Promenne Hvezdy

Total Page:16

File Type:pdf, Size:1020Kb

Promenne Hvezdy Masarykova univerzita Pˇr´ırodovˇedeck´afakulta Ustav´ teoretick´efyziky a astrofyziky Uvod´ do studia promˇenn´ych hvˇezd ZdenˇekMikul´aˇsek,Miloslav Zejda Brno 2013 Vyd´anov r´amciprojektu Inovace v´yukyaplikovan´efyziky na Pˇr´ırodovˇedeck´efakultˇe Masarykovy univerzity (CZ.1.07/2.2.00/15.0181) v operaˇcn´ımprogramu Vzdˇel´av´an´ıpro konkurenceschopnost (VK) { 2.2 Vysokoˇskolsk´evzdˇel´av´an´ı c 2013 Masarykova univerzita ISBN 978-80-210-6241-2 OBSAH 3 Obsah Historie a metody v´yzkumu 1 Uvod´ 11 1.1 Definice . 11 1.2 V´yznamstudia promˇenn´ych hvˇezd. 11 2 Historie a souˇcasnostv´yzkumu promˇenn´ych hvˇezd 12 2.1 Prehistorie sledov´an´ıpromˇenn´ych hvˇezd . 12 2.2 Prvn´ıvˇedeck´apozorov´an´ı . 12 2.3 Zaˇc´atkysystematick´ehostudia . 13 2.4 V´yzkumpromˇenn´ych hvˇezdv 19. a 20. stolet´ı . 15 2.4.1 Vizu´aln´ıfotometrie . 16 2.4.2 Nevizu´aln´ıfotometrie . 18 2.4.2.1 Fotografick´afotometrie . 18 2.4.2.2 Fotoelektrick´afotometrie . 18 2.4.2.3 Kˇrem´ıkov´a\ fotometrie . 19 " 2.4.3 Spektroskopie . 20 2.4.4 Druˇzicov´apozorov´an´ı. 21 2.5 Typy promˇenn´ych hvˇezd . 22 2.6 Brno a promˇenn´ehvˇezdy. 25 3 Pozorov´an´ıpromˇenn´ych hvˇezd 27 3.1 Astronomick´afotometrie . 27 3.1.1 Z´akladn´ıpojmy a vztahy . 27 3.1.2 Rozloˇzen´ıenergie ve spektru hvˇezdy . 31 3.1.2.1 Z´aˇren´ıACT.ˇ Efektivn´ıteplota. Spektrofotometrie . 31 3.1.2.2 Barevn´eindexy . 33 3.1.3 Fotometrick´esyst´emy . 35 3.1.3.1 Historick´efotometrick´esyst´emy . 37 3.1.3.2 Johnson˚uvmezin´arodn´ısyst´ema jeho rozˇs´ıˇren´ı . 38 3.1.3.3 Str¨omgren˚uvsyst´em uvby(β)............... 39 3.1.3.4 Dalˇs´ısouˇcasn´efotometrick´esyst´emy . 42 3.1.3.5 Standardizace fotometrick´ych syst´em˚u . 43 3.1.4 Extinkce a jej´ıeliminace . 44 3.1.4.1 Optick´atlouˇst'ka a extinkce . 44 3.1.4.2 Mezihvˇezdn´aextinkce . 45 3.1.4.3 Atmosf´erick´aextinkce . 47 3.2 Astronomick´apolarimetrie . 49 3.2.1 Stokes˚uvvektor . 50 3.2.2 Polarizace z´aˇren´ıkosmick´ych objekt˚u. 52 3.2.3 Polarimetrick´apozorov´an´ı . 52 3.3 Astronomick´aspektroskopie . 53 3.3.1 Charakteristiky spekter . 54 4 OBSAH 3.3.2 Z´akladn´ıpojmy . 55 3.3.3 Vzhled spektra . 59 3.3.4 Co lze vyˇc´ıstze spektrogram˚u. 62 3.4 Zdroje pozorovac´ıch dat o promˇenn´ych hvˇezd´ach . 63 3.4.1 Vlastn´ı,pˇrevzat´aa archivn´ıpozorov´an´ı. 63 3.4.1.1 Vizu´aln´ıodhady . 63 3.4.1.2 Fotografick´apozorov´an´ı . 64 3.4.1.3 Fotoelektrick´apozorov´an´ı . 64 3.4.1.4 CCD pozorov´an´ı . 