Fragments in Bromodomain Drug Discovery

Total Page:16

File Type:pdf, Size:1020Kb

Fragments in Bromodomain Drug Discovery MedChemComm Fragments in Bromodomain Drug Discovery Journal: MedChemComm Manuscript ID: MD-REV-05-2015-000209.R1 Article Type: Review Article Date Submitted by the Author: 30-Jun-2015 Complete List of Authors: Bamborough, P; GlaxoSmithKline, Chung, Chun-wa; GlaxoSmithKline, Computational and Structural Chemistry Page 1 of 18Journal Name MedChemComm Dynamic Article Links ► Cite this: DOI: 10.1039/c0xx00000x www.rsc.org/xxxxxx ARTICLE TYPE Fragments in Bromodomain Drug Discovery Paul Bamborough*a and Chun-wa Chung a Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXXX 20XX DOI: 10.1039/b000000x 5 Fragment-based approaches have been successfully applied to the discovery and optimisation of ligands for a wide range of targets. These concepts are proving valuable for bromodomain-containing proteins, an emerging family of epigenetic regulators. This review gives examples in which fragment-based drug discovery concepts are helping to find and optimise bromodomain inhibitors, with early successes against the BET subfamily now extending to other members of the target class. 10 Introduction bromodomain modules is thought to be to recruit additional effectors to sites of histone acetylation around activated genes, so Following the discovery that small-molecule binding to the acting as readers of the “histone code”. 9-12 acetyl-lysine (KAc) pocket of bromodomain modules can block 50 Bromodomains form four-helical bundles, with the peptide- the recognition of their acetylated partner proteins, binding site located at the end furthest from the two termini bromodomains have become a very active target class for drug (Figure 3). Most bromodomains recognise their targets by means 15 discovery. Excitement has been fuelled by their potential of multiple interactions within and outside their acetyl-lysine tractability and the prospect of finding novel epigenetic sites. The acetylated lysine itself is bound by a cluster of mechanisms to tackle complex diseases such as cancer and 55 conserved residues, in particular an asparagine and tyrosine inflammation. Inhibitors of the BET (Bromodomain and Extra structural motif, and associated conserved water molecules Terminal domain) family of tandem bromodomain-containing (Figure 3). In contrast to these “typical” bromodomains, some 20 proteins (BRD2, BRD3, BRD4 and BRDT) exhibit wide-ranging lack these conserved residues (Figure 2), and it is unclear whether biological effects and therapeutic potential.1,2 Indeed, the first they still bind to acetylated lysine peptides, have alternative BET inhibitors (including 1-4, Figure 1) were identified through 60 substrate recognition specificity, or are “pseudo-bromodomains” their effects in cellular systems.3-6 For example, 1 was found in without binding competency. an ApoA1 upregulator reporter assay while seeking leads for 25 atherosclerosis. The application of chemoproteomics, biophysics Cl Cl and crystallography proved that its mode of action was histone- competitive bromodomain binding.3,4 X-ray crystallography has revealed the detailed interactions of these and other inhibitors O O tBu with bromodomain acetyl-lysine sites, providing a compelling N NHEt N O MeO 30 rationale to pursue this domain class through target-based lead discovery and optimisation approaches. The breadth of published N S N bromodomain inhibitors, especially those for the BET family, has N N been comprehensively reviewed elsewhere.7,8 In this article we N 1 (I-BET762) N 2 (JQ-1) will concentrate on case histories using fragment approaches, O 35 addressing questions relevant to fragment-based drug discovery NH Cl within this target class of related proteins. These include the N N opportunities of targeting a conserved site, the advantages from HO2C transferring chemical knowledge between targets, and the N HN challenges of achieving selectivity and chemical novelty. O 4 (I-BET726) 40 Bromodomain structure, acetyl-lysine recognition N and mimicry 3 (I-BET151) O O N At least 42 human genes contain one or more bromodomains, Fig. 1 Some BET inhibitors discovered directly or indirectly through cell- modules whose function is to bind appropriately lysine-acetylated based screening. modified forms of their targets (Figure 2). Although other 45 interacting proteins have