [email protected] Deborah Confer University of Washington Follow this and additional works at: https://pdxscholar.library.pdx.edu/anth_fac Part of the Social and Cultural Anthropology Commons, and the Sustainability Commons Let us know how access to this document benefits ou.y Citation Details Deur, Douglas and Confer, Deborah, "People of Snowy Mountain, People of the River: A Multi-Agency Ethnographic Overview and Compendium Relating to Tribes Associated with Clark County, Nevada" (2012). Anthropology Faculty Publications and Presentations. 98. https://pdxscholar.library.pdx.edu/anth_fac/98 This Report is brought to you for free and open access. It has been accepted for inclusion in Anthropology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Pacific West Region: Social Science Series National Park Service Publication Number 2012-01 U.S. Department of the Interior PEOPLE OF SNOWY MOUNTAIN, PEOPLE OF THE RIVER: A MULTI-AGENCY ETHNOGRAPHIC OVERVIEW AND COMPENDIUM RELATING TO TRIBES ASSOCIATED WITH CLARK COUNTY, NEVADA 2012 Douglas Deur, Ph.D. and Deborah Confer LAKE MEAD AND BLACK CANYON Doc Searls Photo, Courtesy Wikimedia Commons
    [Show full text]
  • I2628 Pamphlet
    U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP I–2628 U.S. GEOLOGICAL SURVEY Version 1.0 GEOLOGIC MAP OF THE LITTLEFIELD 30' × 60' QUADRANGLE, MOHAVE COUNTY, NORTHWESTERN ARIZONA By George H. Billingsley and Jeremiah B. Workman INTRODUCTION 10 km north of the north-central part of the map and are the largest settlements near the map area. This map is one result of the U.S. Geological Survey’s Interstate Highway 15 and U.S. Highway 91 provide intent to provide geologic map coverage and a better under- access to the northwest corner of the map area, and Arizona standing of the transition in regional geology between the State Highway 389 provides access to the northeast corner. Basin and Range and Colorado Plateaus in southeastern Ne- Access to the rest of the map area is by dirt roads maintained vada, southwestern Utah, and northwestern Arizona. Infor- by the U.S. Bureau of Land Management, Arizona Strip Dis- mation gained from this regional study provides a better trict, St. George, Utah. The area is largely managed by the understanding of the tectonic and magmatic evolution of an U.S. Bureau of Land Management, the Arizona Strip Dis- area of extreme contrasts in late Mesozoic-early Tertiary trict, which includes sections of land controlled by the State compression, Cenozoic magmatism, and Cenozoic extension. of Arizona. There are several isolated sections of privately This map is a synthesis of 32 new geologic maps encom- owned lands, mainly near the communities of Littlefield, passing the Littlefield 30' x 60' quadrangle, Arizona. Geo- Beaver Dam, and Colorado City.
    [Show full text]
  • Groundwater Budgets for Detrital, Hualapai, and Sacramento Valleys, Mohave County, Arizona, 2007–08
    Prepared in cooperation with the Arizona Department of Water Resources Groundwater Budgets for Detrital, Hualapai, and Sacramento Valleys, Mohave County, Arizona, 2007–08 Scientific Investigations Report 2011–5159 U.S. Department of the Interior U.S. Geological Survey COVER: View of August 2010, monsoon thunderstorm over Hualapai Mountains, looking east from Sacramento Valley. Photo by Bradley D. Garner. Prepared in cooperation with the Arizona Department of Water Resources Groundwater Budgets for Detrital, Hualapai, and Sacramento Valleys, Mohave County, Arizona, 2007–08 By Bradley D. Garner and Margot Truini Scientific Investigations Report 2011–5159 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2011 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Suggested citation: Garner, B.D., and Truini, Margot, 2011, Groundwater budgets for Detrital, Hualapai, and Sacramento Valleys, Mohave County, Arizona, 2007–08: U.S. Geological Survey Scientific Investigations Report 2011-5159, 34 p.
