Spitting in Pregnancy Medical Term
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Salivary Gland Infections and Salivary Stones (Sialadentis and Sialithiasis)
Salivary Gland Infections and Salivary Stones (Sialadentis and Sialithiasis) What is Sialadenitis and Sialithiasis? Sialdenitis is an infection of the salivary glands that causes painful swelling of the glands that produce saliva, or spit. Bacterial infections, diabetes, tumors or stones in the salivary glands, and tooth problems (poor oral hygiene) may cause a salivary gland infection. The symptoms include pain, swelling, pus in the mouth, neck skin infection. These infections and affect the submandibular gland (below the jaw) or the parotid glands (in front of the ears). The symptoms can be minor and just be a small swelling after meals (symptoms tend to be worse after times of high saliva flow). Rarely, the swelling in the mouth will progress and can cut off your airway and cause you to stop breathing. What Causes Sialadenitis and Sialithiasis When the flow of saliva is blocked by a small stone (salilithiasis) in a salivary gland or when a person is dehydrated, bacteria can build up and cause an infection. A viral infection, such as the mumps, also can cause a salivary gland to get infected and swell. These infections can also be caused by a spread from rotten or decaying teeth. Sometimes there can be a buildup of calcium in the saliva ducts that form into stones. These can easily stop the flow of saliva and cause problems How are these infections and stones treated? Treatment depends on what caused your salivary gland infection. If the infection is caused by bacteria, your doctor may prescribe antibiotics. Home treatment such as drinking fluids, applying warm compresses, and sucking on lemon wedges or sour candy to increase saliva may help to clear the infection quicker. -
Hypersalivation in Children and Adults
Pharmacological Management of Hypersalivation in Children and Adults Scope: Adult patients with Parkinson’s disease, children with neurodisability, cerebral palsy, long-term ventilation with drooling, and drug-induced hypersalivation. ASSESSMENT OF SEVERITY/RESPONSE TO TREATMENT: Severity of drooling can be assessed subjectively via discussion with patients and their carers/parents and by observation. Amount of drooling can be quantified by measuring the number of bibs required per day and this can also be graded using the Thomas-Stonell and Greenberg scale: • 1 = Dry (no drooling) • 2 = Mild (moist lips) • 3 = Moderate (wet lips and chin) • 4 = Severe (damp clothing) CONSIDERATIONS FOR PRESCRIBING/TITRATION No evidence to support the use of one particular treatment over another. Drug choice is to be determined by individual patient factors. When prescribing/titrating antimuscarinic drugs to treat hypersalivation always take account of: • Coexisting conditions (for example, history of urinary retention, constipation, glaucoma, dental issues, reflux etc.) • Use of other existing medication affecting the total antimuscarinic burden • Risk of adverse effects Titrate dose upward until the desired level of dryness, side effects or maximum dose reached. Take into account the preferences of the patients and their carers/ parents, and the age range and indication covered by the marketing authorisations (see individual summaries of product characteristics, BNF or BNFc for full prescribing information). FIRST LINE DRUG TREATMENT OPTIONS FOR ADULTS -
Increased Kallikrein Content of Saliva from Patients with Cystic Fibrosis of the Pancreas
Pediat. Res. 3: 57 1-578 (1969) Bradykinin kallikrein cystic fibrosis of the pancreas kininase enzymic activity saliva Increased Kallikrein Content of Saliva from Patients with Cystic Fibrosis of the Pancreas A Theory for the Pathogenesis of Abnormal Secretions JACK LIE BERM AN[*^] and GLENND. LITTENBERG Department of Respiratory Diseases, City of Hope Medical Center, Duarte, and the Departments of Medicine, Veterans Administration Hospital, Long Beach, and the University of California School of Medicine, Los Angeles, California, USA Extract An investigation of the bradykinin system in cystic fibrosis of the pancreas was undertaken because of the potential role of bradykinin in the function of glandular tissues and in the mediation of electro- lyte transport. Patients with cystic fibrosis of the pancreas (CFP) and control subjects (CS) were studied for evidence of excessive formation or impaired inactivation of bradykinin in plasma, saliva and urine. Bradykinin, kininase and kallikrein activities were assayed by means of a modified Schultz- Dale apparatus utilizing the uterus of rats in estrus. The bradykinin assay detected as little as 0.01 ,ug bradykinin (4 x ,ug/ml bath solution). The height of uterine contraction was proportional to the logarithmic concentration of bradykinin with maximum contraction occurring with 1-10 ,ug bradykinin. Free bradykininlike activity in urine, saliva or plasma specimens from 11 patients was the same as that from 21 normal controls. In saliva specimens from CFP or CS no bradykininlike activity was detected, whereas in urine there was slight activity in approximately 60% of the samples. Fresh heparinized plasma of both patients and controI subjects developed spontaneous bradykinin activity when added to the muscle bath; this type of activity could be prevented by shaking the plasma with glass beads and incubating at 37' for 30 min. -