been reported, histone tails are the most commonly known binding partners. In this context, the role of This journal is © The Royal Society of Chemistry [year] [journal] , [year], [vol] , 00–00 | 1 MedChemComm Page 2 of 18 BET proteins, where two areas known as the WPF shelf (due to 20 the nearby conserved Trp-Pro-Phe motif) and the ZA channel have been found to be particular valuable in enhancing inhibitor potency and selectivity (Figure 3). For bromodomains outside the BET subfamily, these regions tend to be either more polar or relatively shallow, affording opportunities to introduce selectivity 25 for the BET proteins over other bromodomains even when starting from unselective KAc-site fragments. In this respect, the situation is reminiscent of the protein kinase family, where interactions with selectivity pockets resulting from relatively conservative amino acid substitutions can be used to tailor the 30 kinase profile of common ATP-site binding fragments. Fragment-based drug discovery Fragment-based drug discovery (FBDD) is a well-established, widely used target-based lead discovery strategy.14-17 In comparison to other approaches, FBDD screening sets contain 35 compounds of lower molecular weight. Since these are usually relatively weak binders they are tested at higher concentration. 18- 21 Among the advantages of this approach in general is the promise of efficient coverage of chemical space with smaller compound libraries, but there are other reasons why FBDD is 40 especially suitable for epigenetic histone reader modules such as bromodomains. One is the difficulty of developing viable alternatives, such as high-throughput in vitro screens, for targets Fig 2. Bromodomain phylogenetic tree, with target ligandability indicated where native binding partners and tool compounds are typically 13 by the size and colour intensity of circles (SiteMap Dscore). Targets for either of weak binding affinity or completely unknown.22 The which FBDD has been reported are marked in green. Domains lacking 45 5 either the conserved KAc-binding asparagine or water-network binding lower-throughput but sensitive direct binding methods (NMR, tyrosine are indicated by purple or green boxes respectively containing SPR etc.) commonly used in fragment screening offer a their replacement 1-letter amino acid codes. convenient solution to this challenge. Another feature of bromodomains and other histone reader modules is the ability to generate stable truncated domains for biophysical assays and 3D 50 structure determination, which are highly advantageous for fragment binding confirmation and optimisation. The availability of constructs for protein expression from public-private structural genomics groups has played a significant part in enabling this.22 Fragment-based optimisation then proceeds either by linking 55 two or more fragments that bind near to one another, or more commonly in the same way as conventional medicinal chemistry optimisation, by growing the ligand.17 Practitioners of fragment growing usually try to at least maintain high ligand efficiency (LE, defined as the binding affinity per heavy atom) during this 23 60 process. There are now several reports of fragment screens against the BET bromodomains as well as other members of the family, and a smaller but growing number of published fragment- based medicinal chemistry optimization stories. Some of these will be described below, beginning with the most active area of 65 current therapeutic interest, the BET subfamily. Fig. 3 Acetyl-lysine recognition by bromodomains, using BRD4 BD1 as 10 an example (PDB: 3uvw). The expanded area (top right) shows the conserved Asn and Tyr and the water network critical for acetyl-lysine Fragment screening against BET subfamily (cyan) binding. Below right: compound 1 (green) with BRD4 surface bromodomains showing the location of the WPF shelf and ZA channel (PDB: 4c66). The BET proteins, each containing two bromodomains (BD1 and The ZA and BC loops that flank the conserved KAc-site have the BD2), are highly tractable to a wide range of hit-finding 15 greatest sequence variation between bromodomain family 70 approaches, from cellular reporter assays to virtual members. These regions are responsible for the selective binding- screening.6,24,25 This, together with the well-validated biology of partner recognition necessary for correct cellular function. The BET bromodomain inhibitors, has made them popular systems best studied and understood selectivity regions are those of the for fragment screening experiments. 