    [Show full text]
  • Appendix H: LHFO RMP Decisions
    Appendix H: LHFO RMP Decisions Conformance with Land Use Plan: The proposed action would conform to the decisions of the Lake Havasu Field Office RMP (2007) as identified with the decisions and excerpts shown below. WF-6. Within WHAs, the route designation process will determine route closures and/or limitation to meet habitat objectives. Page 112: The BLM will designate a Travel Management Network (TMN) for the planning area within 5 years of adoption of this Approved RMP through the TMP. The TMP will evaluate and designate all individual routes/trails for use within the planning area unless specified elsewhere in this Approved RMP. The BLM will follow the process as listed in Appendix B, Administrative Actions and Standard Operating Procedures, of this Approved RMP, when creating the TMN, including evaluating routes using the criteria listed in the Route Evaluation Tree in Appendix L (in the RMP). TM-1. Designations will be made and management implemented for a balance of opportunities for the entire range of motorized and non-motorized access needs, while in balance with other resource values found on public lands. TM-2. Reasonable, safe, and environmentally sound access will be provided to visitors, local residents, licensed or permitted activities, and property owners. Lake Havasu Field Office will be linked with other state, regional, and land management agencies or interest groups to better facilitate travel management. TM-3. Travel between communities within the planning area will be made safer. TM-4. Public access easements will be acquired across private or state lands where public access to federal lands and waterways is not available.
    [Show full text]
  • Scorpiones: Vaejovidae)
    New Species of Vaejovis from the Whetstone Mountains, Southern Arizona (Scorpiones: Vaejovidae) Richard F. Ayrey & Michael E. Soleglad January 2015 — No. 194 Euscorpius Occasional Publications in Scorpiology EDITOR: Victor Fet, Marshall University, ‘[email protected]’ ASSOCIATE EDITOR: Michael E. Soleglad, ‘[email protected]’ Euscorpius is the first research publication completely devoted to scorpions (Arachnida: Scorpiones). Euscorpius takes advantage of the rapidly evolving medium of quick online publication, at the same time maintaining high research standards for the burgeoning field of scorpion science (scorpiology). Euscorpius is an expedient and viable medium for the publication of serious papers in scorpiology, including (but not limited to): systematics, evolution, ecology, biogeography, and general biology of scorpions. Review papers, descriptions of new taxa, faunistic surveys, lists of museum collections, and book reviews are welcome. Derivatio Nominis The name Euscorpius Thorell, 1876 refers to the most common genus of scorpions in the Mediterranean region and southern Europe (family Euscorpiidae). Euscorpius is located at: http://www.science.marshall.edu/fet/Euscorpius (Marshall University, Huntington, West Virginia 25755-2510, USA) ICZN COMPLIANCE OF ELECTRONIC PUBLICATIONS: Electronic (“e-only”) publications are fully compliant with ICZN (International Code of Zoological Nomenclature) (i.e. for the purposes of new names and new nomenclatural acts) when properly archived and registered. All Euscorpius issues starting from No. 156 (2013) are archived in two electronic archives: Biotaxa, http://biotaxa.org/Euscorpius (ICZN-approved and ZooBank-enabled) Marshall Digital Scholar, http://mds.marshall.edu/euscorpius/. (This website also archives all Euscorpius issues previously published on CD-ROMs.) Between 2000 and 2013, ICZN did not accept online texts as "published work" (Article 9.8).