Human Eccrine Sweat Contains Tissue Kallikrein and Kininase II
Human Eccrine Sweat Contains Tissue Kallikrein and Kininase II Toshihiko Hibino, Toshiyuki Takemura, and Kenzo Sato Marshall Dermatology Research Laboratories, Department of Dermatology, Universiry of Iowa Co llege of Medicine, Iowa Ciry, Iowa, U.S.A. We attempted to determine the level of sweat kallikrein kallikrein is the glandular type. Purified sweat and salivary (kininogenase) and to purify and characterize it using sweat kallikrein showed similar Mr and responses to inhibitors and collected over a white petrolatum barrier. Thermally induced antibodies. Using immunohistochemistry, kallikrein activity eccrine sweat obtained from 24 healthy subjects showed kal was localized in luminal ductal cells and in the peripheral rirn likrein activity of 24.4 ng kinins generated/1 mg of sweat of secretory coil segments, presumably the outer membrane protein when heated plasma was used as the substrate and of the myoepithelium. We also observed kininase activity in 16.1 ng kinin when purified low molecular weight bovine sweat at Mr 160,000, which was inhibited by ethylenedia kininogen was used as the substrate. Sweat was sequentially mine tetraacetic acid, captopril, and angiotensin converting purified by Sephacryl S-200, diethyaminoethyl Sephacel, enzyme inhibitor peptide, indicating that it is kininase II (or and fast flow liquid chromatography Mono Q chromatogra angiotensin converting enzyme). Sweat also contains abun phy. Sweat kallikrein had aMrof 40,000 and was inhibited by dant non-kallikrein hydrolases for S-2266 and S-2302. The aprotinin but not by soybean trypsin inhibitor. The peptide demonstration of glandular kallikrein, its tissue localization, generated by sweat kallikrein was identified as lys-bradykinin and the presence of kininase II in sweat provide the basis for using reverse phase high-performance liquid chromatogra future studies on the physiologic role of the kallikrein/kinin phy and by its amino acid sequence. -
Saliva Control
• Introduction • Possible problems • What can be done? • Too much saliva • Too little saliva • Thick saliva • Further help Saliva Control Introduction This fact sheet is aimed at those affected by MSA and experiencing difficulties with saliva control. It provides information about the possible problems and advises on what can be done to manage the symptoms. Possible problems Some people may experience discomfort and embarrassment due to reduced saliva control. Saliva plays an important function in the mouth. It helps break down food and protects the mouth from drying out and cracking. However, too much or too little saliva can cause problems, both with eating and drinking and with speech. We all produce about a litre and a half of saliva every day, but in health we swallow frequently. People with MSA have a reduced swallow reflex and difficulty moving saliva from the front of the mouth to the back where it can then be swallowed. Also there may be some increased saliva production by the autonomic nervous system. Alternatively, saliva may be thick and difficult to swallow, and some medication can cause a drying up of saliva and a dry mouth. What can be done? The following advice may help depending on the nature of the saliva problem. The advice is based on medical understanding, commonly held knowledge and strategies that have helped people before. Saliva Control Too much saliva If the problem is too much saliva then a few options are available: Food and Drink: Some foods and drinks can help reduce saliva production. You might try: • Ginger tea - this has a drying effect on the mouth; sucking pieces of dried ginger may help if there is no risk of choking • Dark grape juice • Sage • Pineapple juice or sucking fresh pineapple has a cleansing effect on the mouth. -
Section IX – Digestive System
Section IX – Digestive System The digestive system refers to the alimentary canal or gastrointestinal tract. It consists of organs and glands that break down food products to be used by the body as a source of energy through absorption of nutrients and to eliminate solid waste products. The GI tract begins at the mouth, where food is ingested and ends at the anus, where waste products are eliminated from the body. Medical Terms Combining Forms gingiv/o gums stomat/o, or/o mouth dent/o, odont/o teeth labi/o lip maxill/o jaw sial/o saliva, salivary glands abdomin/o abdomen gastr/o stomach lingu/o, gloss/o tongue myc/o fungus orth/o straight esophag/o esophagus carcin/o cancer rect/o rectum proct/o rectum and anus sigmoid/o sigmoid ile/o ileum col/o colon duoden/o duodenum enter/o intestine hepat/o liver chol/e, chol/o bile, gall cholecyst/o gall bladder pancreat/o pancreas cyst/o bladder an/o anus Suffixes -rrhea discharge, flow -orexia appetite -emesis vomiting -pepsia digestion -phagia swallowing, eating -lith stone Medical Terms Mouth (or/o, stomat/o) or/al, stomat/ic – pertaining to the mouth stomat/o/dynia – pain in the mouth sub/lingu/al – pertaining to under the tongue sub/maxill/ary – pertaining to under the jaw Salivary Glands (sial/o) sial/o/rrhea – excessive flow of saliva sial/o/aden/itis – inflammation of the salivary glands Teeth (odont/o, dent/o) dent/ist – specialist in the study of teeth orth/o/dont/ist – specialist in straight teeth gingiv/itis – inflammation of the gums Stomach (gastr/o) gastr/o/dynia – pain in the stomach -
