ISSN 1829-488X

ИЗВЕСТИЯ ВЫСОКИХ ТЕХНОЛОГИЙ

BULLETIN OF HIGH TECHNOLOGY

2(2)/2016

ШУШИ - SHUSHI 2016

ИЗВЕСТИЯ ВЫСОКИХ ТЕХНОЛОГИЙ BULLETIN OF HIGH TECHNOLOGY

КООРДИНАЦИОННЫЙ СОВЕТ Аветисян Ваан (д.т.н., РА), Балджян Паргев (д.т.н., РА), Гулян Артак (д.с.н., НКР), Маркосян Ашот (д.э.н., РА), Маркосян Мгер (д.т.н., РА), Минасян Роберт (д.геол.н., РА), Токмаджян Ваче (д.т.н., РА), Токмаджян Оганес (д.т.н., главный редактор, НКР).

COORDINATION BOARD Avetisyan Vahan (Doctor of sciences (engineering), RA), Baljyan Pargev (Doctor of sciences (engineering), RA), Gulyan Artak (Doctor of sciences (agriculture), NKR), Markosyan Ashot (Doctor of sciences (economics), RA), Markosyan Mher (Doctor of sciences (engineering), RA), Minasyan Robert (Doctor of sciences (geology), RA), Tokmajyan Hovhannes (Doctor of sciences (engineering), Chief editor, NKR), Tokmajyan Vache (Doctor of sciences (engineering), RA).

РЕДАКЦИОННЫЙ СОВЕТ Аветисян Ваан (д.т.н., РА), Арутюнян Гамлет (д.т.н., РА), Арутюнян Рузан (ответственный секретарь, НКР) Бескопильный Алексей (д.т.н., РФ), Вартанян Aревшад (д.т.н., РФ), Гавардашвили Гиви (д.т.н., Грузия), Гагошидзе Шалва (д.т.н., Грузия), Гулян Артак (д.с.н., НКР), Дженеворис Ринальдо (д.т.н., Италия), Иванов Константин (д.т.н., РК), Исраелян Рудольф (д.т.н., НКР), Казарян Эдуард (д.ф.-м.н., РА), Козин Игорь (д.ф.-м.н., РК), Маркосян Ашот (д.э.н., РА), Маркосян Мгер (д.т.н., РА), Меликян Вазген (д.т.н., РА), Минасян Роберт (д.геол.н., РА), Обуховец Виктор (д.т.н., РФ), Онучак Людмила (д.х.н., РФ), Петросян Ваге (д.астр., США), Саргсян Гайк (д.э.н., РА), Суварян Арзик (д.э.н., РА), Токмаджян Оганес (д.т.н., главный редактор, НКР), Трчунян Армен, (д.б.н., РА), Уджма Адам (д.т.н., Польша).

EDITORIAL BOARD Avetisyan Vahan (Doctor of sciences (engineering), RA), Bezkapilni Aleksey (Doctor of sciences (engineering), RF),Gagoshidze Shalva (Doctor of sciences (engineering), Georgia), Gavardashvili Givi (Doctor of sciences (engineering), Georgia), Genevois Rinaldo (Doctor of sciences (engineering), Italy), (Ghazaryan Eduard (Doctor of sciences (physics and mathematics), RA), Gulyan Artak (Doctor of sciences (agriculture), NKR), Harutyunyan Hamlet (Doctor of sciences (engineering), RA), Harutyunyan Ruzan (Executive Secretary, NKR), Israelyan Rudolf (Doctor of sciences (engineering), NKR), Ivanov Konstantin (Doctor of sciences (engineering), RK), Kozin Igor ((Doctor of sciences (physics and mathematics), RK), Markosyan Ashot (Doctor of sciences (economics), RA), Markosyan Mher (Doctor of sciences (engineering), RA), Melikyan Vazgen (Doctor of sciences (engineering), RA), Minasyan Robert (Doctor of sciences (geology), RA), Obukhovets Victor (Doctor of sciences (engineering), RF), Onuchak Ludmila (Doctor of sciences (chemistry), RF), Petrosyan Vahe (Doctor of sciences (astronomy), USA), Sargsyan Hayk (Doctor of sciences (economics), RA), Suvaryan Arzik (Doctor of sciences (economics), RA), Tokmajyan Hovhannes (Doctor of sciences (engineering), Chief editor, NKR), Trchunyan Armen, (Doctor of sciences (Biology), RA), Ujma Adam (Doctor of sciences (engineering), Poland), Vardanyan Arevshad (Doctor of sciences (engineering), RF).

Известия издают институт водных проблем и гидротехники им. академика И.В. Егиазарова, Армянская национальная ассоциация по гидравлическим исследованиям, Ереванский научно-исследовательский институт средств связи и Шушинский технологический университет. Основан в 2016г. Издаëтся 2 раза в год.

Bulletin is published by Institute of Water Problems and Hydro-Engineering Named After I.V. Yeghiazarov, National Association of Hydraulic Research, Yerevan telecommunication research institute, Shushi university of technology. Established in 2016. Published 2 times a year.

Адрес: Ереван, ул. Арменакяна 125, Шуши, ул. Ашота Бекаора 4 Address: 125 Armenakyan street, Yerevan, 4 Ashot Bekor st., Shushi Tel. (+37491) 407484 Url: www.bulletin.am e-mail: [email protected]

© Известия высоких технологий, 2016 © Bulletin of high technology, 2016 WATER SYSTEMS

UDC 556.18.830

DEVELOPMENT OF THE GIS MODEL FOR IDENTIFICATION OF MINIMUM FLOW AT ANY CROSS-SECTION OF RIVER AND ITS APPLICATION ON EXAMPLE OF ARPA RIVER BASIN

A.A. Arakelyan1, V.H. Sargsyan2

1Institute of Geological Sciences of the NAS RA 2National University of Architecture and Construction of ______

The method for minimum flow identification at any cross-section of the river is presented in this paper. A GIS model has been developed for this purpose using ArcGIS 10.2.1 Model Builder amd Spatial Analyst extension toolbox. The input data for the model are the monthly minimum flow values of hydrological posts and Digital Elevation Model (DEM) of the basin of interest. The model have been tested for Arpa River Basin.

Key words: GIS, ArcGIS, water resources, hydrology, watershed, DEM, minimum flow.

In the last two decades Geographical Information Systems (GIS) have been widely used for addressing scientific and practical, as well as hydrological and water resources management issues. GIS technologies are providing new analytical opportunities and increasing the results accuracy of calculations and modelling, but only in the case if the right method is chosen and a precision, particularity and actuality of input data comply with the requirements of the addressing problem. Flow modelling of Armenian rivers is very complicated task taking into account mountainous topography and inadequate hydro-meteorological data on river basins. It is necessary to have an accurate data on all characteristics of river flow within the entire watershed of the river. In this paper the procedure of model development for construction of the GIS raster layer of minimum flow of the river basin is presented on example of Arpa River Basin. Constructed raster layer allows to get the annual minimum flow value for any cross-section of the river. The minimum flow model constructed by ArcGIS ModelBuilder using Hydrology and Map Algebra toolsets of ArcGIS Spatial Analyst extension. The monthly minimum natural flow values of operating and closed hydrological monitoring posts of Arpa River Basin (fig. 1, table 1) and the Digital Elevation Model of Arpa River Basin have been used as a model input data. Developed model is applicable for all mountainous river basins. The raster layers of other flow characteristics such as maximum or average flow can be developed by this model too. Annual minimum flow module values have been calculated using the monthly minimum flow values and watershed areas of hydrological monitoring posts. The results are presented in Table 1.

Main river basins of Armenia have been delineated using ArcHydro Tools [2] from ASTER GDEM which has 30m resolution [4]. DEM of Arpa River Basin has been extracted from ASTER GDEM using Extract by Mask tool of ArcGIS Spatial Analyst extension [3].

3

Figure 1. Hydrological Monitoring Posts of Arpa River Basin

Table 1 Flow Characteristics of Operating and Closed Hydrological Monitoring Posts

of Arpa River Basin

Annual Weighted mean Annual Watershed minimum elevation of minimu № River-Post Year H, m area of the module of watershed area m flow, post, km2 flow, l/s x of the post, m m3/s km2

1 Arpa - Areni 1976 980.1 2040 2110.0 6.73 3.30 Arpa - 2 Yeghegnadzor 1946 1075.4 1220 2140.0 3.56 2.92

3 Arpa - Kechut 1949 1923.6 322 2750.0 2.36 7.33

4 Arpa - Jermuk 1963 2033.7 190 2790.0 1.4 7.37

5 Yeghegis - Shatin 2015 1214.3 458 2353.9 2.12 4.63 6 Yeghegis - Hermone 1960 1675.4 205 2637.0 1.09 5.32 7 Saliget - Shatin 2001 1242.7 144 2070 0.36 2.50 8 Artabun - Artabuynk 2005 1406.1 45.6 2460 0.16 3.51 9 Vayk - Zaritap 2009 1540.1 58 2280 0.11 1.90 10 Grav - Agarakadzor 1981 1194.2 40.7 1862.9 0.04 0.98

4

WATER SYSTEMS

Annual Weighted mean Annual Watershed minimum elevation of minimu № River-Post Year H, m area of the module of watershed area m flow, post, km2 flow, l/s x of the post, m m3/s km2

11 Yelpin – Yelpin 1976 1545.0 31.5 2194.4 0.051 1.62 12 Hors - Hors 1519.0 24 2024.5 0.054 2.25 Vardashat - 13 Vardahovit 1984 2013.4 22 2570.9 0.09 4.09

14 Gladzor - Vernashen 2001 1488.6 20.5 2270 0.014 0.68

15 Darb – Chaykend 1962 1332.0 161.7 1338 0.027 0.17

For the construction of minimum flow raster based on DEM first of all it is necessary to establish connection between elevation and flow. Below is presented the dependence of annual minimum flow module from the weighted mean elevation of watershed of hydrological monitoring post in Arpa River Basin (fig. 2).

Figure 2. Relation between Annual Minimum Flow Module and the Weighted Mean Elevation of Hydrological Monitoring Post Watershed in Arpa River Basin

Model for identification of minimum flow at any cross-section of the river has been developed by ArcGIS ModelBuilder using Spatial Analyst extension toolboxes, using the basin DEM and equation of correlation between weighted mean elevation and minimum flow of module (Fig. 3).

Figure 3. Scheme of the Model for Minimum Flow Raster Construction 5

Below are presented description of the tools included in the model and their application. 1. Fill. DEMs often contain inaccuracies such as local sinks and peaks. Sinks (and peaks) are often errors due to the resolution of the data or rounding of elevations to the nearest integer value. Sinks should be filled to ensure proper delineation of basins and streams. If the sinks are not filled, a derived drainage network may be discontinuous. Sinks and peaks for Arpa River Basin have been corrected by Fill tool of Spatial Analyst Hydrology toolset [2, 3]. 2. Flow Direction. raster of flow direction from each cell to its steepest downslope neighbor have been created using Flow Direction tool. The input surface raster is the filled DEM created in previous step. 3. Flow Accumulation. Using flow direction raster as an input, a raster of accumulated flow into each cell have been created by Flow Accumulation tool. 4. Flow Accumulation with Weight Raster. The flow accumulation area for each cell of of Arpa River Basin raster have been calculated. The calculation has been done using Flow Accumulation Tool and Flow Direction raster also, but here the filled DEM of the basin has been used as an input weight raster. 5. Raster Calculator. Using the resulting rasters of previous two steps, the watershed weighted mean elevation for each cell of basin's raster has been calculated by Raster Calculator tool (Fig. 4.).

Figure 4. Calculation of Watershed Weighted Mean Elevation for each Cell of the Basin

6. Raster Calculator (2). Annual minimum module of flow raster have been constructed using Raster Calculator. The input data for calculation is the weighted mean elevation raster developed in previous step and the equation of relationship between mean elevation and minimum flow module in Arpa River Basin: M=0,0062H-10,688, where M is minimum flow module, H is weighted mean elevation (Fig. 5).