2 | Journal Name , [year], [vol] , 00–00 This journal is © The Royal Society of Chemistry [year] Page 3 of 18 MedChemComm 15 originating from BET family bromodomain screens, several of these fragments illustrate the ability of fragments to bind to the KAc-site of more than one bromodomain. The indolizine ( 5) is a micromolar-affinity BET fragment, which uses its ketone group as an acetyl-lysine mimetic, and which was also optimised 20 against the BAZ2A/B bromodomains (see the BAZ2A/B section below). The BRD2 BD1-bound crystal structure of 5 prompted the crystallographic screening of acetaminophen ( 9), which although too weak to detect in the binding assays was found to bind to the acetyl-lysine site of BRD2 BD1 in the same
Recommended publications
  • Bromodomain Factors of BET Family Are New Essential Actors Of
    Bromodomain factors of BET family are new essential actors of pericentric heterochromatin transcriptional activation in response to heat shock Edwige Col, Neda Hoghoughi, Solenne Dufour, Jessica Penin, Sivan Koskas, Virginie Faure, Maria Ouzounova, Hector Hernandez-Vargash, Nicolas Reynoird, Sylvain Daujat, et al. To cite this version: Edwige Col, Neda Hoghoughi, Solenne Dufour, Jessica Penin, Sivan Koskas, et al.. Bromodomain factors of BET family are new essential actors of pericentric heterochromatin transcriptional acti- vation in response to heat shock. Scientific Reports, Nature Publishing Group, 2017, 7, pp.5418. 10.1038/s41598-017-05343-8. hal-02989794 HAL Id: hal-02989794 https://hal.archives-ouvertes.fr/hal-02989794 Submitted on 5 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. www.nature.com/scientificreports OPEN Bromodomain factors of BET family are new essential actors of pericentric heterochromatin Received: 5 August 2016 Accepted: 30 May 2017 transcriptional activation in Published: xx xx xxxx response to heat shock Edwige Col1, Neda Hoghoughi1, Solenne Dufour1, Jessica Penin1, Sivan Koskas1, Virginie Faure1, Maria Ouzounova2, Hector Hernandez-Vargash2, Nicolas Reynoird1, Sylvain Daujat4, Eric Folco1, Marc Vigneron3, Robert Schneider4,5, André Verdel1, Saadi Khochbin1, Zdenko Herceg2, Cécile Caron1 & Claire Vourc’h1 The heat shock response is characterized by the transcriptional activation of both hsp genes and noncoding and repeated satellite III DNA sequences located at pericentric heterochromatin.
    [Show full text]
  • Functional Roles of Bromodomain Proteins in Cancer
    cancers Review Functional Roles of Bromodomain Proteins in Cancer Samuel P. Boyson 1,2, Cong Gao 3, Kathleen Quinn 2,3, Joseph Boyd 3, Hana Paculova 3 , Seth Frietze 3,4,* and Karen C. Glass 1,2,4,* 1 Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; [email protected] 2 Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; [email protected] 3 Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; [email protected] (C.G.); [email protected] (J.B.); [email protected] (H.P.) 4 University of Vermont Cancer Center, Burlington, VT 05405, USA * Correspondence: [email protected] (S.F.); [email protected] (K.C.G.) Simple Summary: This review provides an in depth analysis of the role of bromodomain-containing proteins in cancer development. As readers of acetylated lysine on nucleosomal histones, bromod- omain proteins are poised to activate gene expression, and often promote cancer progression. We examined changes in gene expression patterns that are observed in bromodomain-containing proteins and associated with specific cancer types. We also mapped the protein–protein interaction network for the human bromodomain-containing proteins, discuss the cellular roles of these epigenetic regu- lators as part of nine different functional groups, and identify bromodomain-specific mechanisms in cancer development. Lastly, we summarize emerging strategies to target bromodomain proteins in cancer therapy, including those that may be essential for overcoming resistance. Overall, this review provides a timely discussion of the different mechanisms of bromodomain-containing pro- Citation: Boyson, S.P.; Gao, C.; teins in cancer, and an updated assessment of their utility as a therapeutic target for a variety of Quinn, K.; Boyd, J.; Paculova, H.; cancer subtypes.