Human Body- Digestive System
Previous reading: Human Body Digestive System (Organs, Location and Function) Science, Class-7th, Rishi Valley School Next reading: Cardiovascular system Content Slide #s 1) Overview of human digestive system................................... 3-4 2) Organs of human digestive system....................................... 5-7 3) Mouth, Pharynx and Esophagus.......................................... 10-14 4) Movement of food ................................................................ 15-17 5) The Stomach.......................................................................... 19-21 6) The Small Intestine ............................................................... 22-23 7) The Large Intestine ............................................................... 24-25 8) The Gut Flora ........................................................................ 27 9) Summary of Digestive System............................................... 28 10) Common Digestive Disorders ............................................... 31-34 How to go about this module 1) Have your note book with you. You will be required to guess or answer many questions. Explain your guess with reasoning. You are required to show the work when you return to RV. 2) Move sequentially from 1st slide to last slide. Do it at your pace. 3) Many slides would ask you to sketch the figures. – Draw them neatly in a fresh, unruled page. – Put the title of the page as the slide title. – Read the entire slide and try to understand. – Copy the green shade portions in the note book. 4) -
Mouth Dryness Or Thick Saliva
cancer.org | 1.800.227.2345 Mouth Dryness or Thick Saliva Dry mouth, or xerostomia, happens when there is not enough saliva or saliva becomes very thick. This can be a side effect of radiation therapy1to the head and neck areas, some types of chemo2, certain other medicines, and dehydration3. The glands that make saliva can become irritated or damaged and make less saliva, or your saliva can become very thick and sticky. The level of dryness can be mild or severe. Having a dry mouth or thick saliva can increase your risk of cavities and mouth infection. If you smoke, chew tobacco, or drink alcohol, the dryness can be worse. What to look for ● Dried, flaky, whitish saliva in and around the mouth ● Thick saliva that’s more like mucus and that sticks to lips when you open your mouth ● Trouble swallowing foods or thick liquids ● Mouth always open to breathe (mouth-breathing dries out the mouth and throat) ● Burning tongue ● Bits of food or other matter on the teeth, tongue, and gums ● Tongue surface looks ridged or cracked Treatment for dry mouth or thick saliva Treatment for dry mouth and thick saliva includes increasing comfort and preventing infection or complications. Good mouth care and frequent sips of water are helpful ways to manage problems with dry mouth or thick saliva. Avoiding alcohol intake and tobacco, avoiding certain foods, and keeping caffeine and sugar (in candy, gum, or soft 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 drinks) to a minimum can help keep a dry mouth and thick saliva from getting worse. -
Laryngopharyngeal Reflux; PPI = Proton Pump Inhibitors; RSS-12 = Reflux Symptom Score-12
Journal of Clinical Medicine Review Laryngopharyngeal Reflux: A State-of-the-Art Algorithm Management for Primary Care Physicians 1,2,3,4,5, , 1,4,5, 6 7 Jerome R. Lechien * y , Sven Saussez y, Vinciane Muls , Maria R. Barillari , 8 2,3,5, 9, Carlos M. Chiesa-Estomba , Stéphane Hans z and Petros D. Karkos z 1 Department of Human Anatomy and Experimental Oncology, Mons School of Medicine, UMONS Research Institute for Health Sciences and Technology, University of Mons (UMons), B7000 Mons, Belgium; [email protected] 2 Department of Otolaryngology-Head & Neck Surgery, Foch Hospital, School of Medicine, UFR Simone Veil, Université Versailles Saint-Quentin-en-Yvelines (Paris Saclay University), 92150 Paris, France; [email protected] 3 Department of Otolaryngology-Head & Neck Surgery, Ambroise Paré Hospital, APHP, Paris Saclay University, 92150 Paris, France 4 Department of Otolaryngology-Head & Neck Surgery, CHU Saint-Pierre, Faculty of Medicine, University Libre de Bruxelles, 1000 Brussels, Belgium 5 Department of Otolaryngology-Head & Neck Surgery, CHU Ambroise Paré, 92150 Paris, France 6 Division of Gastroenterology and Endoscopy, CHU Saint-Pierre, Faculty of Medicine, University Libre de Bruxelles, 1000 Brussels, Belgium; [email protected] 7 Division of Phoniatrics and Audiology, Department of Mental and Physical Health and Preventive Medicine, University of Naples SUN, 34103 Naples, Italy; [email protected] 8 Department of Otorhinolaryngology-Head & Neck Surgery, Hospital Universitario Donostia, 00685 San Sebastian, Spain; [email protected] 9 Department of Otorhinolaryngology and Head and Neck Surgery, AHEPA University Hospital, Thessaloniki Medical School, 54621 Thessaloniki, Greece; [email protected] * Correspondence: [email protected]; Tel.: +32-65-373-584 Authors have equally contributed to the paper’s supervision and should be considered as co-first authors. -
