Suppressing Neuroinflammation Using Nf-Κb Inhibitors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CCL19-Igg Prevents Allograft Rejection by Impairment of Immune Cell Trafficking
CCL19-IgG Prevents Allograft Rejection by Impairment of Immune Cell Trafficking Ekkehard Ziegler,* Faikah Gueler,† Song Rong,† Michael Mengel,‡ Oliver Witzke,§ Andreas Kribben,§ Hermann Haller,† Ulrich Kunzendorf,* and Stefan Krautwald* *Department of Nephrology and Hypertension, University of Kiel, Kiel, †Department of Internal Medicine and ‡Institute for Pathology, Hannover Medical School, Hannover, and §Department of Nephrology, School of Medicine, University of Duisburg-Essen, Essen, Germany An adaptive immune response is initiated in the T cell area of secondary lymphoid organs, where antigen-presenting dendritic cells may induce proliferation and differentiation in co-localized T cells after T cell receptor engagement. The chemokines CCL19 and CCL21 and their receptor CCR7 are essential in establishing dendritic cell and T cell recruitment and co- localization within this unique microenvironment. It is shown that systemic application of a fusion protein that consists of CCL19 fused to the Fc part of human IgG1 induces effects similar to the phenotype of CCR7؊/؊ animals, like disturbed accumulation of T cells and dendritic cells in secondary lymphoid organs. CCL19-IgG further inhibited their co-localization, which resulted in a marked inhibition of antigen-specific T cell proliferation. The immunosuppressive potency of CCL19-IgG was tested in vivo using murine models for TH1-mediated immune responses (delayed-type hypersensitivity) and for transplantation of different solid organs. In allogeneic kidney transplantation as well as heterotopic allogeneic heart transplantation in different strain combinations, allograft rejection was reduced and organ survival was significantly prolonged by treatment with CCL19-IgG compared with controls. This shows that in contrast to only limited prolongation of graft survival in CCR7 knockout models, the therapeutic application of a CCR7 ligand in a wild-type environment provides a benefit in terms of immunosuppression. -
Gene Expression Polarization
Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression This information is current as of September 27, 2021. Fernando O. Martinez, Siamon Gordon, Massimo Locati and Alberto Mantovani J Immunol 2006; 177:7303-7311; ; doi: 10.4049/jimmunol.177.10.7303 http://www.jimmunol.org/content/177/10/7303 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2006/11/03/177.10.7303.DC1 Material http://www.jimmunol.org/ References This article cites 61 articles, 22 of which you can access for free at: http://www.jimmunol.org/content/177/10/7303.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 27, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2006 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Transcriptional Profiling of the Human Monocyte-to-Macrophage Differentiation and Polarization: New Molecules and Patterns of Gene Expression1 Fernando O. -
Cellular and Plasma Proteomic Determinants of COVID-19 and Non-COVID-19 Pulmonary Diseases Relative to Healthy Aging
RESOURCE https://doi.org/10.1038/s43587-021-00067-x Cellular and plasma proteomic determinants of COVID-19 and non-COVID-19 pulmonary diseases relative to healthy aging Laura Arthur1,8, Ekaterina Esaulova 1,8, Denis A. Mogilenko 1, Petr Tsurinov1,2, Samantha Burdess1, Anwesha Laha1, Rachel Presti 3, Brian Goetz4, Mark A. Watson1, Charles W. Goss5, Christina A. Gurnett6, Philip A. Mudd 7, Courtney Beers4, Jane A. O’Halloran3 and Maxim N. Artyomov1 ✉ We examine the cellular and soluble determinants of coronavirus disease 2019 (COVID-19) relative to aging by performing mass cytometry in parallel with clinical blood testing and plasma proteomic