Figure 5. Construction of Annual Minimum Flow Raster for Arpa River Basin

6

WATER SYSTEMS

7. Raster Calculator (3). Watershed area for each cell of Arpa River Basin raster have been calculated (fig. 6).

Figure 6. Construction of Watershed Area Raster for Arpa River Basin

8. Raster Calculator (4). The annual minimum flow raster for Arpa River Basin have been calculated by following formula:

(Watershed Weighted Mean Elevation x Watershed Area) / 1000 (Fig. 7).

Figure 7. Calculation of Annual Minimum Flow Raster for Arpa River Basin

Each cell of the river network raster contains one annual minimum flow value. In GIS software, such as ESRI ArcMap or QGIS, it is possible to get the annual minimum flow value for each cross-section of the river by clicking on the point of interest by Identify tool. Below are presented several examples of the annual minimum flow value extraction from the developed raster layer.

a) b) 7

c) d) Figure 8. Identification of Annual Minimum Flow from Raster Layer for Hydrological Posts a) Arpa- Jermuk, b) Arpa-Yeghegnadzor, c)Yeghegis-Hermone, d) Grav-Agarakadzor

The values extracted from raster layer have been compared with the observed annual minimum flow values, and the relative error of the model have been identified (table 2).

Table 2

Comparison of Annual Minimum Flow Values Observed in Hydrological Monitoring Posts and Identified from Developed Raster Layer

Annual Minimum Flow, m3/s Hydrological Identified from Relative Error, % Monitoring Posts Observed Raster Layer Arpa-Jermuk 1,40 1,20 -14 Arpa-Yeghegnadzor 3,56 3,06 -14 Yeghegis-Hermone 1,09 1,16 6 Grav-Agarakadzor 0,04 0,04 0

The relative error of the model in tested points is in the range of 0 to 14%, which is acceptable for hydrological calculations.

The methodology presented in this article can be used for development of similar raster layers of monthly minimum flows or other characteristics.

References

1. Allen D.W. Getting to Know ArcGIS ModelBuilder. Redlands, CA: ESRI Press, 2011– 322 p. 2. Maidment D.R. Arc Hydro: GIS for water resources. Redlands,CA: ESRI Press,2002. – 205 p. 3. McCoy J, Johnston K. Using ArcGIS Spatial Analyst. Redlands,CA: ESRI Press, 2002–232 p. 4. NASA and Japan ASTER Program: ASTER Global Digital Elevation Model (GDEM) v2. ASTER GDEM is a product of NASA and METI. Published on October 17, 2011.

8

WATER SYSTEMS

РАЗРАБОТКА ГИС МОДЕЛИ ОПРЕДЕЛЕНИЯ МИНИМАЛЬНОГО СТОКА В ПРОИЗВОЛЬНОМ СТВОРЕ РЕКИ И ЕЕ ПРИМЕНЕНИЕ НА ПРИМЕРЕ БАССЕЙНА Р. АРПА

А.А. Аракелян1, В.О. Саркисян2

1Институт геологических наук НАН РА 2Национальный университет архитектуры и строительства Армении

В статье представлен метод построения растрового ГИС слоя для определения минимального стока в произвольном створе реки и результаты применения метода на примере бассейна реки Арпа. Для получения слоя посредством программного пакета ArcGIS 10.2.1 была построена расчетная модель, используя инструменты программного модуля Spatial Analyst. В качестве входных данных использованы многолетние значения минимального стока действующих и закрытых пунктов гидрологических наблюдений и цифровая модель высот речного бассейна Арпа.

Ключевые слова: ГИС, ArcGIS, водные ресурсы, гидрология, водосборный бассейн, ЦМВ, минимальный сток.

9

WATER SYSTEMS

UDC 556:627.8.03

SOME ENGINEERING ASPECTS OF NATURE CONSERVATION MEASURES TO ENHANCE SMALL HYDROPOWER V.G. Hayrapetyan, G.S. Gabayan, H.V. Tokmajyan Shushi University of Technology ______

The last decade can be considered as the decade of small power engineering development. High activity in this business has affected practically all large and small rivers of Armenia. In this situation, the investors face various well-grounded, and often groundless environmental problems. Some of these problems are considered on the basis of summarizing the experience of construction and operation of some small scale hydropower plants of the country, gained by carrying out studies on more than 60 power stations.

Key words: ecology, transformer station, fishway, water intake, river.

A small hydropower plant consists of four main components diversion unit, derivation, power dam and discharge channel, transformer stations and power lines. Let us estimate the potential environmental impact of each element on the power station environment.

1. Water intake facilities. Regarding ecology the component drawing the most attention is the headworks. The key part of the problem lies in damming the riverbed with all ensuing consequences. The main environmental problem under consideration in this context is to provide free passage of fish through the structures erected on the river. At that fishway at the diversion works is brought to an unavoidable component of the scheme without proper justification of its necessity. There are many aspects that need to be considered within the design of a fishway, In the design stage fishway constructions are foreseen on all water intakes, without any exception. According to the design organizations, often make a statement that they just want to avoid having trouble getting positive environmental review of fishway facilities schemes. The Karagluh small scale power station can serve as an illustrative example below the water intake of which there is a waterfall with a drop of over 20 m, through which upstream fish migration practically is impossibl (Fig. 1). Meanwhile, design solutions of fishway structures and what is more important their physical implementation during construction should be analyzed principally and in details. Today, on all water intakes standard reinforced concrete fish ladders or their simplified modifications are designed.

Figure 1 Waterfall on the Karagluh river below the water intake of the alignment 10

WATER SYSTEMS

Unfortunately, during the construction in order to simplify building work fishways are made of metal (Fig.2) or completely change their original draft which further reduces the effectiveness of their operation.

Figure 2. Standard typically pre-fabricated out of metal sections cellular fish ladder

A common mistake in the design of such fishways is a failure of the partition wall between the fish ladder and spillway wall (Fig. 2). This leads to fishway path to be filled up by waste water which will cause disturbance hydraulic regime of the facility.

a) b)

Figure 3. Lack of sanitary outflow a) in the fish ladder, b) intake of NB

Another problem is a clear observance of sanitary outflows according to the design size. An inspection of structures we have more than once observed cases where sanitary outflows were lowered up to zero value (Fig.3). You cannot always prescribe this phenomenon on the intentional water use violation rules, although such cases are not rare. Often the cause of violations of the sanitary outlet regime is objective and is in hiding from being absent of the regulatory system of the set operation. At that, such regulatory system is not available on all operating small scale hydropower plants of the country.

Most of the rivers in Armenia have quite large daily flow fluctuations. It is reasonable that even under constant duty of personnel at the water intake (and it is not so at 90% of SHP), it is impossible to provide a precise regulation of units and, therefore, to maintain the water level at the

11

WATER SYSTEMS water intake. As a consequence, in addition to the loss of energy generation at the plant (20%), are violated sanitary water releases. At that violations are equally harmful both in underestimation and overstating of the design flow. If in the first case the size of sanitary flow of a river, then, in the second one, velocities on the fishway can reach values that do not provide fish freely passage through them. Consequently, the absence of the unit regulatory system level-sensitive regime is not only technical, but also a very important environmental problem. However, stations projects with the regulatory system absence are free to both technical and environmental expertise

Often the fishway design is simplified and reduced to a step drop. A similar design can normally operate at a single certain level in the upstream. However, even with a slight overflow over the dam on the fishway is formed a raging torrent that does not meet the conditions of spawning migration.

This problem was worked out by many researchers. They have proved that even with the best performance of such fishways, as a rule, are unattractive for spawning fish, because building materials used in fishway structures are foreign material [1]. Therefore, such fishway operates inefficiently. Operation experience has shown [2,3] that it is more expedient to install not large semi-natural channels faced by local materials (stones, pebbles) shown in Fig.4. Such design of fishways are not expensive, simple in implementation and more effective in operation. Rough stone facing of fish migration path decreases velocities in facilities, improving spawning conditions.

a) b) Figure 4. The design of the fishway of semi-natural path a) the view from the NB, b) view from WB

The very construction of a SHP headwork on mountain rivers of Armenia can not cause serious environmental problems at the height of water retaining works up to 3-4 meters.

Environmental issues may rise in the course of headwork construction. Such issues are standard for any construction in riverside zones and are principally overcomable for such volumes of work. Headworks of SHP if are properly in operation can contribute to a large positive impact on the sanitary condition of the river. Tthe fact of the matter is that man-made pollution of rivers by plastic bags, etc. above the water intake site. All synthetic items and debris are accumulated at trash rack of a water intake becoming obstacles in the path of water resulting in poor operation of the powerhouse. Consequently, there is a constant need of cleaning receiving chambers from thrash. Collection, 12

WATER SYSTEMS disposal and utilization of trash accumulated on lattices essentially cleans the river below the diversion unit.

Unfortunately, often the trash is left on the banks of the river and washed away back into the river by rain. The situation is worsened in cases when the trash gathered in the riverside is purposely disposed back into the river. This matter will require an undivided attention up to refusal of submitted projects where there is no address to trash utilization amassed before trash rack of a water intake

2. Derivation. A distinctive feature of the derivation of newly built small HPPs in Armenia is that practically almost their majority are installed in the form of pipelines all of them in the form of a pressure line starting from the abstraction and ends in powerhouse building. As the development of new projects laying of derivation pipelines tracks becomes more and more complicated. This may necessitate cutting down a large number of trees and pushing large quantities of soil, sand, rubble, or other such material (Figure 5), which can cause environmental problems, which are soluble in certain reasonable limits.

Figure 5. Cutting of the shelf under the pipeline is accompanied by felling of a large number of trees

However, a more serious problem is evaluation of technical and ecological safety when occurs breach of the pipeline derivation. It is obvious that throughout the country when building of small scale power plant as a derivation old pipes are installed which at times having corroded surface of the metal.

Pressures in a number of stations reach values over 300m.

There are cases where a pipeline route passes through areas of potential landslide or secondary landslide without any engineering measures. The probability of a water line breakthrough on such a high section and can cause catastrophic consequences both technical and environmental point of view. Meanwhile, none of SHP projects is evaluated in terms of environmental safety.

3. Power house. For its size and area of а powerhouse small scale hydropower ranks among small structures and practically do not influence on environment. Under observance of ecostandards for construction within water protection zone of rivers, they cannot cause any serious environmental problems.

However, environmental problems can cause different storage facilities for combustive- lubricating products, arranged on the territory of the station unit. In practice, very often during the 13

WATER SYSTEMS design of these units altogether are absent in the Master Plan of the station unit. However, as the SHP is put in commission, they will undoubtedly appear very often with violations of environmental regulations. In making an environmental examination it should be required design solutions on organization of combustive-lubricating products’ stores providing their environmental safety.

Yet, there is one more important issue which also can influence on the level of environment wellbeing. It is connected with architectural and aesthetic solutions of station units design. Most of stations are built in tourist attracting beautiful riverside landscapes making them wonderful places to visit. In many European countries small scale hydropower plants are shaped and arranged like hunting lodges and other facilities harmoniously blending in the landscape. Such architectural implementation not only doesn’t spoil aesthetic balance of a landscape but, conversely, attracts tourists and hikers. As for architectural solutions of many our small hydro powerhouses are meaningless, do not meet today’s requirements and simply provoke serious concern. The same applies to headworks, where harmony with the environment can be achieved by using small elements of landscape design.

Another equally important problem is noise made in operating small hydro power plants. Typically, equipment of the pants manufactured by leading companies meet certain standards in terms of noise. However, remember that over 90% of small scale hydro in Armenia are equipped with components, subassemblies and assemblies produced in Armenia have not undergone any standards in terms of noise. As a consequence, in Armenia there are stations at which the noise level exceeds all possible limits.