    [Show full text]
  • Histone-Binding of DPF2 Mediates Its Repressive Role in Myeloid Differentiation
    Histone-binding of DPF2 mediates its repressive role in myeloid differentiation Ferdinand M. Hubera,1, Sarah M. Greenblattb,1, Andrew M. Davenporta,1, Concepcion Martinezb,YeXub,LyP.Vuc, Stephen D. Nimerb,2, and André Hoelza,2 aDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; bSylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136; and cMolecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Edited by Douglas C. Rees, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, and approved April 26, 2017 (received for review January 6, 2017) Double plant homeodomain finger 2 (DPF2) is a highly evolution- RUNX1 form a methylation-dependent repressive complex in arily conserved member of the d4 protein family that is ubiqui- AML, although it remains unclear whether the two proteins bind tously expressed in human tissues and was recently shown to each other directly or act concertedly as part of a larger complex. inhibit the myeloid differentiation of hematopoietic stem/progen- Here, we present the crystal structure of the human DPF2 itor and acute myelogenous leukemia cells. Here, we present the tandem PHD finger domain at a 1.6-Å resolution. We demon- crystal structure of the tandem plant homeodomain finger domain strate that the DPF2 tandem PHD finger domain binds acetylated of human DPF2 at 1.6-Å resolution. We show that DPF2 interacts H3 and H4 histone tails, identify the primary determinants of with the acetylated tails of both histones 3 and 4 via bipartite histone recognition, and confirm these interactions in vivo.
    [Show full text]
  • Function of Bromodomain and Extra-Terminal Motif Proteins (Bets) in Gata1-Mediated Transcription
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2015 Function of Bromodomain and Extra-Terminal Motif Proteins (bets) in Gata1-Mediated Transcription Aaron James Stonestrom University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Molecular Biology Commons, and the Pharmacology Commons Recommended Citation Stonestrom, Aaron James, "Function of Bromodomain and Extra-Terminal Motif Proteins (bets) in Gata1-Mediated Transcription" (2015). Publicly Accessible Penn Dissertations. 1148. https://repository.upenn.edu/edissertations/1148 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1148 For more information, please contact [email protected]. Function of Bromodomain and Extra-Terminal Motif Proteins (bets) in Gata1-Mediated Transcription Abstract Bromodomain and Extra-Terminal motif proteins (BETs) associate with acetylated histones and transcription factors. While pharmacologic inhibition of this ubiquitous protein family is an emerging therapeutic approach for neoplastic and inflammatory disease, the mechanisms through which BETs act remain largely uncharacterized. Here we explore the role of BETs in the physiologically relevant context of erythropoiesis driven by the transcription factor GATA1. First, we characterize functions of the BET family as a whole using a pharmacologic approach. We find that BETs are broadly required for GATA1-mediated transcriptional activation, but that repression is largely BET-independent. BETs support activation by facilitating both GATA1 occupancy and transcription downstream of its binding. Second, we test the specific olesr of BETs BRD2, BRD3, and BRD4 in GATA1-activated transcription. BRD2 and BRD4 are required for efficient anscriptionaltr activation by GATA1. Despite co-localizing with the great majority of GATA1 binding sites, we find that BRD3 is not equirr ed for GATA1-mediated transcriptional activation.
    [Show full text]
  • Download Product Insert (PDF)
    PRODUCT INFORMATION BRD3 bromodomains 1 and 2 (human, recombinant) Item No. 14864 Overview and Properties Synonyms: Bromodomain containing protein 3, ORFX, RING3L, RING3-like protein Source: Recombinant N-terminal GST-tagged protein expressed in E. coli Amino Acids: 2-434 Uniprot No.: Q15059 Molecular Weight: 75.0 kDa Storage: -80°C (as supplied) Stability: ≥2 years Purity: batch specific (≥85% estimated by SDS-PAGE) Supplied in: 50 mM Tris, pH 8.0, with 150 mM sodium chloride and 20% glycerol Protein Concentration: batch specific mg/ml Activity: batch specific U/ml Specific Activity: batch specific U/mg Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Image 1 2 3 4 · · · · · · ·250 kDa · · · · · · ·150 kDa · · · · · · ·100 kDa · · · · · · ·75 kDa · · · · · · ·50 kDa · · · · · · ·37 kDa · · · · · · ·25 kDa · · · · · · ·20 kDa · · · · · · ·15 kDa Lane 1: BRD3 (4 µg) Lane 2: BRD3 (6 µg) Lane 3: BRD3 (8 µg) Lane 4: MW Markers WARNING CAYMAN CHEMICAL THIS PRODUCT IS FOR RESEARCH ONLY - NOT FOR HUMAN OR VETERINARY DIAGNOSTIC OR THERAPEUTIC USE. 1180 EAST ELLSWORTH RD SAFETY DATA ANN ARBOR, MI 48108 · USA This material should be considered hazardous until further information becomes available. Do not ingest, inhale, get in eyes, on skin, or on clothing. Wash thoroughly after handling. Before use, the user must review the complete Safety Data Sheet, which has been sent via email to your institution. PHONE: [800] 364-9897 WARRANTY AND LIMITATION OF REMEDY [734] 971-3335 Buyer agrees to purchase the material subject to Cayman’s Terms and Conditions. Complete Terms and Conditions including Warranty and Limitation of Liability information can be found on our website.