    [Show full text]
  • Utah Geological Association Publication 30.Pub
    Utah Geological Association Publication 30 - Pacific Section American Association of Petroleum Geologists Publication GB78 239 CENOZOIC EVOLUTION OF THE NORTHERN COLORADO RIVER EXTEN- SIONAL CORRIDOR, SOUTHERN NEVADA AND NORTHWEST ARIZONA JAMES E. FAULDS1, DANIEL L. FEUERBACH2*, CALVIN F. MILLER3, 4 AND EUGENE I. SMITH 1Nevada Bureau of Mines and Geology, University of Nevada, Mail Stop 178, Reno, NV 89557 2Department of Geology, University of Iowa, Iowa City, IA 52242 *Now at Exxon Mobil Development Company, 16825 Northchase Drive, Houston, TX 77060 3Department of Geology, Vanderbilt University, Nashville, TN 37235 4Department of Geoscience, University of Nevada, Las Vegas, NV 89154 ABSTRACT The northern Colorado River extensional corridor is a 70- to 100-km-wide region of moderately to highly extended crust along the eastern margin of the Basin and Range province in southern Nevada and northwestern Arizona. It has occupied a criti- cal structural position in the western Cordillera since Mesozoic time. In the Cretaceous through early Tertiary, it stood just east and north of major fold and thrust belts and also marked the northern end of a broad, gently (~15o) north-plunging uplift (Kingman arch) that extended southeastward through much of central Arizona. Mesozoic and Paleozoic strata were stripped from the arch by northeast-flowing streams. Peraluminous 65 to 73 Ma granites were emplaced at depths of at least 10 km and exposed in the core of the arch by earliest Miocene time. Calc-alkaline magmatism swept northward through the northern Colorado River extensional corridor during early to middle Miocene time, beginning at ~22 Ma in the south and ~12 Ma in the north.
    [Show full text]
  • Grand Wash Cliffs G-E-M Resources Area (GRA No. AZ-02) Covers Approximately 200,000 Acres (811 Sq Km) and Includes the Following Wilderness Study Areas (WSA)
    GRAND WASH CLIFFS G-E-M Denver, CO 80225.QO4 f RESOURCES AREA (GRA NO. AZ-02) TECHNICAL REPORT (WSAs AZ 020-014 and 020-015) Contract YA-553-RFP2-1054 Prepared By Great Basin GEM Joint Venture 251 Ralston Street Reno, Nevada 89503 For Bureau of Land Management Denver Service Center Building 50, Mailroom Denver Federal Center Denver, Colorado 80225 Final Report April 22, 1983 . TABLE OF CONTENTS Page EXECUTIVE SUMMARY 1 I INTRODUCTION 3 II. GEOLOGY 10 1. PHYSIOGRAPHY 1° 2 ROCK UNITS 10 3 STRUCTURAL GEOLOGY AND TECTONICS H 4. PALEONTOLOGY 12 5 HISTORICAL GEOLOGY 12 III ENERGY AND MINERAL RESOURCES 14 A. METALLIC MINERAL RESOURCES 14 1 Known Mineral Deposits 14 2. Known Prospects, Mineral Occurrences and Mineralized Areas • • 14 3 Mining Claims • 15 4. Mineral Deposit Types 15 5 • Mineral Economics 16 B NONMETALLIC MINERAL RESOURCES 17 1 Known Mineral Deposits 17 2. Known Prospects, Mineral Occurrences and Mineralized Areas 17 3. Mining Claims, Leases and Material Sites 17 4. Mineral Deposit Types 17 5 • Mineral Economics ••• 17 . .. .. Table of Contents cont Page C. ENERGY RESOURCES 18 Uranium and Thorium Resources 18 1. Known Mineral Deposits • 18 2. Known Prospects, Mineral Occurrences and Mineralized Areas 18 3 Mining Claims • 18 4. Mineral Deposit Types 18 5 Mineral Economics 18 Oil and Gas Resources 19 Geothermal Resources 20 D. OTHER GEOLOGICAL RESOURCES 20 E. STRATEGIC AND CRITICAL MINERALS AND METALS 21 IV. LAND CLASSIFICATION FOR G-E-M RESOURCES POTENTIAL ... 22 1 LOCATABLE RESOURCES 23 a. Metallic Minerals 23 b. Uranium and Thorium 24 c. Nonmetallic Minerals • 25 2 LEASABLE RESOURCES 26 a.