Transformer substation and power line. The transformer substation is installed at a short distance from the powerhouse of hydropower plant in the facility site. This is dictated by the technical conditions designed for construction of such structures. Therefore, as a rule, transformer substations are built within the water protection zones of rivers. In such a situation, it becomes very important issue of protection of rivers from ingress of the transformer oil at their failure or replacement. We have examined over 50 plants and, unfortunately, none of them has solved this problem. Meanwhile, the problem is solved by the foundations built in the reinforced concrete impenetrable box filled with gravel and an outlet basin for the collection of waste oil have fallen on the ground surface.

Power lines usually do not cause serious environmental problems and should be carried out taking into account the general and environmental requirements during construction.

All the above arguments are based on the current level of environmental problems related to the design, construction and operation of small scale hydro power plants in Armenia. However, the environmental impact assessment procedures in the field of renewable energy projects should always be borne in mind that the main environmental impact of such stations is the station itself, providing the production of ecologically clean energy. The problem which such plants solve is number one environmental problem for the entire planet. Therefore, environmental impact assessment of such facilities should be held under the leitmotif of maximum assistance to the investor to ensure the project feasibility.

Conclusion 1. In projects more clearly should be grounded necessity of fish passage facilities construction.

2. Projects of fish passage structures should be developed in more detail, based on current research achievements in this area. It is impermissible to make unjustified changes in fishway designs during construction.

14

WATER SYSTEMS

3. Lack of the unit control system according to the level-sensitive regime is not only engineering, but also a very important environmental problem. When the environmental assessment of projects is performed it should be required a clear solution of the issue of regulation of water regime in water intake site.

4. Problems of trash collection and disposal accumulated on trashrack structures should be clearly solved in the design stage.

5. Projects of pressure derivation of small scale hydropower plant should be assessed from the point of view of environmental safety when pressure pipeline broke.

6. When carrying out environmental impact assessment it should be required to design solutions for combustive-lubricating products storing to ensure their environmental safety.

7. Architectural solutions of small scale hydropower plants’ basic units must comply with the landscape and harmoniously blended into the environment.

8. It should pay attention to the noise generated by operation of the unit.

9. Transformers and oil circuit breakers of substations should be installed so as to ensure the safe collection and disposal of oil leaks, excluding them from getting into the soil and the river.

10. In a routine inspection of environmental compliance with renewable energy projects should not be forgotten that such projects are designed to address the most important environmental problem of global environmental pollution. According to this, such projects require a special approach from environmentalists, excluding deviation projects without good justification.

References

1. S. G. Hildebrand, M. C. Bell, J. J. Anderson, E. P. Richey, Z. E. Parkhurst, Analysis of Environmental Issues Related to Small Scale Hydroelectric Development. Design Consideration for Passing Fish Upstream Around Dams. Environmental Sciences Division. Publication No. 1567., 2007г., 92 с. 2. Luigi PapettiStudio., Fish-related shp planning experiences from italy, Frosio –Brescia Italy, 2007г., 17с. 3. Samvelyan A.L., Gabayan G.S., Nurijanyan S.Sh. Design Problems of Fish Passes at Water Level Fluctuation at Upstream of Intake Structure // Advanced Materials Research. - Switzerland: Trans Tech Publications, 2014. - Vol. 1020. - P.807-810.

15

WATER SYSTEMS

НЕКОТОРЫЕ ИНЖЕНЕРНЫЕ АСПЕКТЫ ПРИРОДООХРАННЫХ МЕРОПРИЯТИЙ МАЛОЙ ГИДРОЭНЕРГЕТИКИ

В.Г.Айрапетян, Г.С. Габаян, О.В.Токмаджян Шушинский технологический университет ______Последнее десятилетие можно считать десятилетием развития малой энергетики. Высокая активность в этом бизнесе затронула практически все большие и малые реки Армении. В этой ситуации перед инвесторами возникают различные обоснованные, а часто необоснованные экологические проблемы. Рассматриваются некоторые из них на основании обобщения опыта строительства и эксплуатации некоторых малых ГЭС республики, изученного на более чем 60 станциях.

Ключевые слова: экология, трансформаторная станция, рыбоход, водозабор, река.

16

WATER SYSTEMS

UDC 556:626:627.5

ON DETERMINATION OF RELATIONSHIP BETWEEN MAXIMUM HYDRAULIC SIZE OF SUSPENDED PARTICLES AND TURBID FLOW PARAMETERS

V.H. Tokmajyan, A.P. Baljyan, D.J. Kamalyan Shushi University of Technology

General direction of riverbed process on one or another section of the flow depends on the degree of silt saturated state. In case of the flow oversaturation occurs falling out of silt and sedimentation of the riverbed, and in case of insufficient saturation, on the contrary, the flow weighs particles of silt from the surface of the canal and wash out the riverbed. Such nature of suspension and deposition of particles is the principal cause determining the character of riverbed deformation. Peculiarities of river water turbidity parameters in various phases of water regime often differs from average annual indices and have not been enough studies. The problem of determination of maximum hydraulic size of suspended particles is reduced to finding that probable hydraulic size under which the particle will not settle-out at l distance. To reveal the relationship between maximum hydraulic size of suspended silt and parameters of flow spectral theory of turbulence, taking into consideration distribution of energy vortices by different frequencies. This is conditioned by a circumstance that sufficiently large solid particles in water can be suspended in the field of law frequency pulsation where small part of the flow energy is concentrated.

Key words: turbulence, hydraulic size, erosion, fluid, pulsation, thickness.

Introduction Channel flows almost always contain and carry away a certain amount of solid particles and decomposing organic substances and inorganic biogenic matter, which come from a basin soil washout, erosion of riverbed ground and riversides as well as weathering. All these products of water erosion are classified into the following categories: suspended sediments, bottom sediments, dissolved matter.

Suspended sediments and dissolved matter are most often transported by water masses and bottom sediments are periodically entrained into motion and travel over the riverbed (in near-bottom layer of flow by sliding and bouncing along the bottom).

One of the principal characteristics of sediment composition is hydraulic size ( w - velocity of uniform non-natural fallout of grains in still water). In the general case the hydraulic size depends on density of the particle, its volume and shape, viscosity of fluid medium, turbidity and degree of the flow turbulence.

Many Soviet and foreign researchers have been studied problems related to hydraulic size of silt and sediment. Today determination of hydraulic size is done by the scale invented by Prof. Goncharov V.N. based on generalization of a large quantity of experimental data. The average specific weight of the majority of river sediment is assumed 2.65t/m3.

Phenomena of suspension and movement by river water of sediments of density around 2,6 times higher than that of water long ago attracted attention of scientists. The results of theoretical and experimental studies [1] show that suspension state of sediments is conditioned by turbulent agitation of water in the stream and formation of vortices. The latter throws separate liquid masses into water 17 WATER SYSTEMS column, formation of whirlpools, presence of transverse streams, velocity pulsation and other events are the main causes of silt particles penetration into turbulent flow column, suspension and their travel.

Silt particle moves upward in case when it is in water body, with suspension velocity higher than hydraulic size, otherwise will occur deposition of silt particle specified size. In channel flows the basic mass of sediment travels in suspended state and in lowland river amounts to 85 to 95 percent and in mountain rivers – from 75 to 85 percent of the total amount of sedimentation [1].

It is accepted to characterize the saturation degree of the water flow by suspended silt by turbidity (S) which is determined by gravimetric or volumetric quantity of silt contained in a unit water volume. Turbidity of water is an important hydrologic characteristics of which impact on river channel deformation, efficiency of water intake and water outlet works performance, reservoir sedimentation have been little studied.. Water turbidity distribution in the flow is described by the following equation of turbulent diffusion of suspended particles [1, 2, 3]

S A 2S 2S 2S S S S S  (   )  (v  u  k ) W , t  x2 y2 z2 x y z y (1) where A is coefficient of turbulent exchange, u, v, k are components of velocity vector, x. y, z are longitudinal, vertical (increases from the surface to the bottom ) and transverse spatial coordinates, respectively, w is hydraulic size of suspended particles. The first term of the right-hand member of the equation defines the change of turbidity value S in view of turbulent displacement of mineral particles. The second term characterizes turbulent change under the influence of longitudinal (advection), transverse (dispersion), and vertical (convection) transportation of suspended particles. The last number of Eq.(1) reflects influence of gravity force on turbidity value S [3]. Influence of longitudinal displacement of suspended silt on water turbidity in the course of various phases of water regime most clearly appears when analyzing change of characteristics of silt flow along lengthy section of rivers. Change of turbidity on sections of rivers in this case is determined by the ratio of its actual value to turbidity, in accordance with carrying capacity of flow which depends on particulars of its hydraulic state. With all with other things being equal the depth and rate of the flow impacts on sedimentation rate, possibility of their stable (unstable) suspension, which determines content these particles on a certain horizon starting from water surface (bottom). According to [3] role of processes defining irregularity of turbidity distribution along rivers width and depth at that is negligible small. However, we believe that this hypothesis is valid only for lowland rivers.

Existing hydrometric grid in service in many countries doesn’t allow to efficiently evaluate relatively quick time-dependent changes of turbidity owing to high discreteness of measurements and widely spaced stations performing suspended silt observations. It remains an open question on evaluation and prediction of arrival of suspended particles lower than economic objects [3].

Suspended silts are carried away in the water flow column under the action of vertical components of turbulent pulsation velocity. The condition of particles suspension can be written as  u  w , (2) where u is upward directed vertical component of stream’s velocity vector, is hydraulic size of silt particles. Suspended silts in depth of flow are distributed very irregularly. The most large particles travel in lower layer where turbidity of flow reaches to considerable value, most small ones are distributed in full depth and their quantity decreases from bottom to the surface, Thus, water turbidity

18 WATER SYSTEMS in rivers increases from the surface to the bottom at that for silts of larger fractions increase runs quicker, and for silts of larger fractions – slower as shown in Fig.1.

However, this regularity doesn’t act in the flow movement after the dam rupture where large particles are concentrated on the wave crest [1].

Figure 1 Silt content change in depth [3]

A) the Chnrchik river, B) the Volga river, C) the Sir-Daria river (according to Levi I.I.)

In relation to suspended silts transporting capacity of flow is of serious interest, that is that limiting turbulent which the flow can posses under the given hydraulic conditions. Carrying capacity of the flow depends not only on hydraulic characteristics of the flow but also on quantity, composition, dimensions, shape of particles and other properties of silts.

Consideration of all these factors presents considerable difficulties which explain availability of a grate number of formulae suggested for determination of carrying capacity of the flow.

Formulae for determining carrying capacity of flow can be divided into empirical and theoretical one. According to the Standard 3908-47 “Transporting capacity and sedimentation rate of water stream in channel” silts carrying capacity of water flow is determined by the following formula

0,4   BQ i , (3) where  is the transporting capacity (kg/m3), Q is the flow of water in the channel (m3/s), i is the grade of a free space, B is a coefficient assumed to be equal to 4700, 3000, 1100 и 600 for the hydraulic size w - w 1,5 mm/s, w 1,6 3,5 mm/s, w  3,6  6,4 mm/s, W  6,5 mm/s, respectively [4].

Field investigations show that transporting capacity found by Eq.(3) gives understated results. For small values of the hydraulic size (W ) it is suggested to introduce correction coefficient in Eq.(3) C substituting B for , where C  0,55 0,85. Usually in calculation it is assumed that C  0,7 , then w Eq.(3) can be written as [4]

C   Q 0,4i w 0 , (4)

where i 10 4 i 0

19 WATER SYSTEMS A number of researchers including Zamerin E.A., Gostunskii A.N., Khachatryan A.G., Shaumyan V.A., Abaliants S.Kh., Poslavskii V.V., Chekulaev G.S., Goncharov V.N., Lipatov K.G., Horst O.G., Mikheev P.V., et al have derived a well known formula for determining transporting capacity of flow.

The majority of formulae in use for determining transporting capacity of flow have been derived for conditions existing in irrigation channels. It follows that in solution of channel regulation problems, that is for flows of relatively large dimensions and containing silt particles of different size and nature, should be given careful attention to these formulae.