65 3.4.2 Soudob´epˇrehl´ıdkov´eprojekty . 66 3.4.2.1 Pozemsk´eprojekty . 66 3.4.2.2 Kosmick´epˇrehl´ıdky . 69 3.4.3 Virtu´aln´ıobservatoˇr . 71 Zpracov´an´ıpozorov´an´ıpromˇenn´ych hvˇezd 4 Regresn´ıanal´yza 74 4.1 Uvodem´ .................................... 74 4.1.1 Regresn´ımodel . 74 4.1.2 Zd˚uvodnˇen´ımetody nejmenˇs´ıch ˇctverc˚u. 76 4.2 Metoda nejmenˇs´ıch ˇctverc˚u. 77 4.2.1 Hled´an´ıˇreˇsen´ımetodou nejmenˇs´ıch ˇctverc˚u. 77 4.2.2 Krit´eria´uspˇeˇsnostimodelov´an´ı . 80 4.2.2.1 Statistika modifikovan´ych odchyleke ~i ........... 80 2 2 2 4.2.2.2 Sumy χ ; χµ a rozptyl proloˇzen´ı s ............ 81 4.2.2.3 Testov´an´ıregresn´ıch model˚upomoc´ıO-C diagram˚u. 81 4.2.2.4 Informaˇcn´ıkrit´eria AIC, AICc a BIC . 82 4.2.3 Odhad nejistot jednotliv´ych mˇeˇren´ı . 83 4.3 Line´arn´ıregrese . 84 4.3.1 Line´arn´ıregrese uˇzit´ımmaticov´ehopoˇctu. 85 4.3.2 Nejistoty parametr˚umodelu a pˇredpovˇed´ı . 87 4.3.3 Z´akladn´ıregresn´ımodely - aplikace line´arn´ıregrese . 88 4.3.3.1 Pr˚umˇern´ahodnota . 89 4.3.3.2 Pˇr´ımka jdouc´ıpoˇc´atkem . 89 4.3.3.3 Proloˇzen´ıobecnou pˇr´ımkou . 90 4.3.3.4 Proloˇzen´ıˇcasov´ych ˇradpolynomem . 91 4.3.3.5 Proloˇzen´ıˇcasov´ych ˇradharmonick´ympolynomem . 91 4.3.4 Zobecnˇen´ıline´arn´ıregrese I - vektorov´az´avisl´apromˇenn´a. 92 4.3.5 Zobecnˇen´ıline´arn´ıregrese II - v´ıcenez´avislepromˇenn´ych . 92 4.4 Neline´arn´ıregrese . 95 4.4.1 Linearizace neline´arn´ıch regresn´ıch model˚u. 95 4.4.1.1 Odhad nejistoty okamˇzik˚uextr´em˚u. 96 4.5 Robustn´ıregrese . 96 4.5.1 Vlastn´ımetoda robustn´ıregrese . 98 OBSAH 5 5 Anal´yzaˇcasov´ych ˇrad 100 5.1 Z´akladn´ıpojmy a ´uvahy . 100 5.1.1 Svˇeteln´akˇrivka . 100 5.1.2 Casˇ pozorov´an´ı . 101 5.2 Periodicita promˇennosti . 103 5.2.1 Pˇr´ıˇciny zmˇenperiody periodicky promˇenn´ych hvˇezd. 103 5.2.1.1 Pulzuj´ıc´ıhvˇezdy . 103 5.2.1.2 Rotuj´ıc´ıhvˇezdy. 104 5.2.1.3 Interaguj´ıc´ıdvojhvˇezdy . 105 5.2.1.4 LiTE a apsid´aln´ıpohyb . 106 5.2.2 Epocha, f´aze,f´azov´afunkce a okamˇzit´aperioda . 107 5.2.3 Z´akladn´ıdvouparametrick´ymodel { line´arn´ıefemerida . 108 5.2.4 Modely s pozvoln´ymizmˇenamiperiody promˇennosti. 108 5.2.4.1 Pˇr´ıklady. 109 5.2.4.2 Diskuse. Prost´ytˇr´ıparametrick´ymodel periody . 111 5.2.5 Modely s margin´aln´ımizmˇenamiperiody . 112 5.2.5.1 Kubick´ymodel zmˇenperiody . 112 5.2.5.2 LiTE . 113 5.3 Periodov´aanal´yzaokamˇzik˚uextr´em˚u. 113 5.3.1 Reˇsen´ımetodouˇ nejmenˇs´ıch ˇctverc˚u. 116 5.3.1.1 Nejistoty jednotliv´ych okamˇzik˚uextr´emu . 