profiling of ~4,700 proteins from 71 individuals with pul- monary disease and 148 healthy donors (25–80 years old). Distinct cell populations were associated with age (GZMK+CD8+ T cells and CD25low CD4+ T cells) and with COVID-19 (TBET−EOMES− CD4+ T cells, HLA-DR+CD38+ CD8+ T cells and CD27+CD38+ B cells). A unique population of TBET+EOMES+ CD4+ T cells was associated with individuals with COVID-19 who experienced moderate, rather than severe or lethal, disease. Disease severity correlated with blood creatinine and urea nitrogen levels. Proteomics revealed a major impact of age on the disease-associated plasma signatures and highlighted the divergent contri- bution of hepatocyte and muscle secretomes to COVID-19 plasma proteins. Aging plasma was enriched in matrisome proteins and heart/aorta smooth muscle cell-specific proteins. These findings reveal age-specific and disease-specific changes associ- ated with COVID-19, and potential soluble mediators of the physiological impact of COVID-19. -
Anti-OX40 Antibody Directly Enhances the Function of Tumor-Reactive CD8+ T Cells
Author Manuscript Published OnlineFirst on August 1, 2019; DOI: 10.1158/1078-0432.CCR-19-1259 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Anti-OX40 antibody directly enhances the function of tumor-reactive CD8+ T cells and synergizes with PI3Kβ inhibition in PTEN loss melanoma Weiyi Peng1,5*, Leila J. Williams1, Chunyu Xu1,5, Brenda Melendez1, Jodi A. McKenzie1,6, Yuan Chen1, Heather Jackson2, Kui S. Voo3, Rina M. Mbofung1,7,, Sara E. Leahey1, Jian Wang4, Greg Lizee1, Hussein A. Tawbi1, Michael A. Davies1, Axel Hoos2, James Smothers2, Roopa Srinivasan2, Elaine Paul2, Niranjan Yanamandra2* and Patrick Hwu1* 1Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX. 2Oncology R&D, Immuno-Oncology and Combinations RU, GlaxoSmithKline, 1250 S. Collegeville Rd, Collegeville, PA 19426, United States 3Oncology Research for Biologics and Immunotherapy Translation Platform, The University of Texas MD Anderson Cancer Center, Houston, TX. 4Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX. 5Present address: Department of Biology and Biochemistry, University of Houston, Houston, TX. 6Present address: Eisai Inc., Woodcliff Lake, NJ. 7Present address: Merck Research Laboratories, Palo Alto, CA. Running Title: OX40 agonist-based cancer immunotherapy Keywords: OX40, PI3K, cancer immunotherapy Downloaded from clincancerres.aacrjournals.org on September 25, 2021. © 2019 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 1, 2019; DOI: 10.1158/1078-0432.CCR-19-1259 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 2 *Corresponding Authors: Patrick Hwu, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030. -
T Cell Binding to Activated Dendritic Cells Cutting Edge
Cutting Edge: CCR4 Mediates Antigen-Primed T Cell Binding to Activated Dendritic Cells Meng-tse Wu, Hui Fang and Sam T. Hwang This information is current as J Immunol 2001; 167:4791-4795; ; of September 27, 2021. doi: 10.4049/jimmunol.167.9.4791 http://www.jimmunol.org/content/167/9/4791 Supplementary http://www.jimmunol.org/content/suppl/2001/10/11/167.9.4791.DC1 Downloaded from Material References This article cites 32 articles, 13 of which you can access for free at: http://www.jimmunol.org/content/167/9/4791.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2001 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. ● Cutting Edge: CCR4 Mediates Antigen-Primed T Cell Binding to Activated Dendritic Cells Meng-tse Wu, Hui Fang, and Sam T. Hwang1 DC. In the periphery, activated, Ag-bearing DC may bind to cog- The binding of a T cell to an Ag-laden dendritic cell (DC) is a nate effector memory T cells (mTC). -
Cells Effects on the Activation and Apoptosis of T Induces Opposing