Generalizing obtained data on the rivers of Transcaucasia Zamarin E.A, suggested to define the carrying capacity of flow for weighted average values of hydraulic size ranging from 0,002 to 0,008 by the following empirical formula

V 1,5   0,022( ) Ri . w (5) where W is the silt weighted average hydraulic size, V is average rate of the flow.

The most universal is the formula of Prof. Khachatryan A.G.

1,5 V   0,69 . (6) (Rw)0,333

Knowing actual turbidity of flow and its transporting capacity on a section under consideration enables to clear up the possible character of channel processes.

Tractional load according to its mechanical composition is composed of medium and coarse sands, gravel, pebble and stones. The composition of silts and character of their movement depends on hydraulic conditions of the channel flow. Quantitatively, the bed load is approximately 25% of the total, however, they play an important role in the formation of the channel.

When stream velocities are high and suspension of silt is of mass character the diagram of in depth distribution of turbidity has a usual form. With a sharp reduction or termination of the bed load arrival from upstream sections some velocity in depth redistribution occurs to the near-bottom velocity increase which is one of reasons of eroding capacity of clarified channel flow.

In engineering practice to regulate channels with the aim of finding possible character of channel processes it is important to determine maximum (critical) velocity of flow which characterizes crisis condition of a grain stability on the bottom. The maximum velocity can be defined using the formulae of Velikanov M.A., Shamov G.I., Goncharov V.N., Levy I.I., Knoroz V.S. Knowing the hydraulic size of silt in the channel and the depth of flow enables to gain some insight on the flow rate, under which these silts are deposited and under which they can start moving again, and on the contrary, knowing respective maximum velocity on the size one can get an idea on size of moving in the flow silts. To take into account the flow of bed load a number of empirical formulae have been suggested on the basis processing of data obtained by field investigations.

The main theoretical dependence for determining the carrying capacity of the flow is given Velikanov M.A. based on gravitational theory. Energy released during the transition of the flow mass from high marks to lower ones, is equal to the work of the liquid phase and suspension [5]. The differential equation of liquid phase steady motion of dispersoid of steady-state concentration of silts can be expressed as 20 WATER SYSTEMS d gui(1 s)  u (1 s)uvgws(1 s) (7) dy

In mountain conditions where the river channel and river feeding water basin are covered by rocks of relatively large size and hydraulic parameters are such that they do not suspend then the sediments contained in the bottom of flow under certain conditions start moving. This process begins after velocity of flow reaches limiting value and when particles lose their stable position on the bed and dart.

In the State Hydrology Institute, in a certain form, have been systemized available formulae for calculation of bedded sediment rate of flow and present specific recommendations for its calculation for various natural conditions.

Satisfactory can be considered accuracy of bedded sediment rate of flow calculation by a factor of two [6]. The reasons for unsatisfactory state of the problem have been in detail discussed in the paper of Kopaliani Z.D., and Kostyuchenko A.A. The main reasons are: 1) lack of clear definition of the term “bed load”; 2) lack of commonly accepted methods of differentiation of tractional, saltational and suspended silts; 3) insufficient consideration of specific character of natural conditions of rivers wherein occurs transportation of bedded silts (their size, slope, particle-size distribution, bedded particles transportation form), 4) poor accuracy of relations, used for calculation of bedded particles displacement [7]. There are various approaches to determine the flow of bedded sediments. To that end in the middle of 20th century a number of scientific workers attempted to derive universal formulae. However, in view of complexity, multifactorial nature, and poor studied process of bedded load transportation, a universal approach isn’t justified. Often techniques are applied for development of regional relationships, generalized for rivers of certain character and region [8,9]. Conflit settings

A problem has been set to determine dependence between maximum hydraulic size of suspended silts and parameters of flow and analysis of formulae in use.

Research results

Differentiated approach is applied for each type of hydraulic and morphological conditions and selected the corresponding dependences. More correct solution of the problem can be achieved by determining local dependence for the specific section of a given river since in spite of large amount of various formulas to perform calculation for hard particles transportation the single criterion to get reliable estimate can serve field data with detailed measurement all parameters: characteristics of the basin, water flow, bedded and suspended sediments, granular composition of the sediment being in motion, as well as bed silt. Only in such a case can the accepted dependences be assessed or newly developed ones with coefficients taking into account typical regional peculiarities both for moving particles and the entire basin [10].

To determine flow of tractional load a number of empirical formulas have been derived applicable for mountain river. Eghiazarov I.V. suggested to take as a base dependence for determining the flow of the tractional load, derived on the basis of the dimensionality method [10]

Ri P  15Q i( 1) (8) f0d50

21 WATER SYSTEMS where P is tractional load flow (kg/s), Q is water flow (m3/s), i is the slope of river, R is the section of the hydraulic radius conditionally determining silt transportation, d50 is the median diameter of particles being in motion at the given water flow, h is the average depth of flow, and  is defined by the equation below:

     s w , (9)  w

3 where  s , w are density of silt and water, respectively (kg/m ).

The value of the resistance coefficient f 0 is defined by the following equation:

Ri f 0  . (10) d max

On the basis of carried out analysis (8) and formulas of a number of researchers from among a set of factors determining silt transport three main ones can be chosen: the flow average depth, the average rate of flow, and dimensions of moving particles, and the rest are their derivatives. On this basis the formula for determining bottom silt flow the below expression can be used [10]:

0,42 v d  h  P  A( )2,4 ( )0,23   (11) v0 dmax  d  where A is a dimension factor depending on composition of moving bedded silt. For the rivers of Armenia its value has been estimated to be 2,5 [10].

Both in natural channels and in hydraulic structures suspended particles are nonuniform. Therefore, it is often convenient in calculation to use the idea of an average hydraulic size which can be expressed as:

w max  wI wdw w min (12) w  w max  Iwdw w min where w , w and w are average, maximum, and minimum hydraulic size of suspended particles, max min respectively, I(w) is relation of distribution of suspended particles according to the size can be established by Salakhov’s formula [12]:

2 u wmax 12.5n 1 (13) R 3 where u is the flow rate, R is the hydraulic radius, n is a roughness coefficient. According to [13], friction speed for suspended transit particles can be defined by the below expression:

n g u  1 u . (14)  R 6

22 WATER SYSTEMS Hydraulic parameters of the flow can be determined based on Velikanov M.A. hypothesis, according to which vertical instantaneous displacement of particles from the mean trajectory occurs in accordance with normal distribution law [14]

x2 1 2 f x  e 2 , (15) 2 where x is a random deviation of the particle from the mean trajectory,  is the quadratic mean deviation.

Possibility that an arbitrary particle which in some definite cross-section is in y depth deposited not far than l distant

1  2 1    et  dt   (1 erf) , (16)   2 where

w  y  u   2.74  : (17) h  0.2

Possibility that a particle of w hydraulic size will not deposited at l distant is:

1   1   (1 erf). (18) 2

The actual problem is reduced to the determination of such probability of hydraulic size under which the particle will not be deposited at the distant. In the result of simple mathematical transformations, we have

w  h  0.2 y  1   . (19)     u  2.74   

It is evident that the particle will be suspended if

 h w  u (20) max 2.74 

The obtained relation shows that the maximum hydraulic size of suspended silts depends on the flow depth, The analysis of field experimental investigations show [15] that the results obtained by dependence (20) where the flow depth is the numerator, give more reliable results than results obtained by employing empirical formulae derived by other researchers, where the flow depth is in denominator.

Conclusion 1. The hypothesis to the effect that with all things being equal the depth and rate of the flow have an influence on deposition rate of mineral particles, possibility of their stable suspension, and that defines content of these particles on definite horizon, beginning from the surface of water and that

23 WATER SYSTEMS the role of processes determining irregularity of turbidity distribution depthward and widthward of rivers, at that is negligible small, and it is right only for lowland rivers. 2. The suggested empirical formulae for obtaining maximum hydraulic size suspended silts should be used carefully.

3. To reveal dependence between the maximum hydraulic size of suspended silts and parameters of the flow should be used spectral theory of turbulence, taking into consideration energy distribution in whirl of different frequencies. This is stipulated by a circumstance that largebsolid particles in water can be suspended in the field of pulsation at low frequencies, where is concentrated the largest part of the flow energy.

The research was performed under scientific theme 11-30/15TSCSRA.

References 1. Алексеевский Н.И. Формирование и движение речных наносов //М.: МГУ, 1998, 202 с. 2. Караушев А.В. Теория и методы расчета речных наносов //Л: “Гидрометеоиздат”, 1977, 271с. 3. Промахова Е.В. Изменчивость мутности речных вод в разные фазы водного режима //Автореферат диссертации на соискание ученой степени кандидата географических наук, М: МГУ, 2016, 28с. 4. Исследование и выбор метода расчета заиления водохранилищ в горных условиях (на примере Ахпаринского и Апаранского водохранилищ) //Отчет НИР. Ер., НИИВПиГ, 1966, 53с. 5. Гиршкан С.А. О транспортирующей способности наносов //М: “Гидрология и мелиорация”, 1953, N6, с. 81-85. 6. Гришанин К.В. Основы динамики русловых потоков //М: “Транспорт”, 1990, 320 с. 7. Копалиани З.Д., Костюченко А.А. Расчеты расхода донных наносов в реках //М: Сборник работ по гидрологии, 2004, № 27, с. 25–40. 8. Учет руслового процесса на участках подводных переходов трубопроводов через реки //СТО ГУ ГГИ 08.29-2009, 2009, 175 с. 9. Samokhvalova O.A. Bed load assessment in plain rivers //Proc. of the conf. “Contemporary hydrological issues in the research of Polish and Russian MSc and PhD students”, Torun, Poland, 2012, pp. 91–103. 10. Саркисян В.С., Мкртчян В.А. Об оценке транспортирующей способности потока горных рек //Известия НАН РА и ГИУА, серия ТН, Ереван, 2007, т. LX, N 2, с.374-380. 11. Саноян В.Г. Закономерность изменения транспортирующей способности открытых наносонесущих потоков от скорости их движения,- Научное открытие. Диплом N 103, рег. N 121, от 25.10.1999г., МААНО, Москва, РАЕН. 12. Салахов Ф.С. Гидравлический расчет ирригационных отстойников //Труды АзНИИГИМ, Баку, 1964, т. 5, с. 163- 273. 13. Никитин И.К. Турбулентные течения со сдвигом в задачах гидротехники //Л: Автореферат диссертации д.т.н., 1968, 84 с. 14. Великанов М.А. Динамика русловых потоков //М: “Госиздат технической и теоретической литературы”, 1955, с. 167. 15. Джрбашян Э.Т. О вероятностном методе расчета расхода донных наносов //Л: Известия ВНИИГ, 1965, т. 78, с. 44-49.