    [Show full text]
  • Discovery of a Hidden Transient State in All Bromodomain Families
    Discovery of a hidden transient state in all bromodomain families Lluís Raicha, Katharina Meierb, Judith Güntherc, Clara D. Christc, Frank Noéa,d,1, and Simon Olssona,1,2 aDepartment of Mathematics and Computer Science, Freie Universität Berlin, 14195 Berlin, Germany; bComputational Molecular Design, Pharmaceuticals, R&D, Bayer AG, 42096 Wuppertal, Germany; cComputational Molecular Design, Pharmaceuticals, R&D, Bayer AG, 13342 Berlin, Germany; and dDepartment of Chemistry, Rice University, Houston, TX 77005 Edited by David Baker, University of Washington, Seattle, WA, and approved December 1, 2020 (received for review August 17, 2020) Bromodomains (BDs) are small protein modules that interact with comprised by a four-helix bundle (αZ, αA, αB,andαC) with two acetylated marks in histones. These posttranslational modifica- principal loops that connect them (ZA- and BC-loops), con- tions are pivotal to regulate gene expression, making BDs prom- forming a hydrophobic pocket that is suited for acetyl-lysine ising targets to treat several diseases. While the general structure binding (Fig. 1) (24). The BC-loop contains a well-conserved hy- of BDs is well known, their dynamical features and their interplay drogen bond donor or “reader”—usually an asparagine—that is with other macromolecules are poorly understood, hampering the key for recognition. The ZA-loop is the longest loop and the one rational design of potent and selective inhibitors. Here, we com- that displays more variability in terms of sequence and structure, bine extensive molecular dynamics simulations, Markov state presenting short helices, turns, and even hairpin insertions in BD modeling, and available structural data to reveal a transiently family VIII (Fig.
    [Show full text]
  • Acetyltransferase Machinery Conserved in P300/CBP-Family Proteins
    Oncogene (2002) 21, 2253 ± 2260 ã 2002 Nature Publishing Group All rights reserved 0950 ± 9232/02 $25.00 www.nature.com/onc SHORT REPORT Acetyltransferase machinery conserved in p300/CBP-family proteins L Wuchao Yuan1 and Antonio Giordano*,2 1Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts, MA 02118, USA; 2Department of Pathology, Anatomy and Cell Biology, Jeerson Medical College, Philadelphia, Pennsylvania, PA 19107, USA CREB-binding protein (CBP) and p300 are highly supports this proposal. Later, this protein family was conserved and functionally related transcription coacti- expanded after the discovery of Drosophila CBP (dCBP), vators and histone/protein acetyltransferases. They are which was also able to bind to E1A and coactivate tumor suppressors, participate in a wide variety of CREB-dependent transactivation (Akimaru et al., physiological events, and serve as integrators among 1997a). Recently, p300/CBP-like proteins of the plant dierent signal transduction pathways. In this study, 11 Arabidopsis thaliana have been reported (Bordoli et al., distinct proteins that have a high degree of homology 2001), suggesting that they are possible members of the with the amino acid sequence of p300 have been p300/CBP family. It is interesting to know how large the identi®ed in current protein databases. All of these 11 p300/CBP protein family could be and how this family of proteins belong to either animal or plant multicellular proteins is conserved evolutionarily. organisms (higher eucaryotes). Conservation of p300/ Taking advantage of recent progress in genomic CBP domains among these proteins was examined sequencing of dierent organisms, we performed a blast further by sequence alignment and pattern search.