Fibronectin-Associated Fas Ligand Rapidly Induces Opposing and Time-Dependent Effects on the Activation and Apoptosis of T Cells This information is current as of September 28, 2021. Alexandra Zanin-Zhorov, Rami Hershkoviz, Iris Hecht, Liora Cahalon and Ofer Lider J Immunol 2003; 171:5882-5889; ; doi: 10.4049/jimmunol.171.11.5882 http://www.jimmunol.org/content/171/11/5882 Downloaded from References This article cites 40 articles, 17 of which you can access for free at: http://www.jimmunol.org/content/171/11/5882.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 28, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2003 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Fibronectin-Associated Fas Ligand Rapidly Induces Opposing and Time-Dependent Effects on the Activation and Apoptosis of T Cells1 Alexandra Zanin-Zhorov, Rami Hershkoviz, Iris Hecht, Liora Cahalon, and Ofer Lider2 Recently, it has been shown that Fas ligand (FasL) interacts with the extracellular matrix (ECM) protein fibronectin (FN), and that the bound FasL retains its cytotoxic efficacy. -
Complementary DNA Microarray Analysis of Chemokines and Their Receptors in Allergic Rhinitis RX Zhang,1 SQ Yu,2 JZ Jiang,3 GJ Liu3
RX Zhang, et al ORIGINAL ARTICLE Complementary DNA Microarray Analysis of Chemokines and Their Receptors in Allergic Rhinitis RX Zhang,1 SQ Yu,2 JZ Jiang,3 GJ Liu3 1 Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China 2 Department of Otolaryngology , Jinan General Hospital of PLA, Shandong, China 3 Department of Otolaryngology, Changhai Hospital, Second Military Medical University, Shanghai, China ■ Abstract Objective: To analyze the roles of chemokines and their receptors in the pathogenesis of allergic rhinitis by observing the complementary DNA (cDNA) expression of the chemokines and their receptors in the nasal mucosa of patients with and without allergic rhinitis, using gene chips. Methods: The total RNAs were isolated from the nasal mucosa of 20 allergic rhinitis patients and purifi ed to messenger RNAs, and then reversely transcribed to cDNAs and incorporated with samples of fl uorescence-labeled with Cy5-dUPT (rhinitis patient samples) or Cy3- dUTP (control samples of nonallergic nasal mucosa). Thirty-nine cDNAs of chemokines and their receptors were latticed into expression profi le chips, which were hybridized with probes and then scanned with the computer to study gene expression according to the different fl uorescence intensities. Results: The cDNAs of the following chemokines were upregulated: CCL1, CCL2, CCL5, CCL7, CCL8, CCL11, CCL13, CCL14, CCL17, CCL18, CCL19, CCL24, and CX3CL1 in most of the allergic rhinitis sample chips. CCR2, CCR3, CCR4, CCR5, CCR8 and CX3CR1 were the highly expressed receptor genes. Low expression of CXCL4 was found in these tissues. Conclusion: The T helper cell (TH) immune system is not well regulated in allergic rhinitis. -
Regulation of CCR7-Dependent Cell Migration Through CCR7 Homodimer Formation
www.nature.com/scientificreports OPEN Regulation of CCR7-dependent cell migration through CCR7 homodimer formation Received: 6 September 2016 Daichi Kobayashi 1,2,6,7, Masataka Endo2, Hirotaka Ochi2, Hironobu Hojo3, Accepted: 24 July 2017 Masayuki Miyasaka4,5,6 & Haruko Hayasaka2 Published: xx xx xxxx The chemokine receptor CCR7 contributes to various physiological and pathological processes including T cell maturation, T cell migration from the blood into secondary lymphoid tissues, and tumor cell metastasis to lymph nodes. Although a previous study suggested that the efcacy of CCR7 ligand-dependent T cell migration correlates with CCR7 homo- and heterodimer formation, the exact extent of contribution of the CCR7 dimerization remains unclear. Here, by inducing or disrupting CCR7 dimers, we demonstrated a direct contribution of CCR7 homodimerization to CCR7-dependent cell migration and