References 1. Alekseewcki N.I. The formation and movement of river sediments // M: Moscow State University, 1998, 202 p. 24 WATER SYSTEMS 2. Karaushev A.V. The theory and methods of river sediments calculation. // L: "Gidrometeoizdat", 1977, 271p. 3. Promakhova E.V. Variability of river water turbidity in different phases of the water regime // Abstract of the thesis for candidate’s degree, Moscow: Moscow State University, 2016, 28p. 4. Investigation and choice of a method for calculation of reservoirs silting in mountain conditions (by the example of Akhparin and Aparan reservoirs)/ Research report. Yerevan, NIIVPiG 1966, 53p. 5. Girshkan S.A. On sediment carrying capacity//M: "Hydrology and Land Reclamation" 1953, N6, 81-85pp. 6. Grishanin K.V. Fundamentals of channel-flow dynamics//M: "Transport", 1990, 320 p. 7. Kopaliani Z.D., Kostyuchenko A.A. Calculations of bottom sediments flow in rivers//M: Collected papers on hydrology, 2004, № 27, 25-40 pp. 8. Consideration of river bed evolution running in sections of underwater crossover of pipelines// STO GU GGI 08.29.2009, 175 pp. 9. Samokhvalova O.A. Bed load assessment in plain rivers //Proc. of the conf. “Contemporary hydrological issues in the research of Polish and Russian MSc and PhD students”, Torun, Poland, 2012, 91–103pp. 10. Sarkisyan V.S., Mkrtchyan V.A. On evaluation of mountain rivers flow carrying capacity//Bulletin of RA NAS and SEUA, series TS, Yerevan, 2007, vol.. LX, N 2, 374-380pp. 11. Sanoyan V.G. Regularity of carrying capacity motion velocity dependence change in open silt transporting streams. - Scientific discovery. Diploma № 103, reg. № 121, 25.10.1999, MAANO, M, Academy of Natural Sciences. 12. Salakhov F.S. Hydraulic calculation of irrigation sedimentation reservoir // Proceedings AzNIIGIM, Baku, 1964, vol. 5, 163- 273pp. 13. Nikitin I.K. Turbulent shear streams in water engineering problems//L. Abstract of the thesis for doctor’s degree, 1968, 84 pp. 14. Velikanov M.A. Dynamics of channel flow//M: "State Publishing House technical and theoretical literature", 1955, 167 pp. 15. Jrbashyan E.T. On a probabilistic method for computing the flow rate of bottom sediments // L: News VNIIG 1965, vol.78, 44-49 pp.

l 25 WATER SYSTEMS

К ОПРЕДЕЛЕНИЮ ЗАВИСИМОСИ МАКСИМАЛЬНОЙ ГИДРАВЛИЧЕСКОЙ КРУПНОСТИ ВЗВЕШАННЫХ ЧАСТИЦ И ПАРАМЕТРОВ МУТНОГО ПОТОКА

В.О. Токмаджян, А.П. Балджян, Д.Ж. Камалян Шушинский технологический университет ______Общая направленность руслового процесса на том или ином участке потока зависит от степени насыщения его наносами. В случае перенасыщения потока происходит выпадение наносов и заиление русла, а в случае недостаточного насыщения, наоборот, поток взвешивает с поверхности русла частицы наносов и размывает русло. Такой характер периодического взвешивания и осаждения частиц наносов является основной причиной, определяющей характер деформаций русла рек. Особенности параметров мутности речных вод в разных фазах водного режима часто отличаются от среднемноголетних показателей и мало изучены. Задача по определению максимальной гидравлической крупности взвешенных частиц приводится к получению той вероятной гидравлической крупности, при которой частица нe осядет на расстоянии l . Для выявлению зависимости максимальной гидравлической крупности взвешенных наносов и параметров потока следует применять спектральную теорию турбулентности, учитывая распределения энергии по вихрям разными частотами. Это обусловлено тем обстоятельством, что достаточно крупные твердые частицы в воде могут быть взвешены в поле пульсации низких частот, где сконцентрирована наибольшая часть энергии потока.

Ключевые слова: турбулентность, гидравлическая крупность, эрозия, жидкость, пульсация, мутность.

26 WATER SYSTEMS

UDC 551.491:626.812

ASSESSMENT OF UNDERGROUND AND SURFACE WATER BY IRRIGATION WATER QUALITY STANDARDS

S.N. Yeroyan, S.M. Mkrtchyan, M.A. Kalantaryan, A.G. Naghdalyan Institute of Water Problems and Hydroengineering after Academician I.V.Eghiazarov ______

Shirak plateau is not only the most important area in the region, but also important for agricultural production in RA, where the reclamation of irrigated land is mainly conditioned by soil-hydrogeological factors. In this contest the quality of ground and surface water used for irrigation purposes is essential. According to Irrigation water quality standards, irrigation water in the Shirak plateau area is considered to be of good quality. In case of using the above standards for irrigation purposes, secondary salinization will not occur. Ground and artesian water in smaller spaces of the plateau is of no exception.

Key words: plateau, ground, artesian, underground, surface, mineralization.

Introduction The relief of Shirak region is of various types. It includes types of highlands, hills, mountain slopes and valleys. Humidity of soil with low depth mark is insufficient, due to which irrigation is performed. Humidity coefficient is 0.53, while the total mean annual precipitation is 400 ... 500 mm. Common (carbonate), typical and lime-free soils are the subtypes of the most widespread types of mountainous black soils [1]. Winter and spring cereals, grasses, vegetables and horticultural (carrot, beet, cabbage, potatoes) plants are cultivated.

Water intake in 2008 was 18,13 and in 2009 - 12,62 million.m3.

However, because of the unsatisfactory irrigation system and especially the inter-farm network conditions water loss amounts to 40 to 45 percent.

Therefore, during the irrigation period house basements of some communities are filled with ground water. The secondary soil salinization can also be unavoidable, resulting to the reduction of crop harvest because of the deterioration of irrigation water due to mineralization. The above mentioned necessitates to assess the quality of underground and surface water according to irrigation water quality standards.

The excessive rise of ground water level has a negative impact on the normal development of crops, resulting to crop yield fall from 20 to 15 ... 50 ... 55 percent [2] and in some cases from 80 to 85 % percent [3]. Water mineralization can also have a negative impact on crop yields, if it exceeds the irrigation water permissible values, which are from 0.5 to 0.8 g /l.

Underground and surface water is used for irrigation purposes in the plateau area, due to which both ground water location depths and mineralization are undergoing changes.

The above mentioned circumstances condition implementation of assessments of groundwater location depths and underground and surface water qualities (pH, electrical conductivity, mineralization, anions, cations, SAR) according to irrigation water quality standards, which is the main goal of the this paper.

27

WATER SYSTEMS Problem statement

To reveal the chemical, mechanical (0 -1m layer), and hydrophysical characteristics of irrigated soils, in the pat (in 1986) thorough researches were carried out in Ani, , , Amasia and districts, the results of which were collected according to the occupied areas and listed in Table 1 [4].

Table 1

Mineralization (C) and pH for ground and natural water sources in the Shirak plateau

N Location of ground C pH Location of natural water C pH water source

1. (city) 0,28 6,8 Gyumri (city) 0,34 6,7

2. (village) 0,85 7,2 Kamo (city) 0,12 6,8

3. (village) 0,73 7,2 (village) 0,44 6,8

4. (village) 1,01 7,0 Basen (village) 0,10 7,2

5. Ceti (village) 0,23 7,2 Jrarat (village) 0,17 7,2

6. Shirak (village) 0,33 7,0 Voskehat (village) 0,36 7,2

7. (village) 0,57 6,8 (village) 0,08 7,0

8. Aghin (village) 0,27 6,8 (village) 0,34 6,8

9. Arevik (village) 0,10 6,4 Poqrashen(village) 0,20 7,4

10. (village) 0,37 7,0 Ceti (village) 0,14 6,8

Researches have also been carried out in from 2007 to 2009 period, mostly on about the groundwater location depths and their mineralization (including irrigation water).

Mineralization data of Akhuryan district and the Shirak plateau ground water carried out in 2008, ranges mainly from 0,10g/l to 0,73 g/l, which is quite permissible.

Exceptions are ground water of Akhurik (0.85 g / l) and Bagravan villages (1.01 g /l) (Table 1).

In other words, the risk of mineralization of the above mentioned two villages is high.

The pH ranges from 6.8 to 7.2, with the exception of Arevik village, pH of which is 6.4, and mineralization is 0.10 g / l (Table 1).

The mineralization data of water sources in Kamo and Gyumri cities and 23 villages, which are located in the same region, ranges from 0.06 to 0.44g /l, while pH ranges from 6.4 to 7.2 (exception for village, where pH is 7.4).

The samplings, analysis, pH and electrical conductivity (mS) measurements of the ground, natural fountains, artesian and irrigation water of Shirak plateau were carried out in 2016, during June- October period (Table 2).

28

WATER SYSTEMS Table 2

Chemical test results of irrigation, ground, artesian and natural water sources in Shirak plateau (26.06-29.09.2016)

Sampling pH Electrical Mineraliz Adsorbed part conductivity ation of sodium,

ms C, mg/l SAR

Time, Place 2016

Artesian water, 7.2 240 1210 6-9

June 26 village Akhurik

Well 1, հ=25, app.8 7.5 61 310 3-6

Village , str. 30,

Well 2, h=3.5m, 7.4 98 508 3-6

Village Azatan, str. 30

River Akhuruk, 7.2 47 240 3-6

irrigation water

August 5 Well 1, h=2m, 7.3 45 291 3-6

village Azatan,

village forepart

Well 2, h=3.5m, 7.1 105 680 6-9

Irrigation water, 7.4 51 330 3-6

Azatan village forepart

Artesian water, 7.3 14 89 3 upper part of

vvillage Beniamin

Ground water, 7.1 75 490 3-6

h=1.3m,

village Azatan

September Ground water, h=0.4m, 7.4 160 1040 6-9 29 village Gharibjanyan

29

WATER SYSTEMS

The results were compared with irrigation water quality standards (Table 3).

Table 3 Irrigation water quality standards Category Electric Total Sodium risk, Adsorbed Chlorides, Sulfates,

conductivity, disolved sodium Na % mg-ekv/l mg- µS/sm2 salts, quantity, ekv/l mg/l (SAR)

Standards

1-st, <250 <175 <20 <3 <4 <4 excellent

2-nd, good 250-750 175-525 20-40 3-6 4-7 4-7

3-rd, 750-2000 525-1400 40-60 6-9 7-12 7-12 permissible

4-th, International 2000-3000 1400-2100 60-80 9-12 12-20 12-20 limited use

5-th, >3000 >2100 >80 >12 >20 >20 harmful

excellent, 240-508, 4-5-ից, good, 14-240 3-9 7-28 25-200 680-1210 70-75 permissible

Plateau water

The quality of the Shirak plateau ground and surface water according to standards is excellent, good and satisfactory. During the usage of this water for irrigation purposes, secondary salinization of soil will not ocurr. Ground water depths range from 1.3 to 1.8m, while mineralization ranges from 0.29 to 0.68g / l.

For improvement of plateau soil-hydrogeological conditions ,we suggest a functional connection of water mineralization (1), which includes underground (Сug) water, humidity of soil root layer, (Сhl), irrigation water (Сir) and mineralization of precipitations (Сatm).

Cgw=ƒ(Cgr,Chl,Ciw,Catm): (1)

The crop yield in the Shirak plateau irrigated lands, which is conditioned by some soil- hydrogeological factors, has an important role for both ground water mineralization and their location depths [5,6,7].

This circumstance is due to the crop root system length, which are divided into three groups: short - 0.6-0.7m, medium - 0.7-0.9m and long 0.9-1.2m.

30

WATER SYSTEMS Mainly short-root crops are cultivated in the Shirak plateau (beets, carrots, cabbage, potatoes, etc.) and middle -root (cereal) plants, for which groundwater optimal depth according to (HOp, Formula 2) comprises 0.9-1.1 and 1.6-1.8m respectively, according to Ararat Valley and Gegharkunik region many years (1962 ... 2007 ) research data [2.7].

To conclude, it is very important to determine the current location depths in the Shirak plateau and other irrigated lands. It will help to determine the important parameters of drainage systems according to the following formula [7].

Hop=1.1հl+Kh , (2)

where, Ho - optimal depth of ground water for high and stable crop yield,

hl - full length of the root system,

h- capillary water layer height of aeration zone from ground water surface,

K - coefficient 1.2 and 3 of capillary water sidebar, for short, middle and long-root crops respectively.

Conclusion

According to survey results - ground water location depths in the Shirak plateau ranges from 1.3 to 1.8m, mineralization from 0.3 to 0.7 g/l and pH from 7.04 to 7.5.

During vegetation period there wasn’t any water in house basements.

The survey results confirm:

- according to Irrigation water quality standards, underground and surface water is mostly good and partly excellent and permissible,

- mineralization of irrigation water doesn’t threaten secondary soil salinization.

- pH data of ground, artesian and natural water sources are acidic.

The work has been performed within the framework of 15T-2K136 theme.