117 5.3.1.2 Urˇcov´an´ıparametr˚uline´arn´ıch regresn´ıch model˚u. 118 5.3.2 Standardn´ıurˇcov´an´ıokamˇzik˚uextr´em˚u. 118 5.3.3 Prost´emodely svˇeteln´ych kˇrivek . 119 5.3.4 Precizn´ıurˇcov´an´ıokamˇzik˚uextr´em˚usvˇeteln´ych kˇrivek . 120 5.4 Pˇr´ım´aperiodov´aanal´yza. 122 5.4.1 Popis metody . 123 5.4.2 Virtu´aln´ıO-C diagram . 124 5.5 Fenomenologick´emodely f´azov´ych kˇrivek . 125 5.5.1 Rotuj´ıc´ıhvˇezdys fotometrick´ymiskvrnami . 125 5.5.2 Z´akrytov´edvojhvˇezdy . 127 5.5.3 Spektroskopick´apromˇennost. 130 5.6 Simult´ann´ımodelov´an´ınestejnorod´ych zdroj˚uf´azov´einformace . 130 5.7 Hled´an´ıperiod. Periodogramy . 131 5.7.1 Metody minimalizace f´azov´ehorozptylu . 133 5.7.2 Periodogramy jako aplikace metody nejmenˇs´ıch ˇctverc˚u. 133 5.7.2.1 Line´arn´ıregrese a jej´ın´astroje . 133 5.7.2.2 Varianta I - suma ˇctverc˚uodchylek . 134 5.7.2.3 Varianta II - Lombova-Scargleova metoda . 135 5.7.2.4 Varianta III - sign´al/ˇsum . 136 5.7.3 Sloˇzitˇejˇs´ısituace . 136 5.7.3.1 Dlouhodob´ytrend . 137 5.7.3.2 Multiperiodick´ezmˇeny . 137 5.7.4 Zd´anliv´eperiody (aliasy) . 137 5.7.4.1 Faleˇsn´eperiody . 138 6 OBSAH Fyzika promˇenn´ych hvˇezd 6 Promˇennostperiodicky promˇenn´ych hvˇezd 142 6.1 Rotuj´ıc´ıpromˇenn´ehvˇezdy . 142 6.1.1 Asf´erick´ehvˇezdy . 142 6.1.2 Skvrny na hvˇezd´ach . 143 6.1.2.1 Slunce a hvˇezdysluneˇcn´ıhotypu . 144 6.1.2.2 Typ FK Comae Berenices . 145 6.1.2.3 Typ RS Canum Venaticorum { skvrnit´ıpsi . 145 6.1.2.4 Typ BY Draconis . 149 6.1.2.5 Chemicky pekuli´arn´ı(CP) hvˇezdy. 149 6.1.3 Magnetick´epole . 152 6.1.3.1 Pulsary . 152 6.2 Dvojhvˇezdy . 155 6.2.1 Z´akrytov´epromˇenn´ehvˇezdy . 155 6.2.2 Svˇeteln´ekˇrivkyz´akrytov´ych dvojhvˇezd . 157 6.2.3 Kˇrivkyradi´aln´ıch rychlost´ı. 162 6.2.4 Tˇesn´einteraguj´ıc´ıdvojhvˇezdy . 164 6.2.5 V´yznamv´yzkumu z´akrytov´ych dvojhvˇezd . 166 6.2.6 Nez´akrytov´edvojhvˇezdy . 167 6.3 Pulzuj´ıc´ıpromˇenn´ehvˇezdy. 168 6.3.1 Radi´aln´ıpulzace . 168 6.3.2 Mechanismus pulzac´ı . 172 6.3.3 P´asnestability a jeho interpretace . 173 6.3.4 Z´avislostperioda–z´aˇriv´yv´ykon a jej´ıvysvˇetlen´ı . 176 6.3.5 Pulzace radi´aln´ıi neradi´aln´ı.M´odypulzac´ı . 178 6.3.6 Helioseismologie a astroseismologie . 181 6.4 Typy pulzuj´ıc´ıch promˇenn´ych hvˇezd. 183 6.4.1 Klasick´ecefeidy . 183 6.4.2 Hvˇezdytypu W Virginis . 185 6.4.3 RR Lyrae . 186 6.4.4 Hvˇezdytypu δ Scuti . 187 6.4.5 Hvˇezdytypu γ Doradus . 188 6.4.6 Rychle osciluj´ıc´ıpekuli´arn´ıhvˇezdy . 189 6.4.7 Hvˇezdytypu β Cephei . 190 6.4.8 SPB . 190 6.4.9 Pulzuj´ıc´ıb´ıl´ıtrpasl´ıci. ..