    [Show full text]
  • The Role of Bromodomain Proteins in Regulating Gene Expression
    Genes 2012, 3, 320-343; doi:10.3390/genes3020320 OPEN ACCESS genes ISSN 2073-4425 www.mdpi.com/journal/genes Review The Role of Bromodomain Proteins in Regulating Gene Expression Gabrielle A. Josling, Shamista A. Selvarajah, Michaela Petter and Michael F. Duffy * Department of Medicine, The Royal Melbourne Hospital, The University of Melbourne, Australia; E-Mails: [email protected] (G.A.J.); [email protected] (S.A.S.); [email protected] (M.P.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +61-38344-3262; Fax: +61-39347-1863. Received: 30 April 2012; in revised form: 11 May 2012 / Accepted: 17 May 2012 / Published: 29 May 2012 Abstract: Histone modifications are important in regulating gene expression in eukaryotes. Of the numerous histone modifications which have been identified, acetylation is one of the best characterised and is generally associated with active genes. Histone acetylation can directly affect chromatin structure by neutralising charges on the histone tail, and can also function as a binding site for proteins which can directly or indirectly regulate transcription. Bromodomains specifically bind to acetylated lysine residues on histone tails, and bromodomain proteins play an important role in anchoring the complexes of which they are a part to acetylated chromatin. Bromodomain proteins are involved in a diverse range of functions, such as acetylating histones, remodeling chromatin, and recruiting other factors necessary for transcription. These proteins thus play a critical role in the regulation of transcription. Keywords: bromodomain; histone acetylation; histone modifications; histone code; epigenetics 1. Introduction The post-translational modification of histones plays an important role in regulating gene expression in eukaryotes.
    [Show full text]
  • BRD2-2 (His) (Bromodomain Containing Protein 2 (RING3), Bromodomain 2)
    BRD2-2 (His) (Bromodomain containing protein 2 (RING3), bromodomain 2) CATALOG NO.: RD-11-145 LOT NO.: DESCRIPTION: Human recombinant BRD2, bromodomain-2 (residues 344-454; Genbank Accession # NM_005104; MW = 15.7 kDa) expressed in E. coli with an N-terminal His-tag. BRD2, like other human members of the BET family of chromatin-binding proteins (BRD3, BRD4, BRDT), comprises two bromodomains (see reviews 1,2 ), protein modules that bind ε-N-acetyllysine residues 3,4 . When overexpressed in 293 cells, BRD2, along with BRD3, binds the hyperacetylated chromatin of transcribed genes, regions enriched in acetylated histone H4 lysine-5 (H4K5Ac), H4K12Ac, H3K14Ac, but deficient in H4K16Ac and H3K9me 5. A single H4K5AcK12Ac peptide can bind two copies of BRD2-2 (BRD2, bromodomain 2), each interacting with one of the two acetylated lysines 6. In an in vitro RNA polymerase II transcription system, binding of either BRD2 or BRD3 to a chromatin template assembled with hyperacetylated histones enabled transcription through the nucleosomes 5. Further, BRD2 displayed histone chaperone activity, catalyzing the transfer of histone octamers from hyperacetylated oligonucleosomes to a labeled 190 bp 5s rDNA fragment 5. Like BRD4, BRD2 is a ubiquitously expressed 7 transcriptional regulator 8 and atypical protein kinase 9, with functions in cell cycle progression 8 and embryogenesis 10,11 . BRD2 binds preferentially to hyperacetylated histone H4 in H2A.Z-containing nucleosomes and this interaction is required for activation of androgen receptor (AR)-regulated genes in prostate cancer cells 12 . In addition to prostate cancer, leukemia is a potential indication for specific BRD2 inhibition9,13 . BRD2 suppresses HIV transcription in latently infected cells and may therefore represent a target in therapeutic strategies involving viral reactivation 14 .