References 1. Ախուրյանի ջրավազանային տարածքի (Ախուրյանի և Մեծամորի գետավազաններ) կառավարման պլանի նախագիծ // <<Րիզորս Մենեջմենթ>> ՍՊԸ և <<Շրջակա միջավ. քաղաքակ. վերլուծություն>>, Երևան,2015,260 էջ: 2. Мкртчян С.М. Изучение работы осушительных колодцев в Арташатском районе. // Науч. отч. АрмНИИГиМ за 1963г., 63с., 3. Манукян Р.Р. Окультирование мелиорированных солонцов-солончаков гидроморфных ладшафтов в период их сельскохозяйственного использования // Ереван ГАУА, 2006., 106с. 4. ՀՀ ոռոգվող և չորացված հողերի մելիորատիվ վիճակի կադաստր (01.01.1987): ՀՀ ՋՏՊԿ, ՚՚Մելիորացիա՚՚ ՓԲԸ, Երևան, 1987, 198 էջ: 5. Հովսեփյան Գ.Շ. Բնական ջրերի աղտոտման հիմնական գործոնները // Ճարտարապետություն և շինարարություն- արդիական հիմնախնդիրներ, միջազգ. գիտատեխն. 2-րդ կոնֆ. նյութեր: ԵՃՇՊՀ, Տեղեկագիր, 2010, №15/1, էջ 125-130: 6. Երոյան Ս. Ն. Հիդրոմորֆ լանդշաֆտների գրունտային ջրերի տեղադիրքի կարգավորում և օգտագործում // Տ.գ.թ. սեղմագիր, ՀՀ ՋՀՀԻ-ի, 2014, 28 էջ: 7. Մկրտչյան Ս.Մ. Գերխոնավ հողերում մշակաբույսերի համար գրունտային ջրերի օպտիմալ խորության որոշման մաթեմատիկական մոդել / Ագրոգիտություն. – 2011. – Թիվ 11-12. – Էջ 611-615:

31

WATER SYSTEMS References 1. Draft plan of Akhurian watershed area measurement. Protection of International watersheds environment, Austria, “Hulla and C…human Dynamics” organization. Yerevan, 2015,pp.260. 2. Mkrtchyan S. Studying the work of irrigation wells in the Artashat region. // Sci. TSS. ArmNIIGIM for 1963., p. 63. 3. Manukyan R.R. Improvment of reclaimed saline soil –alkali soil hydromorphic landscapes during their agricultural use GAUA // Yerevan, 2006, p.106. 4. Reclatation condition of irrigated and dried lands (01.01.1987). Reclamation CJSC, Yerevan, 1987, 198 pages. 5. Hovsepyan G.Sh., Edoyan T.V. Main factors of natural water contamination. Inter. 2-nd conference “Topical issues of architecture and construction”, Jermuk, RA, 2010 (15/1), pp 125-130. 6. Eroyan S.N. Reclamation conditions of hydromorphic landscapes and improvement issues. Author’s abstract, Institute of Water Problems and Hydroengineering, RA. 7. Mkrtchyan S.M. Mathematical model for determination of ground water optimal depth for cultural plants in very high damp soils. RA ministry of education and science. Yerevan, Agroscience, 2011, №11-12, 611-615 pp.

ОЦЕНКА КАЧЕСТВА ОРОШАЕМЫХ И ПОДЗЕМНЫХ ВОД ШИРАКСКОГО ПЛАТО ПО МЕЖДУНАРОДНЫМ СТАНДАРТАМ

С.Н. Ероян, С.М. Мкртчян, М.А. Калантарян, А.Г. Нагдалян Институт водных проблем и гидротехники им. Академика И.В. Егиазарова

Ширакское плато является не только наиболее важной областью в регионе, но также имеет важное значение для сельскохозяйственного производства в РА, где мелиорация орошаемых земель в основном обусловлено почвенно-гидрогеологическими факторами. В этом аспекте качество подземных и поверхностных вод, используемых для орошения, приобретает важное значение. По международным стандартам, качества вод применяемых для орошения Ширакского плато является хорошим. В случае использования вод соответствующих данному международному стандарту не приведет засолению Ширакского плато. Подземные и артезианские воды Ширакского плато составляют исключение. Ключевые слова. плато, подземные, артезианские, поверхностные, минерализация. 32

MECHANICAL ENGINEERING

UDC 621.91.02:67.01

STUDY OF CUTTERS OPERABILITY WHEN STEEL IS MACHINING BY VARIABLE CUTTING MODES

P.Yu. Gasparyan Shushi University of Technology ______

Efficiency of machining in automated production can be raised if cutting modes of machining vary depending on performance of cutting process and wear of the cutter. The random character of the tool wear is determined first of all by machining conditions of which are fluctuations of regimes of cutting, feeding of metal cutting lubricant and its kind, geometry of the tool, properties of the work and machining materials, operation parameters of the machine-tool etc. Impact of random factors on cutting tool wear character and intensity in case of machining of steels of 45, 40X, 30 XM and 20X13 grades by varying regimes of cutting has been studied. Interconnection between wear of the back surface and (6-3) stability parameters. In Fig.1,2,3,4 by 2 scheme curves of h3  f T  dependency are plotted for all cases. By a program developed for multifactor regression analysis statistical processing of experimental data has been carried out resulting in the following mathematical models of connections - tools stability model T  f (V,S,T, HRA, HB,h3 ) , tools wear intensity model Vh 3 = f(V,S, T, HRA, HB) , tools wear model h3 = f(V,S, T, HRA, HB,) , tools wear statistical characteristics - standard deviation (σh3) and dispersion (υh3). Key words: cutting edge, wear, operability, stability, cutting mode, wear intensity, cemented carbide alloy.

Introduction In spite of the fact that the above subject matter is a very important problem in raising the degree of cutting tools’ operability, however, the analysis of publications shows that they have not completely clear up the problem under discussion [1]. For this reason a necessity emerged to carry out special experimental studies a part of their results is presented below.

Problem statement Use of cutting tools in flexible systems of production shows that operation of each unit of tools, as a rule, is implemented by stable modes of machining, regardless of the list of work pieces. This is explained by difficulty of determination of possible duration of cutting tool stability. In an automated production efficiency of machining can be raised if cutting modes of the tool be changed depending on performance and wear of the tool [2]. It has been found that random character of the tool wear is conditioned by a numbers of factors. First of all by machining conditions, of which are variation of cutting modes, supply of cutting lubricant and its kind, geometry of the tool, properties of the cutting tool and the workpiece materials, operational parameters of the machine-tool etc. Revelation of impact of random factors depending on cutting tools wear character and intensity is of intense practical interest [3]. Based on the above mentioned factors the given process was studied and found interrelationship between wear at the back surface of cutters and stability parameters in order to raise effectiveness of machining process and performance of cutting tools. Wear intensity and nature of cutting tools for steels of 45, 40X, 30XM, and 20X13 grades have been studied. Dimensions of test part round blanks are D=100mm (diameter), L=1000mm(length).

33

MECHANICAL ENGINEERING Experiments have been made by cutting tools equipped with triangular T15K6 cemented carbide alloy tip. The following parameters of cutting modes have been chosen for steels of 45, 40X, and 30XM grades:

Vm in  50 (m/min); Sm in  0.1(mm/rev); tmin  0.5 (mm),

Vma x  80 (m/min); Smax  0.3 (mm/rev); t max  1.5 (mm), As for steel 20X13 the following mode parameters of cutting were chosen:

Vm in  80 (m/min); (mm/rev); tmin  2 (mm),

Vmax  150 (m/min); Sma x  0.5(mm/rev); t ma x  5 (mm),

Research results During study the following hardness numbers variations of tools and work pieces have been found

Steel Brinell hardness Rockwell A Grade number hardness number 45 HB 198 - 207 HRA 90,9 – 91,6 40X HB 297 – 371 HRA 90,2 – 91,7 30XM HB 78 – 341 HRA 90,5 – 91,8 20X13 HB 153 - 185 HRA 90,3 – 91,3

For each machining by cutting mode parameters five repetitions were made. For each batch of experiments the dynamics of the back surface wear of cutting tools were revealed

(Tables 1,2,3,4…) and wear (hs) dependence from its stability time T. Dependence graphs have been plotted for all cases (Fig.1,2,3,4…) by 2(6-3) scheme.

Table 1 Wear dynamics of the cutting edge when turning steel of 40X grade blank by the following parameters of variable modes

Vmax  200 (m/min); Smax  1.2(mm/rev); tmax  2 (mm),

No 1 2 3 4 5

HRA 90,3 91,3 90,2 90,5 91

HB 330 307 197 341 317

2 0,12 0,06 0,11 0,14 0,08

5 0,28 0,14 0,21 0,24 0,17

10 0,37 0,26 0,33 0,35 0,28

20 0,57 0,46 0,54 0,51 0,48

30 0,78 0,8 0,76 0,72

34

MECHANICAL ENGINEERING

Figure 1. Impact of cutting speed, feed, and feed depth on wear in machining steel of 40X grade when Vmax=200m/mim, Smax=1,2mm/rev., tmin=2mm

Table 2 Wear dynamics of the cutting edge when turning steel of 45 grade blank by the following parameters of variable modes when

Vmin  200 (m/min); Smin  0.5(mm/rev); tmin  5 (mm), No 1 2 3 4 5 HRA 91,6 91 90,8 91,4 91,8 HB 188 208 205 195 205 2 0,03 0,11 0,09 0,08 0,04 5 0,09 0,27 0,16 0,15 0,11 10 0,16 0,39 0,33 0,26 0,19 20 0,33 0,56 0,48 0,44 0,43 30 0,54 0,75 0,7 0,64 0,55 40 0,74 0,98 0,86 0,84 0,75 50 0,94 1,13 1,05 1,02 0,99 60 1,19 1,42 1,32 1,26 1,27

Figure 2. Impact of cutting speed, feed, and feed depth on wear in machining steel of 45 grade when

35

MECHANICAL ENGINEERING

Table 3

Wear dynamics of the cutting edge when turning steel of 20X13 grade blank by the following parameters of variable modes when

Vmax  150 (m/min); Sma x  0.1(mm/rev); tma x  2 (mm), No 1 2 3 4 5 HRA 91,1 90,4 91,2 90,6 92 HB 137 148 172 181 175 5 0,06 0,04 0,07 0,09 0,07 10 0,11 0,09 0,13 0,15 0,14 20 0,18 0,18 0,2 0,22 0,21 30 0,26 0,25 0,3 0,3 0,31 40 0,35 0,36 0,37 0,38 0,4 50 0,44 0,43 0,46 0,49 0,47 60 0,54 0,52 0,55 0,6 0,57

Figure 3. Impact of cutting speed, feed, and feed depth on wear in machining steel of 20X13 grade when Vmax=150m/mim, Smax=0,1mm/rev. tmin=2mm

Table 4

Wear dynamics of the cutting edge when turning steel of 30XM grade blank by the following parameters of variable modes when

Vmax  80 (m/min); Smax  0.3 (mm/rev); t max  1.5 (mm), No 1 2 3 4 5 HRA 91,5 91,4 91,1 91,5 91,5 HB 318 304 304 327 327 10 0,18 0,2 0,26 0,25 0,29 20 0,32 0,33 0,4 0,34 0,4 30 0,41 0,45 0,52 0,46 0,51 40 0,55 0,54 0,61 0,6 0,65 50 0,67 0,65 0,72 0,75 0,73 60 0,85 0,83 0,91 0,89 0,9 50 0,67 0,65 0,72 0,75 0,73 60 0,85 0,83 0,91 0,89 0,9 36

MECHANICAL ENGINEERING

Figure 4. Impact of cutting speed, feed, and feed depth on wear in machining steel of 30XM grade when Vmax=80m/mim, Smax=0,3mm/rev. tmin=1,5mm