Recommended publications
  • Harpspol Proposal by C. Neiner
    European Organisation for Astronomical Research in the Southern Hemisphere OBSERVING PROGRAMMES OFFICE • Karl-Schwarzschild-Straße 2 • D-85748 Garching bei M¨unchen • e-mail: [email protected] • Tel. : +49 89 320 06473 APPLICATION FOR OBSERVING TIME PERIOD: 95A Important Notice: By submitting this proposal, the PI takes full responsibility for the content of the proposal, in particular with regard to the names of CoIs and the agreement to act according to the ESO policy and regulations, should observing time be granted. 1. Title Category: D{3 Spectropolarimetric observations of BRITE asteroseismic targets: a complete census of magnetic fields in bright stars up to V=4 2. Abstract / Total Time Requested Total Amount of Time: 6 nights VM, 0 hours SM This program aims at observing in circular spectropolarimetry all (yet unobserved) targets of the BRITE constellation of nano-satellites for asteroseismology, i.e. all stars brighter than V=4. They are mainly massive stars and evolved cool stars. Time has already been awarded at CFHT with ESPaDOnS and at TBL with Narval to observe the targets with a declination above -45◦. We propose to observe 104 targets below -45◦ with HarpsPol. Time has already been allocated in P94 for 51 targets. We request here the remaining 53 targets. These data will allow us to (1) obtain a complete and unbiased census of magnetic fields of all stars brighter than V=4, (2) determine the fundamental parameters of all BRITE targets, to constrain the seismic models of BRITE observations; (3) discover new magnetic stars and thus constrain their seismic models even further.
    [Show full text]
  • HST/STIS Analysis of the First Main Sequence Pulsar CU Virginis
    A&A 625, A34 (2019) Astronomy https://doi.org/10.1051/0004-6361/201834937 & © ESO 2019 Astrophysics HST/STIS analysis of the first main sequence pulsar CU Virginis?,?? J. Krtickaˇ 1, Z. Mikulášek1, G. W. Henry2, J. Janík1, O. Kochukhov3, A. Pigulski4, P. Leto5, C. Trigilio5, I. Krtickovᡠ1, T. Lüftinger6, M. Prvák1, and A. Tichý1 1 Department of Theoretical Physics and Astrophysics, Masaryk University, Kotlárskᡠ2, 611 37 Brno, Czech Republic e-mail: [email protected] 2 Center of Excellence in Information Systems, Tennessee State University, Nashville, TN, USA 3 Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden 4 Astronomical Institute, Wrocław University, Kopernika 11, 51-622 Wrocław, Poland 5 INAF – Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania, Italy 6 Institut für Astronomie, Universität Wien, Türkenschanzstraße 17, 1180 Wien, Austria Received 20 December 2018 / Accepted 5 March 2019 ABSTRACT Context. CU Vir has been the first main sequence star that showed regular radio pulses that persist for decades, resembling the radio lighthouse of pulsars and interpreted as auroral radio emission similar to that found in planets. The star belongs to a rare group of magnetic chemically peculiar stars with variable rotational period. Aims. We study the ultraviolet (UV) spectrum of CU Vir obtained using STIS spectrograph onboard the Hubble Space Telescope (HST) to search for the source of radio emission and to test the model of the rotational period evolution. Methods. We used our own far-UV and visual photometric observations supplemented with the archival data to improve the parameters of the quasisinusoidal long-term variations of the rotational period.