signaling. Induction of stable CCR7 homodimerization resulted in enhanced CCR7- dependent cell migration and CCL19 binding, whereas induction of CXCR4/CCR7 heterodimerization did not. In contrast, dissociation of CCR7 homodimerization by a novel CCR7-derived synthetic peptide attenuated CCR7-dependent cell migration, ligand-dependent CCR7 internalization, ligand-induced actin rearrangement, and Akt and Erk signaling in CCR7-expressing cells. Our study indicates that CCR7 homodimerization critically regulates CCR7 ligand-dependent cell migration and intracellular signaling in multiple cell types. Recruitment of lymphocytes from the blood into secondary lymphoid tissues is a process contributing to con- tinuous immune surveillance. Tis process is tightly regulated by the interaction between lymphoid chemokines expressed in lymphoid tissues and their specifc G-protein-coupled receptors in migrating cells1, 2. CCR7 is one of the major chemokine receptors preferentially expressed in a wide range of immune cells, including naïve T and B cells, central memory T cells, mature dendritic cells3, and plasmacytoid dendritic cells4, 5. -
Following Ligation of CCL19 but Not CCL21 Arrestin 3 Mediates
Arrestin 3 Mediates Endocytosis of CCR7 following Ligation of CCL19 but Not CCL21 Melissa A. Byers, Psachal A. Calloway, Laurie Shannon, Heather D. Cunningham, Sarah Smith, Fang Li, Brian C. This information is current as Fassold and Charlotte M. Vines of September 25, 2021. J Immunol 2008; 181:4723-4732; ; doi: 10.4049/jimmunol.181.7.4723 http://www.jimmunol.org/content/181/7/4723 Downloaded from References This article cites 82 articles, 45 of which you can access for free at: http://www.jimmunol.org/content/181/7/4723.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 25, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2008 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Arrestin 3 Mediates Endocytosis of CCR7 following Ligation of CCL19 but Not CCL211 Melissa A. Byers,* Psachal A. Calloway,* Laurie Shannon,* Heather D. Cunningham,* Sarah Smith,* Fang Li,† Brian C. -
Anti-CCL13 / MCP4 Antibody (Biotin) (ARG65993)
Product datasheet [email protected] ARG65993 Package: 50 μg anti-CCL13 / MCP4 antibody (Biotin) Store at: 4°C Summary Product Description Biotin-conjugated Goat Polyclonal antibody recognizes CCL13 / MCP4 Tested Reactivity Hu Tested Application ELISA, WB Host Goat Clonality Polyclonal Isotype IgG Target Name CCL13 / MCP4 Antigen Species Human Immunogen E. coli derived recombinant Human CCL13 / MCP4. (QPDALNVPST CCFTFSSKKI SLQRLKSYVI TTSRCPQKAV IFRTKLGKEI CADPKEKWVQ NYMKHLGRKA HTLKT) Conjugation Biotin Alternate Names SCYA13; C-C motif chemokine 13; Monocyte chemotactic protein 4; Small-inducible cytokine A13; CKb10; SCYL1; Monocyte chemoattractant protein 4; MCP-4; NCC-1; NCC1; CK-beta-10 Application Instructions Application table Application Dilution ELISA Direct: 0.25 - 1.0 µg/ml Sandwich: 0.25 - 1.0 µg/ml with ARG65992 as a capture antibody WB 0.1 - 0.2 µg/ml Application Note * The dilutions indicate recommended starting dilutions and the optimal dilutions or concentrations should be determined by the scientist. Calculated Mw 11 kDa Properties Form Liquid Purification Purified by affinity chromatography. Buffer PBS (pH 7.2) Concentration 1 mg/ml Storage instruction Aliquot and store in the dark at 2-8°C. Keep protected from prolonged exposure to light. Avoid repeated freeze/thaw cycles. Suggest spin the vial prior to opening. The antibody solution should be gently mixed before use. Note For laboratory research only, not for drug, diagnostic or other use. www.arigobio.com 1/2 Bioinformation Database links GeneID: 6357 Human Swiss-port # Q99616 Human Gene Symbol CCL13 Gene Full Name chemokine (C-C motif) ligand 13 Background This antimicrobial gene is one of several Cys-Cys (CC) cytokine genes clustered on the q-arm of chromosome 17. -