For steels under study root-mean-square deviation of the cutting tool cutting edge increased during machining process and dispersion – decreased. At that the curve of the root- mean-square deviation had a character of the tool wear, that is in 8-10 time period we have intensive wear (run-in) zone, at a later time – (normal working) and catastrophic wear zones. In the first zone the wear curve had underwent essential oscillations and had no definite direction. For this reason cutting tool wearing process modeling has been done for the second zone. The root-mean-square deviation of the wear in case of optimal comparison of hardness of the tool and work piece materials depending on the time was 0,0205-0,0305, and in case of not optimal comparison (HB-max, HRA-min) it was 0,0259-0,384. In case of optimal comparison root- mean-square deviation decreased by 21 percent. It has become clear that in case of smooth machining all steels under study depending on parameters of cutting modes of turning in 2-6o minutes time interval cutting speed decreased in the main slowly and negligibly. Therefore, it can be assumed invariable. However, in 8-10 minutes time interval (running-in zone of the tool) tool-wear rate is 1,5-2 times higher than in the normal wear zone. In case of rough work of steels of all grades normal wear from 5-10 to 50-70 minutes interval tool-wear rate can be considered constant, however 1,5-2 times lower than in smooth machining. On the bases of obtained experimental data processing mathematical models of connections have been developed having the following form: Tools stability model – T=f(V,S,T,HRA,HB,h3). Tools wear intensity model – Vh3=f(V,S,T,HRA,HB), Tools wear model – h3= f(V,S,T,HRA,HB), Tools wear statistical characteristics - root-mean-square deviation (h3) and (Vh3) For steel 45 T-dependence is negligible,

h3  9.567 095S  0.6t  0.006HRA  0.019HB  0.006T , (1)

h3  0.195 0.01V  0.06S  0.1t  0.07HRA  0.12HB  0.78T , (2)

vh3  26.742 0.8V  0.201S  0.074t  0.254HRA  0.14.HB  0.77T , (3)

Vh3  21.056 0.914S  0.094t  0.017HRA  0.025HB : (4) 37

MECHANICAL ENGINEERING For steel 40X T-dependence is negligible,

h3  71.6151.16S  0.07t  0.08HRA  0.024HB  0.009T , (5)

h3  2.131 0.27V 1.38S  0.24t 1.3HRA  0.754HB  0.41T , (6)

vh3  24.0439 0.33V  0.18S  0.13t  0.39HRA  0.24HB  0.88T , (7)

Vh3  69.0761.17S  0.07t  0.07HRA  0.23HB : (8) For steel 30XM T = -1842.393-0.44V-61S-1.6t +1.35HRA+0.109HB+61.6h3, (9)

h3 = 21.958+ 0.07V+ 0.985S+ 0.025t- 0.02HRA+ 0.015T, (10)

h3 = 0.348+ 0.103V+ 0.504S+ 0.163t- 0.09HRA- 0.03HB- 0.63T, (11)

vh3  -1.343- 0.27V- 0.08S+ 0.015t+ 0.039HRA- 0.03HB- 0.83T , (12)

Vh3  41.292+ 0.004V+1.2S+ 0.02t- 0.04HRA : (13) For steel 20X13

T =12160.959-0.49V-35S- t -7.6HRA-0.34HB+ 43.8h3, (14)

h3 = 185.782+ 0.011V+ 0.799S+ 0.024t+ 0.179HRA+ 0.008HB+ 0.013, (15)

h3 = 1.298- 0.2V + 0.4S+ 0.116t- 0.18HRA+ 0.19HB+ 0.048T, (16)

vh3  -1.417- 0.33V- 0.09S- 0.05t+ 0.014HRA+ 0.031HB- 0.84T, (17)

Vh3  -216.021+ 0.009V+ 0.779S+ 0.02t + 0.209HRA+ 0.008HB: (18) Models 1 -20 are equivalent which is shown in Table 5, this can be evaluated as satisfactory.

Table 5

Quality of 1-20 models equivalency Model Determination factor R2 Degree of determination factor Fisher’s coefficient :F № impact P 1. - - - 2. 0,999 0,000000 181949,8 3. 0,561 0,000000 11,4398 4. 0,631 0,000000 14,43370 5. 0,999 0,000000 449129,9 6. - - - 7. 0,999 0,000000 319230,7 8. 0,358 0,000362 5,369942 9. 0,819 0,000000 36,63906 10. 0,999 0,000000 1390265 11. 0,935 0,000000 115,7391 12. 0,999 0,000000 502231,5 13. 0,5579 0,000000 10,88894 14. 0,7286 0,000000 22,03894 15. 0,999 0,000000 271990,1 16. 0,633 0,000000 16,56992 17. 0,999 0,000000 80275,36 18. 0,142 0,037394 2,463527 19. 0,754 0,000000 28,14314 20. 0,999 0,000000 77338,66

38

MECHANICAL ENGINEERING Regression analysis of the developed models has shown that impact of cutting speed, feed, and feed debt on cutting tool wear and root-mean-square deviation and variation coefficient is different. The cutting speed impact on the cutter wear and its root-mean-square deviation is higher than cutting feed and feed debt. On the contrary, feed and feed debt impact on variation coefficient is higher than cutting speed. Wear of the tool by increase of cutting speed, feed, and feed debt increases, but in that case its root-mean-square deviation that is also increases, that is wear values dispersion. The dependence of the variation coefficient from cutting speed and feed has an extremal character which means that by the feed increase variation coefficient also increases and its minimum value is shifted towards the cutting speed.

Conclusion The developed connection models take into consideration not only impact of cutting speed, feed, and feed debt onto cutting tools wear and their statistical characteristics but also their interference, and physical-mechanical properties of work piece and tool materials as well [5]. Statistical optimization of the cutting process enables to create conditions under which minimum intensity of cutting tools wear and minimum dispersion of the wear value are obtained.

On the basis of the developed connection models we can determine optimal stability of an edge-tool and its statistical characteristics while machining steels by variable cutting modes [6]. Raising guarantied stability of edge-tools up to optimal stability will increase endurance of cutting tools and ensure high economy.

References 1. Starkov. V.K. Machining by chip removal. Management of stability and quality in automated production. – M.Mashinostroenie, 1989, 296pp. 2. Starkov V.K., Gasparyan P.Yu. Statistical approach to tool life in automated machining. Krasnodat Polytechnic Institute. Advanced technological processes in mechanical engineering, machine-tool design, machine complexes and tools.//Collection of papers, 1991, UDK621.923-C.51-52pp. 3. Starkov V.K., Gasparyan P.Yu. Impact of random exciting factors on character and intensity of cutting tool wear while turning steels. Provision with tools and modern technologies in engineering.// Collection of papers, Krasnodar Science and Technology House, 1994, UDK621.941.025.004.024-C.35-37pp. 4. Starkov V.K., Gasparyan P.Yu. Development of statistical method for determining tool-life in automated machining of metals.//”Problems of science and culture in Artsakh”, materials of conference, 2000, p.29. 5. Starkov V.K., Gasparyan P.Yu. On tool wear nature under frequent change of cutting modes in edge-tool machining.// Collection of papers. I 741. IT and management. 2-1. Yerevan, Encyclopedia Armenika. 2006,-C38, 38-44pp. 6. Khristoforyan.S.Sh. Gasparyan P.Yu., Grigoryan G.R. Stability of tool wear under variable modes of cutting, approach to setting of tool-life in automated machining. ISSN 1829-0043. Bulletin of Engineering Academy of Armenia (WIAA) Vol-3, 2006, UDK621.034-C.408- 411pp. 7. Христофорян С.Ш., Гаспарян П.Ю., Григорян Г.Р. Стабильность изнашивания инструмента в переменных условиях резания, подход к назначению периода стойкости инструмента при автоматизированной обработке. ISSN 1829-0043. Вестник инженерной академии Армении (ВИАА.) Т.3, N3.- 2006 г.-УДК 621.034 -С. 408-411.

39

MECHANICAL ENGINEERING 8. Старков В.К. Обработка резание. Управление стабильностью и качеством в автоматизированном производстве – М: Машиностроение, 1989; 296с. 9. Старков В.К., Гаспарян П.Ю. Статистический подход к назначению периода стойкости инструмента при автоматизированной обработке. Краснодарский ордена трудового красного знамени политехнический институт. Прогрессивные технологические процессы в машиностроении, конструирование станков, станочных комплексов и инструментов.//Сборник научных трудов, 1991.-УДК 621.923-С. 51-52. 10. Старков В.К., Гаспарян П.Ю. Влияние случайных возмущающих факторов на характер и интенсивность изнашивания режущего инструмента при точении сталей. Инструментообеспечение и современные технологии в технике.//Сборник научных трудов.// Краснодарский дом науки и техники Рос.НИО, 1994.-УДК 621.941. 025.004.024-С. 35-37. 11. Старков В.К., Гаспарян П.Ю. Разработка статистического метода определения периода стойкости инструмента при автоматизированной обработке металлов.// ԱրՊՀ Հայաստանում քրիստոնեությունը որպես պետական կրոն ընդունման 1700-ամյակին նվիրված՝ «Գիտության և մշակույթի հիմնահարցերն Արցախում» հանրապետական գիտաժողովի նյութերը, 2000 -էջ 29: 12. Старков В.К., Гаспарян П.Ю. О характере изнашивани инструмента в условиях частой смены режимов обработки резанием.//Сборник научных трудов.И 741. Информационные технологии и управление. 2-1. Ереван: Энциклопедия – Арменика. 2006.-С.38-44.

References 1. Starkov. V.K. Machining by chip removal. Management of stability and quality in automated production. – M.Mashinostroenie, 1989, 296pp. 2. Starkov V.K., Gasparyan P.Yu. Statistical approach to tool life in automated machining. Krasnodat Polytechnic Institute. Advanced technological processes in mechanical engineering, machine-tool design, machine complexes and tools.//Collection of papers, 1991, UDK621.923-C.51-52pp. 3. Starkov V.K., Gasparyan P.Yu. Impact of random exciting factors on character and intensity of cutting tool wear while turning steels. Provision with tools and modern technologies in engineering.// Collection of papers, Krasnodar Science and Technology House, 1994, UDK621.941.025.004.024-C.35-37pp. 4. Starkov V.K., Gasparyan P.Yu. Development of statistical method for determining tool-life in automated machining of metals.//”Problems of science and culture in Artsakh”, materials of conference, 2000, p.29. 5. Starkov V.K., Gasparyan P.Yu. On tool wear nature under frequent change of cutting modes in edge-tool machining.// Collection of papers. I 741. IT and management. 2-1. Yerevan, Encyclopedia Armenika. 2006,-C38, 38-44pp. 6. Khristoforyan.S.Sh. Gasparyan P.Yu., Grigoryan G.R. Stability of tool wear under variable modes of cutting, approach to setting of tool-life in automated machining. ISSN 1829-0043. Bulletin of Engineering Academy of Armenia (WIAA) Vol-3, 2006, UDK621.034-C.408- 411pp. 7. Khristoforyan.S.Sh. Gasparyan P.Yu., Grigoryan G.R. Stability of tool wear under variable modes of cutting, approach to setting of tool-life in automated machining. ISSN 1829-0043. Bulletin of Engineering Academy of Armenia (WIAA) Vol-3, 2006, UDK621.034-C.408- 411pp. 8. Starkov. V.K. Machining by chip removal. Management of stability and quality in automated production. – M.Mashinostroenie, 1989, 296pp.

40

MECHANICAL ENGINEERING 9. Starkov V.K., Gasparyan P.Yu. Statistical approach to tool life in automated machining. Krasnodat Polytechnic Institute. Advanced technological processes in mechanical engineering, machine-tool design, machine complexes and tools.//Collection of papers, 1991, UDK621.923-C.51-52pp. 10. Starkov V.K., Gasparyan P.Yu. Impact of random exciting factors on character and intensity of cutting tool wear while turning steels. Provision with tools and modern technologies in engineering.// Collection of papers, Krasnodar Science and Technology House, 1994, UDK621.941.025.004.024-C.35-37pp. 11. Starkov V.K., Gasparyan P.Yu. Development of statistical method for determining tool-life in automated machining of metals.//”Problems of science and culture in Artsakh”, materials of conference, 2000, p.29. 12. Starkov V.K., Gasparyan P.Yu. On tool wear nature under frequent change of cutting modes in edge-tool machining.// Collection of papers. I 741. IT and management. 2-1. Yerevan, Encyclopedia Armenika. 2006,-C38, 38-44pp.