    [Show full text]
  • Gaia Data Release 2 Special Issue
    A&A 623, A110 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833304 & © ESO 2019 Astrophysics Gaia Data Release 2 Special issue Gaia Data Release 2 Variable stars in the colour-absolute magnitude diagram?,?? Gaia Collaboration, L. Eyer1, L. Rimoldini2, M. Audard1, R. I. Anderson3,1, K. Nienartowicz2, F. Glass1, O. Marchal4, M. Grenon1, N. Mowlavi1, B. Holl1, G. Clementini5, C. Aerts6,7, T. Mazeh8, D. W. Evans9, L. Szabados10, A. G. A. Brown11, A. Vallenari12, T. Prusti13, J. H. J. de Bruijne13, C. Babusiaux4,14, C. A. L. Bailer-Jones15, M. Biermann16, F. Jansen17, C. Jordi18, S. A. Klioner19, U. Lammers20, L. Lindegren21, X. Luri18, F. Mignard22, C. Panem23, D. Pourbaix24,25, S. Randich26, P. Sartoretti4, H. I. Siddiqui27, C. Soubiran28, F. van Leeuwen9, N. A. Walton9, F. Arenou4, U. Bastian16, M. Cropper29, R. Drimmel30, D. Katz4, M. G. Lattanzi30, J. Bakker20, C. Cacciari5, J. Castañeda18, L. Chaoul23, N. Cheek31, F. De Angeli9, C. Fabricius18, R. Guerra20, E. Masana18, R. Messineo32, P. Panuzzo4, J. Portell18, M. Riello9, G. M. Seabroke29, P. Tanga22, F. Thévenin22, G. Gracia-Abril33,16, G. Comoretto27, M. Garcia-Reinaldos20, D. Teyssier27, M. Altmann16,34, R. Andrae15, I. Bellas-Velidis35, K. Benson29, J. Berthier36, R. Blomme37, P. Burgess9, G. Busso9, B. Carry22,36, A. Cellino30, M. Clotet18, O. Creevey22, M. Davidson38, J. De Ridder6, L. Delchambre39, A. Dell’Oro26, C. Ducourant28, J. Fernández-Hernández40, M. Fouesneau15, Y. Frémat37, L. Galluccio22, M. García-Torres41, J. González-Núñez31,42, J. J. González-Vidal18, E. Gosset39,25, L. P. Guy2,43, J.-L. Halbwachs44, N. C. Hambly38, D.
    [Show full text]
  • Arxiv:0908.2624V1 [Astro-Ph.SR] 18 Aug 2009
    Astronomy & Astrophysics Review manuscript No. (will be inserted by the editor) Accurate masses and radii of normal stars: Modern results and applications G. Torres · J. Andersen · A. Gim´enez Received: date / Accepted: date Abstract This paper presents and discusses a critical compilation of accurate, fun- damental determinations of stellar masses and radii. We have identified 95 detached binary systems containing 190 stars (94 eclipsing systems, and α Centauri) that satisfy our criterion that the mass and radius of both stars be known to ±3% or better. All are non-interacting systems, so the stars should have evolved as if they were single. This sample more than doubles that of the earlier similar review by Andersen (1991), extends the mass range at both ends and, for the first time, includes an extragalactic binary. In every case, we have examined the original data and recomputed the stellar parameters with a consistent set of assumptions and physical constants. To these we add interstellar reddening, effective temperature, metal abundance, rotational velocity and apsidal motion determinations when available, and we compute a number of other physical parameters, notably luminosity and distance. These accurate physical parameters reveal the effects of stellar evolution with un- precedented clarity, and we discuss the use of the data in observational tests of stellar evolution models in some detail. Earlier findings of significant structural differences between moderately fast-rotating, mildly active stars and single stars, ascribed to the presence of strong magnetic and spot activity, are confirmed beyond doubt. We also show how the best data can be used to test prescriptions for the subtle interplay be- tween convection, diffusion, and other non-classical effects in stellar models.