Enzyme Lab – Teacher
Enzymes: What’s in your spit? Student Version In this lab students will investigate a few of the different enzymes from our body. You will learn how these enzymes work and how their activity is dependent on factors such as heat, pH, and concentration. Key Concepts: • Enzymes are proteins that speed up chemical reactions, and are found in all living organisms because they are important in everyday functions like digestion and blood clotting. They also act like scissors and cut bonds between molecules. • The process of accelerating chemical reactions is referred to as catalysis, and because enzymes take part in a chemical reaction (but are not destroyed in the process), enzymes are referred to as catalysts. • The shape of each enzyme allows it only to interact with a specific molecule – called a substrate (though the enzyme can act with many substrates at the same time) – that makes the enzyme specific for a particular type of chemical reaction. Think of the enzyme as a “lock” and the substrate as the “key”. Only that certain “key” (substrate) will fit into that specific “lock” (enzyme). Helpful link to understand enzymes: http://www.youtube.com/watch?v=0XjyAkeQJag Created by LABScI at Stanford 1 Part 1 – How does Heat affect enzyme activity? (Bromelain) Gelatin is a protein used in making many of your favorite foods, like gummy bears and Jello! The chemical bonds in gelatin can be broken by an enzyme called bromelain, which is found in certain fruits. We will test different fruits to identify which of them contains the bromelain enzyme, and then investigate the effect of heating on bromelain. -
Coping with Dry Mouth and Thick Saliva
Page 1 of 2 Coping with Dry Mouth and Thick Saliva What happens when you have dry mouth • Try very sweet or tart foods and drinks, such and thick saliva? as lemonade. These foods may help your mouth make more saliva. Do not try this if you If you have a dry mouth or thick saliva, it affects have mouth sores. It could make your mouth simple activities like speaking and swallowing. It can hurt more. also cause taste changes. • Choose foods that are moist and easy to chew Dry mouth can last long after your treatment has (see the following food list). Take small bites and ended. Symptoms may be worse at night and when chew food well. you get up in the morning. • Avoid: How are they treated? – Hot foods and drinks Ask your care team about “artificial saliva” (for – Caffeine and alcohol (these may dry out example, Biotene). This is a medicine that coats, your mouth) protects and moistens your mouth and throat. You can buy this at the drugstore. – Foods that irritate the mouth (such as high- acid foods like tomatoes, or coarse, dry foods What else can I do to treat or prevent dry like raw vegetables, granola, crackers and toast) mouth and thick saliva? – Store-bought mouthwash, since the alcohol it • Sip water every few minutes to help yourself contains can dry out your mouth. swallow and talk. Keep a water bottle with you at all times. • If you wear dentures, be sure they fit you well. • Use a straw to make drinking easier. -
Etiologic Factors of Hyposalivation and Consequences for Oral Health
QUINTESSENCE INTERNATIONAL Etiologic factors of hyposalivation and consequences for oral health Peter Tschoppe, Dr Med Dent1/Michael Wolgin, Dr Med Dent2/ Nicole Pischon, Dr Med Dent Habil2/ Andrej M. Kielbassa, Dr Med Dent Habil3 Hyposalivation is represented by a reduced salivary flow rate and can be caused by etiolog- ic factors such as systemic diseases and intake of various medications or by radiotherapy following head and neck cancer. The aim of this review was to compile data about the qualitative and quantitative changes of salivary components during hyposalivation, and to summarize their consequences for oral health. A Medline/PubMed/Scopus search was con- ducted to identify and summarize articles published in English and German that reported on etiology of hyposalivation and changes in the salivary composition due to hyposalivation of different origins. The search revealed 94 articles, 71 of which were original articles. Apart from the reduction of the salivary flow rate, the quality of saliva is strongly altered because of systemic diseases, medications, and radiotherapy, including increased viscosity and pH shift to more acidic values and changes in salivary protein compositions. Furthermore, hypo - salivation may be accompanied by pronounced shifts in specific microbial components, in particular toward a highly acidogenic microflora. Moreover, therapy of hyposalivation is often restricted to palliative treatment (ie, saliva substitutes or gels). To prevent tooth tissue de - mineralization, clinicians should consider saliva