    [Show full text]
  • Do Protein Motifs Read the Histone Code? Xavier De La Cruz,2,3 Sergio Lois,3 Sara Sa´ Nchez-Molina,1,3 and Marian A
    Review articles Do protein motifs read the histone code? Xavier de la Cruz,2,3 Sergio Lois,3 Sara Sa´ nchez-Molina,1,3 and Marian A. Martı´nez-Balba´ s1,3* Summary the interaction between the SANT domain and histones is The existence of different patterns of chemical modifica- also well documented. Overall, experimental evidence tions (acetylation, methylation, phosphorylation, ubiqui- suggests that these domains could be involved in tination and ADP-ribosylation) of the histone tails led, the recruitment of histone-modifying enzymes to discrete some years ago, to the histone code hypothesis. Accord- chromosomal locations, and/or in the regulation their ing to this hypothesis, these modifications would provide enzymatic activity. Within this context, we review the dis- binding sites for proteins that can change the chromatin tribution of bromodomains, chromodomains and SANT state to either active or repressed. Interestingly, some domains among chromatin-modifying enzymes and dis- protein domains present in histone-modifying enzymes cuss how they can contribute to the translation of the are known to interact with these covalent marks in the histone code. BioEssays 27:164–175, 2005. histone tails. This was first shown for the bromodomain, ß 2005 Wiley Periodicals, Inc. which was found to interact selectively with acetylated lysines at the histone tails. More recently, it has been The histone code hypothesis described that the chromodomain can be targeted to The packing of the eukaryotic genome into chromatin provides methylation marks in histone N-terminal domains. Finally, the means for compaction of the entire genome inside the nucleus. However, this packing restricts the access to DNA of the many regulatory proteins essential for biological pro- 1 Instituto de Biologı´a Molecular de Barcelona.
    [Show full text]
  • CBP30, a Selective CBP/P300 Bromodomain Inhibitor, Suppresses Human Th17 Responses
    CBP30, a selective CBP/p300 bromodomain inhibitor, suppresses human Th17 responses Ariane Hammitzscha, Cynthia Tallantb,c, Oleg Fedorovb,c, Alison O’Mahonyd, Paul E. Brennanb,c, Duncan A. Hayb,1, Fernando O. Martineza, M. Hussein Al-Mossawia, Jelle de Wita, Matteo Vecellioa, Christopher Wellsb,2, Paul Wordswortha, Susanne Müllerb,c, Stefan Knappb,c,e,3, and Paul Bownessa,3 aBotnar Research Institute, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford, Oxford OX3 7LD, United Kingdom; bStructural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7DQ, United Kingdom; cTarget Discovery Institute, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom; dBioSeek Division of DiscoveRx Corporation, South San Francisco, CA 94080; and eInstitute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, 60438 Frankfurt am Main, Germany Edited by Saadi Khochbin, Université Joseph Fourier, INSERM U823, Grenoble, France, and accepted by the Editorial Board July 13, 2015 (received for review January 29, 2015) Th17 responses are critical to a variety of human autoimmune BET bromodomain inhibitors exhibit antiinflammatory activity by diseases, and therapeutic targeting with monoclonal antibodies inhibiting expression of inflammatory genes (11). The pan-BET in- against IL-17 and IL-23 has shown considerable promise. Here, we hibitor JQ1 ameliorated collagen-induced arthritis and experimental report data to support
    [Show full text]
  • Structural Basis of Molecular Recognition of Helical Histone H3 Tail by PHD Finger Domains
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Biochemical Journal (2017) 474 1633–1651 DOI: 10.1042/BCJ20161053 Research Article Structural basis of molecular recognition of helical histone H3 tail by PHD finger domains Alessio Bortoluzzi*, Anastasia Amato*, Xavier Lucas, Manuel Blank and Alessio Ciulli Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, James Black Centre, Dow Street, Dundee DD1 5EH, U.K. Correspondence: Alessio Ciulli ([email protected]) The plant homeodomain (PHD) fingers are among the largest family of epigenetic domains, first characterized as readers of methylated H3K4. Readout of histone post- translational modifications by PHDs has been the subject of intense investigation; however, less is known about the recognition of secondary structure features within the histone tail itself. We solved the crystal structure of the PHD finger of the bromodomain adjacent to zinc finger 2A [BAZ2A, also known as TIP5 (TTF-I/interacting protein 5)] in complex with unmodified N-terminal histone H3 tail. The peptide is bound in a helical folded-back conformation after K4, induced by an acidic patch on the protein surface that prevents peptide binding in an extended conformation. Structural bioinformatics ana- lyses identify a conserved Asp/Glu residue that we name ‘acidic wall’, found to be mutu- ally exclusive with the conserved Trp for K4Me recognition. Neutralization or inversion of the charges at the acidic wall patch in BAZ2A, and homologous BAZ2B, weakened H3 binding. We identify simple mutations on H3 that strikingly enhance or reduce binding, as a result of their stabilization or destabilization of H3 helicity.
    [Show full text]