    [Show full text]
  • CU Virginis Œ the First Stellar Pulsar
    1 CU Virginis The First Stellar Pulsar B. J. Kellett1*, Vito G. Graffagnino1, Robert Bingham1,2, Tom W. B. Muxlow3 & Alastair G. Gunn3. 1Rutherford Appleton Laboratory, Space Science & Technology Department, Chilton, Didcot OX11 QX, UK. 2Dept. of Physics, University of Strathclyde, )lasgow, )4 ,), U.K. 3.ERL0,12L30 ,ational 4acility, 5odrell 3an6 Observatory, The University of .anchester, .acclesfield, Cheshire SK11 7DL, UK. 8To whom correspondence should be addressed9 E-mail: [email protected].. CU Virginis is one of the brightest radio emitting members of the magnetic chemically peculiar (MCP) stars and also one of the fastest rotating. We have now discovered that CU Vir is uni ue among stellar radio sources in generating a persistent, highly collimated, beam of coherent, 100% polarised, radiation from one of its magnetic poles that sweeps across the Earth every time the star rotates. This makes the star strikingly similar to a pulsar. This similarity is further strengthened by the observation that the rotating period of the star is lengthening at a phenomenal rate (significantly faster than any other astrophysical source ( including pulsars) due to a braking mechanism related to it)s very strong magnetic field. CU Vir (HD124224, HR5313) was discovered as a spectrum variable star in 1952 (1) and as a stellar radio source in 1994 (2). Its rotation period of close to half a day was immediately recognised as was the fact that it had a strong magnetic field and that it 2 rotated perpendicular to our line3of3sight (1). 1t is now 4nown to be one of the brightest radio sources in the class of magnetic chemically peculiar (MC5) stars.
    [Show full text]
  • GEORGE HERBIG and Early Stellar Evolution
    GEORGE HERBIG and Early Stellar Evolution Bo Reipurth Institute for Astronomy Special Publications No. 1 George Herbig in 1960 —————————————————————– GEORGE HERBIG and Early Stellar Evolution —————————————————————– Bo Reipurth Institute for Astronomy University of Hawaii at Manoa 640 North Aohoku Place Hilo, HI 96720 USA . Dedicated to Hannelore Herbig c 2016 by Bo Reipurth Version 1.0 – April 19, 2016 Cover Image: The HH 24 complex in the Lynds 1630 cloud in Orion was discov- ered by Herbig and Kuhi in 1963. This near-infrared HST image shows several collimated Herbig-Haro jets emanating from an embedded multiple system of T Tauri stars. Courtesy Space Telescope Science Institute. This book can be referenced as follows: Reipurth, B. 2016, http://ifa.hawaii.edu/SP1 i FOREWORD I first learned about George Herbig’s work when I was a teenager. I grew up in Denmark in the 1950s, a time when Europe was healing the wounds after the ravages of the Second World War. Already at the age of 7 I had fallen in love with astronomy, but information was very hard to come by in those days, so I scraped together what I could, mainly relying on the local library. At some point I was introduced to the magazine Sky and Telescope, and soon invested my pocket money in a subscription. Every month I would sit at our dining room table with a dictionary and work my way through the latest issue. In one issue I read about Herbig-Haro objects, and I was completely mesmerized that these objects could be signposts of the formation of stars, and I dreamt about some day being able to contribute to this field of study.
    [Show full text]
  • Tabetha Boyajian's CV
    Dr. Tabetha Boyajian Yale University, Department of Astronomy, 52 Hillhouse Ave., New Haven, CT 06520 USA [email protected] • +1 (404) 849-4848 • http://www.astro.yale.edu/tabetha PROFESSIONAL Yale University, Department of Astronomy, New Haven, Connecticut, USA EXPERIENCE Postdoctoral Fellow 2012 – present • Supervisor: Dr. Debra Fischer Center for high Angular Resolution Astronomy (CHARA), Georgia State University Hubble Fellow 2009 – 2012 • Supervisor: Dr. Harold McAlister EDUCATION Georgia State University, Department of Physics and Astronomy, Atlanta, Georgia, USA Doctor of Philosophy (Ph.D.) in Astronomy 2005 – 2009 • Adviser: Dr. Harold McAlister Master of Science (M.S.) in Physics 2003 – 2005 • Adviser: Dr. Douglas Gies College of Charleston, Charleston, South Carolina, USA Bachelor of Science (B.S.) in Physics with concentration in astronomy 1998 – 2003 • Graduated with Departmental Honors PROFESSIONAL Secretary, International Astronomical Union, Division G 2015 – 2018 SERVICE Steering Committee, International Astronomical Union, Division G 2015 – 2018 Review panel member NASA Kepler Guest Observer program, NASA K2 Guest Observer program, NSF-AAG program Referee The Astronomical Journal, Astronomy & Astrophysics, PASA Telescope time allocation committee member CHARA, OPTICON (external) AREAS OF Fundamental properties of stars: diameters, temperatures, exoplanet detection and characterization, SPECIALIZATION Optical/IR interferometry, stellar spectroscopy (radial velocities, abundances, activity), absolute AND INTEREST