    [Show full text]
  • Geographic Names
    GEOGRAPHIC NAMES CORRECT ORTHOGRAPHY OF GEOGRAPHIC NAMES ? REVISED TO JANUARY, 1911 WASHINGTON GOVERNMENT PRINTING OFFICE 1911 PREPARED FOR USE IN THE GOVERNMENT PRINTING OFFICE BY THE UNITED STATES GEOGRAPHIC BOARD WASHINGTON, D. C, JANUARY, 1911 ) CORRECT ORTHOGRAPHY OF GEOGRAPHIC NAMES. The following list of geographic names includes all decisions on spelling rendered by the United States Geographic Board to and including December 7, 1910. Adopted forms are shown by bold-face type, rejected forms by italic, and revisions of previous decisions by an asterisk (*). Aalplaus ; see Alplaus. Acoma; township, McLeod County, Minn. Abagadasset; point, Kennebec River, Saga- (Not Aconia.) dahoc County, Me. (Not Abagadusset. AQores ; see Azores. Abatan; river, southwest part of Bohol, Acquasco; see Aquaseo. discharging into Maribojoc Bay. (Not Acquia; see Aquia. Abalan nor Abalon.) Acworth; railroad station and town, Cobb Aberjona; river, IVIiddlesex County, Mass. County, Ga. (Not Ackworth.) (Not Abbajona.) Adam; island, Chesapeake Bay, Dorchester Abino; point, in Canada, near east end of County, Md. (Not Adam's nor Adams.) Lake Erie. (Not Abineau nor Albino.) Adams; creek, Chatham County, Ga. (Not Aboite; railroad station, Allen County, Adams's.) Ind. (Not Aboit.) Adams; township. Warren County, Ind. AJjoo-shehr ; see Bushire. (Not J. Q. Adams.) Abookeer; AhouJcir; see Abukir. Adam's Creek; see Cunningham. Ahou Hamad; see Abu Hamed. Adams Fall; ledge in New Haven Harbor, Fall.) Abram ; creek in Grant and Mineral Coun- Conn. (Not Adam's ties, W. Va. (Not Abraham.) Adel; see Somali. Abram; see Shimmo. Adelina; town, Calvert County, Md. (Not Abruad ; see Riad. Adalina.) Absaroka; range of mountains in and near Aderhold; ferry over Chattahoochee River, Yellowstone National Park.
    [Show full text]
  • Arizona's Wildlife Linkages Assessment
    ARIZONAARIZONA’’SS WILDLIFEWILDLIFE LINKAGESLINKAGES ASSESSMENTASSESSMENT Workgroup Prepared by: The Arizona Wildlife Linkages ARIZONA’S WILDLIFE LINKAGES ASSESSMENT 2006 ARIZONA’S WILDLIFE LINKAGES ASSESSMENT Arizona’s Wildlife Linkages Assessment Prepared by: The Arizona Wildlife Linkages Workgroup Siobhan E. Nordhaugen, Arizona Department of Transportation, Natural Resources Management Group Evelyn Erlandsen, Arizona Game and Fish Department, Habitat Branch Paul Beier, Northern Arizona University, School of Forestry Bruce D. Eilerts, Arizona Department of Transportation, Natural Resources Management Group Ray Schweinsburg, Arizona Game and Fish Department, Research Branch Terry Brennan, USDA Forest Service, Tonto National Forest Ted Cordery, Bureau of Land Management Norris Dodd, Arizona Game and Fish Department, Research Branch Melissa Maiefski, Arizona Department of Transportation, Environmental Planning Group Janice Przybyl, The Sky Island Alliance Steve Thomas, Federal Highway Administration Kim Vacariu, The Wildlands Project Stuart Wells, US Fish and Wildlife Service 2006 ARIZONA’S WILDLIFE LINKAGES ASSESSMENT First Printing Date: December, 2006 Copyright © 2006 The Arizona Wildlife Linkages Workgroup Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written consent from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written consent of the copyright holder. Additional copies may be obtained by submitting a request to: The Arizona Wildlife Linkages Workgroup E-mail: [email protected] 2006 ARIZONA’S WILDLIFE LINKAGES ASSESSMENT The Arizona Wildlife Linkages Workgroup Mission Statement “To identify and promote wildlife habitat connectivity using a collaborative, science based effort to provide safe passage for people and wildlife” 2006 ARIZONA’S WILDLIFE LINKAGES ASSESSMENT Primary Contacts: Bruce D.
    [Show full text]