Atypical Chemokine Receptors and Their Roles in the Resolution of the Inflammatory Response
REVIEW published: 10 June 2016 doi: 10.3389/fimmu.2016.00224 Atypical Chemokine Receptors and Their Roles in the Resolution of the inflammatory Response Raffaella Bonecchi1,2 and Gerard J. Graham3* 1 Humanitas Clinical and Research Center, Rozzano, Italy, 2 Department of Biomedical Sciences, Humanitas University, Rozzano, Italy, 3 Chemokine Research Group, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK Chemokines and their receptors are key mediators of the inflammatory process regulating leukocyte extravasation and directional migration into inflamed and infected tissues. The control of chemokine availability within inflamed tissues is necessary to attain a resolving environment and when this fails chronic inflammation ensues. Accordingly, vertebrates have adopted a number of mechanisms for removing chemokines from inflamed sites to help precipitate resolution. Over the past 15 years, it has become apparent that essential players in this process are the members of the atypical chemokine receptor (ACKR) family. Broadly speaking, this family is expressed on stromal cell types and scavenges Edited by: Mariagrazia Uguccioni, chemokines to either limit their spatial availability or to remove them from in vivo sites. Institute for Research in Biomedicine, Here, we provide a brief review of these ACKRs and discuss their involvement in the Switzerland resolution of inflammatory responses and the therapeutic implications of our current Reviewed by: knowledge. Mette M. M. Rosenkilde, University of Copenhagen, Keywords: chemokines, immunity, inflammation, scavenging, atypical receptors Denmark Mario Mellado, Spanish National Research Council, Spain INTRODUCTION *Correspondence: Gerard J. Graham An effective inflammatory response requires carefully regulated initiation, maintenance, and [email protected] resolution phases (1). -
Mechanism of Macrophage-Derived Chemokine/CCL22 Production by Hacat Keratinocytes
C Yano, et al Ann Dermatol Vol. 27, No. 2, 2015 http://dx.doi.org/10.5021/ad.2015.27.2.152 ORIGINAL ARTICLE Mechanism of Macrophage-Derived Chemokine/CCL22 Production by HaCaT Keratinocytes Chizuko Yano, Hidehisa Saeki1, Mayumi Komine2, Shinji Kagami3, Yuichiro Tsunemi4, Mamitaro Ohtsuki2, Hidemi Nakagawa Department of Dermatology, The Jikei University School of Medicine, 1Department of Dermatology, Nippon Medical School, Tokyo, 2Department of Dermatology, Jichi Medical University, Shimotsuke, 3Department of Dermatology, Kanto Central Hospital, 4Department of Dermatology, Tokyo Women’s Medical University, Tokyo, Japan Background: CC chemokine ligand 17 (CCL17) and CCL22 27(2) 152∼156, 2015) are the functional ligands for CCR4. We previously reported that inhibitors of nuclear factor-kappa B and p38 mi- -Keywords- togen-activated protein kinase (p38 MAPK), but not of ex- Chemokine CCL22, Chemokine CCL17, Epidermal growth tracellular signal-related kinase (ERK), inhibited tumor ne- factor receptor, HaCaT keratinocytes crosis factor (TNF)-α- and interferon (IFN)-γ-induced pro- duction of CCL17 by the human keratinocyte cell line, HaCaT. Further, an inhibitor of epidermal growth factor re- INTRODUCTION ceptor (EGFR) enhanced the CCL17 production by these keratinocytes. Objective: To identify the mechanism under- The macrophage-derived chemokine (MDC)/CC chemo- lying CCL22 production by HaCaT cells. Methods: We inves- kine ligand 22 (CCL22) is one of the functional ligands for tigated the signal transduction pathways by which TNF-α CC chemokine receptor 4 (CCR4) and is a chemoattractant and IFN-γ stimulate HaCaT cells to produce CCL22 by add- for the CCR4-expressing cells such as Th2 cells. We and ing various inhibitors.