    [Show full text]
  • The Birth and Evolution of Planetary Systems
    CHAPTER 7 The Birth and Evolution of Planetary Systems hn hk io il sy SY hn hk io il sy SY hn hk io il sy SY Ideas about the origins of the Sun, the Moon, and Earth objects in the Solar System. It is important for the stu- hn hk io il sy SY are older than written history. Greek and Roman mythol- dents to realize that you can determine many of the prop- ogy, as well as creation myths of the Bible, represent some erties of a planet by knowing its mass, size, and distance hn hk io il sy SY of humanity’s earliest attempts to explain how the heav- from the Sun. hn hk io il sy SY ens and Earth were created. Thousands of years and Although planetary scientists are confident they have hn hk io il sy SY the scientific revolution have ultimately debunked many the big picture of Solar System formation correct, the ancient creation stories, but our new theories of solar sys- details are still in question. Questions remain concerning hn hk io il sy SY tem formation are still relatively in their infancy. Jupiter’s formation. It might not have been able to form hn hk io il sy SY The nebular model of solar system formation was first via accretion but may have formed similarly to the Sun. proposed by Immanuel Kant in 1755. It has undergone To complicate matters further, Uranus and Neptune significant revision in the last 250 years, but the details of appear to be too large to have formed at their current posi- the pro cess remain elusive.
    [Show full text]
  • Volume-Limited Radio Survey of Ultracool Dwarfs
    Astronomy & Astrophysics manuscript no. ucd-survey1 c ESO 2012 December 17, 2012 Volume-limited radio survey of ultracool dwarfs A. Antonova1, G. Hallinan2,3, J. G. Doyle4, S. Yu4, A. Kuznetsov4,5, Y. Metodieva1, A. Golden6,7, and K. L. Cruz8,9 1 Department of Astronomy, St. Kliment Ohridski University of Sofia, 5 James Bourchier Blvd., 1164 Sofia, Bulgaria 2 National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903, USA 3 Department of Astronomy, University of California, Berkeley, CA 94720, USA 4 Armagh Observatory, College Hill, Armagh BT61 9DG, N. Ireland 5 Institute of Solar-Terrestrial Physics, Irkutsk 664033, Russia 6 Centre for Astronomy, National University of Ireland, Galway, Ireland 7 Price Center, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA 8 Department of Physics and Astronomy, Hunter College, City University of New York, 10065, New York, NY, USA 9 Department of Astrophysics, American Museum of Natural History, 10024, New York, NY, USA Received –——– / Accepted by A&A, 19 Nov 2012 ABSTRACT Aims. We aim to increase the sample of ultracool dwarfs studied in the radio domain to allow a more statistically significant under- standing of the physical conditions associated with these magnetically active objects. Methods. We conducted a volume-limited survey at 4.9 GHz of 32 nearby ultracool dwarfs with spectral types covering the range M7 – T8. A statistical analysis was performed on the combined data from the present survey and previous radio observations of ultracool dwarfs. Results. Whilst no radio emission was detected from any of the targets, significant upper limits were placed on the radio luminosities that are below the luminosities of previously detected ultracool dwarfs.
    [Show full text]
  • Aa34937-18.Pdf
    Publication Year 2019 Acceptance in OA@INAF 2020-12-09T15:44:10Z Title HST/STIS analysis of the first main sequence pulsar CU Virginis Authors þÿKrtika, J.; Mikuláaek, Z.; Henry, G. W.; Janík, J.; Kochukhov, O.; et al. DOI 10.1051/0004-6361/201834937 Handle http://hdl.handle.net/20.500.12386/28755 Journal ASTRONOMY & ASTROPHYSICS Number 625 A&A 625, A34 (2019) Astronomy https://doi.org/10.1051/0004-6361/201834937 & © ESO 2019 Astrophysics HST/STIS analysis of the first main sequence pulsar CU Virginis?,?? J. Krtickaˇ 1, Z. Mikulášek1, G. W. Henry2, J. Janík1, O. Kochukhov3, A. Pigulski4, P. Leto5, C. Trigilio5, I. Krtickovᡠ1, T. Lüftinger6, M. Prvák1, and A. Tichý1 1 Department of Theoretical Physics and Astrophysics, Masaryk University, Kotlárskᡠ2, 611 37 Brno, Czech Republic e-mail: [email protected] 2 Center of Excellence in Information Systems, Tennessee State University, Nashville, TN, USA 3 Department of Physics and Astronomy, Uppsala University, Box 516, 751 20 Uppsala, Sweden 4 Astronomical Institute, Wrocław University, Kopernika 11, 51-622 Wrocław, Poland 5 INAF – Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania, Italy 6 Institut für Astronomie, Universität Wien, Türkenschanzstraße 17, 1180 Wien, Austria Received 20 December 2018 / Accepted 5 March 2019 ABSTRACT Context. CU Vir has been the first main sequence star that showed regular radio pulses that persist for decades, resembling the radio lighthouse of pulsars and interpreted as auroral radio emission similar to that found in planets. The star belongs to a rare group of magnetic chemically peculiar stars with variable rotational period.
    [Show full text]
  • Outstanding X-Ray Emission from the Stellar Radio Pulsar CU Virginis J
    A&A 619, A33 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833492 & c ESO 2018 Astrophysics Outstanding X-ray emission from the stellar radio pulsar CU Virginis J. Robrade1, L. M. Oskinova2,3, J. H. M. M. Schmitt1, P. Leto4, and C. Trigilio4 1 Hamburger Sternwarte, University of Hamburg, Gojenbergsweg 112, 21029 Hamburg, Germany e-mail: [email protected] 2 Institute for Physics and Astronomy, University Potsdam, 14476 Potsdam, Germany 3 Kazan Federal University, Kremlevskaya Str 18, Kazan, Russia 4 INAF – Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania, Italy Received 24 May 2018 / Accepted 6 August 2018 ABSTRACT Context. Among the intermediate-mass magnetic chemically peculiar (MCP) stars, CU Vir is one of the most intriguing objects. Its 100% circularly polarized beams of radio emission sweep the Earth as the star rotates, thereby making this strongly magnetic star the prototype of a class of nondegenerate stellar radio pulsars. While CU Vir is well studied in radio, its high-energy properties are not known. Yet, X-ray emission is expected from stellar magnetospheres and confined stellar winds. Aims. Using X-ray data we aim to test CU Vir for intrinsic X-ray emission and investigate mechanisms responsible for its generation. Methods. We present X-ray observations performed with XMM-Newton and Chandra and study obtained X-ray images, light curves, and spectra. Basic X-ray properties are derived from spectral modelling and are compared with model predictions. In this context we investigate potential thermal and nonthermal X-ray emission scenarios. 28 −1 Results. We detect an X-ray source at the position of CU Vir.
    [Show full text]
  • Stellar Magnetosphere Reconstruction from Radio Data. Multi-Frequency
    Astronomy & Astrophysics manuscript no. cuvir c ESO 2018 September 17, 2018 Stellar magnetosphere reconstruction from radio data Multi-frequency VLA observations and 3D-simulations of CU Virginis P. Leto1, C. Trigilio2, C.S. Buemi2, G. Umana2, and F. Leone2 1 INAF - Istituto di Radioastronomia Sezione di Noto, CP 161, Noto (SR), Italy 2 INAF - Osservatorio Astrofisico di Catania, Via S. Sofia 78, 95123 Catania, Italy Received; Accepted ABSTRACT Aims. In order to fully understand the physical processes in the magnetospheres of the Magnetic Chemically Peculiar stars, we performed multi-frequency radio observations of CU Virginis. The radio emission of this kind of stars arises from the interaction between energetic electrons and magnetic field. Our analysis is used to test the physical scenario proposed for the radio emission from the MCP stars and to derive quantitative information about physical parameters not directly observable. Methods. The radio data were acquired with the VLA and cover the whole rotational period of CU Virginis. For each observed frequency the radio light curves of the total flux density and fraction of circular polarization were fitted using a three-dimensional MCP magnetospheric model simulating the stellar radio emission as a function of the magnetospheric physical parameters. Results. The observations show a clear correlation between the radio emission and the orientation of the magnetosphere of this oblique rotator. Radio emission is explained as the result of the acceleration of the wind particles in the current sheets just beyond the Alfv´en radius, that eventually return toward the star following the magnetic field and emitting radiation by gyrosyncrotron mechanism.
    [Show full text]