______

h3  f T 

T  f (V,S,T, HRA, HB,h3 )

Vh 3 = f(V,S, T, HRA, HB) h3 = f(V,S, T, HRA, HB,)

41

MECHANICAL ENGINEERING ИСЛЕДОВАНИЕ РАБОТАСПОСОБНОСТИ РЕЗЦОВ ПРИ ОБРАБОТКИ СТАЛИ С РАЗНЫМИ РЕЖИМАМИ РЕЗАНИЯ

П.Ю. Гаспарян Шушинский технологический университет ______В автоматизированном производстве производительность обработки можно повышать, при изменении режимов резания обработки, в зависимости от производительности процесса резания и износа инструмента. Случайный характер износа инструмента определяется прежде всего условиями обработки, которыми являются колебания режимов резания, подача и тип смазочно-охлаждаюших жидкостей, геометрия инструмента, свойства обрабатывающих и обрабатываемых материалов, эксплуатационные параметры станка итд. Исследован процесс точения сталей марок сталь 45; 40X; 30XM; 20X13 в широком диапазоне изменения режимов резания при действии возмущающих факторов нестабильности режущих свойств инструмента и обрабатываемости заготовки на характер и интенсивность износа инструмента. Установлена взаимосвязь износа задней поверхности и параметрами стойкости резцов. По схеме 26-3 получены кривые

реализации функции h3  f T  (рис.1, 2, 3, 4, …). По программе многофакторного регресионного анализа проведена статистическая обработка эксперементальных данных, в результате которой получены математические модели связей в следующей форме;

модель стойкости инструмента: T  f (V,S,T, HRA, HB,h3 ); модель интенсивности

изнашивания: Vh 3 = f(V,S, T, HRA, HB) ; модель износа инструмента: h3 = f(V,S, T, HRA, HB,) и их статистических характеристик: средне квадратическое

отклонение (σh3) и дисперсия (υh3):

Ключевые слова. Режушая грань, изношенность, работоспособность, стойкость, режимы резания, интенсивность изнаաивания, металокерамические твердые сплавы.

42

ARCHITECTURE AND CONSTRUCTION

UDC 69.003.13:69.056

ON CONSTRUCTION EFFICIENCY INCREASE IN MOUNTAINOUS CONDITIONS

R.G. Israelyan, A.A. Pogosyan Shushi University of Technology ______In the present paper we have systematized and revealed regularities of climatic factors dynamic change in mountainous conditions. Multifactor mathematical models were developed designed to assess deviations of construction parameters in such conditions where the main parameters are duration of labor and technical resources use, vehicle transportation, storage of production reserves, construction time. Recommendations have been submitted for practical application of multifactor mathematical models in organizational, technological and engineering solutions leading to construction efficiency increase.

Key words: climatic factors, influence, construction process, deviation, cost price, efficiency.

Analyzing operational experience of building organizations of Armenia and Nagorno Karabagh, we have solved problems of systematization and revelation regularities of climatic factors dynamic change depending on altitude above sea level (h), modeling of construction parameters deviations, optimization of organizational management and etc. [1,3]. Factors of mountainous conditions are subdivided into the following groups.

1. Geomorphologic factors

1.1 Tortuosity of roads and ruggedness of relief – factor X1.1. Criterion for estimation of this factor is a coefficient determined by ratio of actual length of a road between two points to its shortest length on the plan of locality. This factor is determined by the following expression

-3 X1.1=0,4604+1,411 x 10 h

1.2 Seismicity – factor X1.2. With altitude rise a tendency to increase horizontal acceleration of soils is observed. However, there is no strongly pronounced character of their development along the vertical, since this index mainly depends on geological conditions of construction site. These conditions are markedly distinguished by heterogeneity.

1.3 Hardness and stoniness of soils, relief complexity – factors X1.3 and X1.4. At the cost of these factors construction duration increases on the average 1.08 times regardless of the relief altitude above sea level.

1.4 Soils’ frost zone – factor X1.5. Taking into consideration the difference of soils properties conditioned some frost zone spread in values and is on the average 60 to 70 cm in height of mountainous relief.

1.5 Falling - landslide processes – factor X1.6. Maximum development of these processes occur at altitudes 800 to 1000m above sea level and 34 percent. No regular development the above processes is observed.

2. Climatic and geological factors

2.1 Atmospheric precipitations – factor X2.1. The rainfall amount for April to June period exceeds over twofold average monthly figures as compared with the rest of months of the year. Average annual rainfall amount depending on altitude above sea level is determined by the following formula

43

ARCHITECTURE AND CONSTRUCTION

-3 -6 2 X2.1=33.56+472.56 x 10 հ -80 x 10 h , mm.

2.2 Air temperature – factor X2.2. Average annual air temperature below 800m of altitude above sea level and has positive value. Within the altitudes from 800m to 2000m duration the weather with temperature below zero is 3-4 months, and over 2000m above sea level is 5 to 8 months.

-3 X2.2=18.557-7.091 x 10 հ , C

2.3 Wind speed – factor X2.3. Taking into consideration directivity of mountain and valley winds was established dependence of change along the vertical of average annual wind speed:

-3 X2.3=0.8236 + 0.836 x 10 հ, m/s

2.4 Barometric pressure – factor X2.4. Barometric factor decrease along verticals is reflected on adaptation (readaptaion) regimes of employees, productivity of labor, vehicle movement duration, etc.

-3 2 X2.4=1000 – 0.11h+0.41 x 10 հ , GPa

2.5 Number of days with snow blanket – factorX2.5. Snow blanket time in mountainous regions depends on elevation, relief. form and exposition of slopes and is of form

-3 - 6 X2.5= 81.689 – 118.631 x 10 հ +75.128 x 10 , days.

2.6 Air moisture – factor X2.6. Depending on the season the relative moisture of air in mountainous regions differs both in value and character of distribution. In summertime the air relative moisture amounts to maximum values at 2000m above sea level. In winter relative moisture distribution pattern has almost opposite to the picture as compared with summer months pattern. X =60.68 + 4.45 x 10-3հ, % 2.6

3. Organizational, technical, technological and social factors This group of factors involves: infringement of material and technical resources delivery timelines, low level of methods of labor and production, building and assembly jobs organization, changes of work organization technology, social and life conditions, etc. Due to influence of these factors construction time increases in 1.16 times and has a constant character along the vertical. On the basis of revealed regularities and dynamics of climatic factors increase multifactor mathematical models have been developed reflecting change of construction parameters in mountainous conditions [4,5].

h 1. Time of labor resources use (K mp). This parameter is formed under influence of a wide range of climatic, organizational, technological, technical, social and other factors

h К тр= 216-14Z21-2Z2.2-2Z2.3-Z2.4-7Z2.5-15Z2.3

2. Technical-organizational reliability of usage of technical resources (Kотн). This reliability is evaluated as a ration of actual time of use of technical resources to normative one

h h К отн. = 0.272+0.053 Z2.1+0.120Z2.2+0.157Z2.3+0.123Z2.5+0.044Z2.6+0.222К тр

44

ARCHITECTURE AND CONSTRUCTION

h 3. Time of vehicle movement (K тр). This parameter is formed by conditions of impassibility of roads, state of roads, dispersion of facilities under construction, climatic factors and etc.

h К тр. = 0.190+0.469 Z1.1+0.134Z2.1+0.106Z2.4+0.099Z2.1. Z2.6

h h 4. Storage time of production reserves (K хр). Most typical factors having an influence on K хр are resource transportation conditions, seasonal nature of work, downtime caused by weather conditions and etc.

h h К хр= 1.964+0.238 К тр+0,127Z1.1+0.204Z2.1

In the above mentioned formulae coefficients of climatic factors’ development dynamics along the vertical.

h 5. Construction time (K пр) is determined subject to coefficients of each factor weight using the “Delfi” method [5]

h К пр=1.45+0.250  1.1+0.222 2.1+0.186 2.2+0.113 2.3+0.133 2.4+0.059 2.5+0.037 2.6,

where 1.1, 2.1, 2.2, 2.3, 2.4, 2.5 2.6 are coefficients of weight influence of X1.1, X2.1, X2.2, X2.3

X2.4, X2.5, X2.6 factors.

The presented multifactor models of construction parameters change is recommended for use in organizational, technological and engineering solutions of construction efficiency increase in mountainous conditions. Examples of solution of similar problems can be found in the works [2,6].

Conclusions 1. Regularities of climatic factors development in mountainous conditions along the vertical have been systematized and revealed. 2. Multifactor mathematical models have been developed designed for determining deviation of construction parameters depending on height of facilities under construction above sea level . 3. Recommendations were made of the use in organizational, technological and engineering solutions for providing increase in construction efficiency in mountainous conditions.

References 1. Исраелян Р. Г. “Моделирование отклонений продолжительности строительства в горных условиях. Аудит и финансовый анализ. N 2, 2015. М. C. 120-123 2. Исраелян Р. Г. Основы организации строительством в горных условиях. Учебник. Ереван, НУАиСА, 2015, 135 с. 3. Исраелян Р. Г. “Оценка отклонений параметров использования ресурсов строительного производства в горных условиях''. Степанакерт, АрГУ, 2011, 32 с. 4. Исраелян Р. Г. “Прогнозирование использования трудовых ресурсов строительства в горных условиях”. Международный сборник научных трудов. Стройинвест 2011, М; ГАКХиС,2011.С253-256. 5. Исраелян Р. Г. Основы организации и управления строительством в горных условиях. Анализ. Модели. Решения.Степанакерт, АрГУ 2011-160с.

45

ARCHITECTURE AND CONSTRUCTION 6. Israelyan R.G., Oleinik P.P., Barsegyan A.A. “Modeling of construction organizations’ mobility in the mountainous conditions”, International conference on the European science and technology, October 2014, Munich, Germany P.87-91

References 1. Israelyan R.G. Modeling of construction time deviation in mountainous conditions. Audit and financial analysis. N 2, 2015. M. C. 120-123pp. 2. Israelyan R.G. Principles of construction management in mountainous conditions. Textbook. Yerevan, NUA and CA, 2015, 135pp. 3. Israelyan R.G. Valuation of deviations of construction technology resources usage parameters in mountainous conditions. Stepanakert, Nagorno-Karabagh, Artsakh State University, 2011, 32pp. 4. Israelyan R.G. Prediction of construction labor resources use in mountainous conditions. Int’l Collection of papers, Strojinvest, 2011, M. 253-256pp. 5. Israelyan R.G. Principles of construction organization and management in mountainous conditions. Analysis. Models. Solutions. Stepanakert, Nagorno-Karabagh, Artsakh State University, 2011, 160pp. 6. Israelyan R.G., Olejnik P.P., Barseghyan A.A. Modeling of construction organizations mobility in mountainous conditions. International Conference on the European Science and Technology. October 2014. Munich, Germany. 87-91pp.

______

К ВОПРОСУ О ПОВЫШЕНИИ ЭФФЕКТИВНОСТИ СТРОИТЕЛЬСТВА В ГОРНЫХ УСЛОВИЯХ

Р.Г. Исраелян, А.А. Погосян Шушинский технологический университет ______Систематизированы и выявлены закономерности развития природно-климатических факторов горных условий. Разработаны многофакторные математические модели по оценке 46

ARCHITECTURE AND CONSTRUCTION отклонений этих условиях параметров использования трудовых и технических ресурсов, автотранспортных средств, хранения производственных запасов и продолжительности строительства. Даны рекомендации по повышению эффективности строительства, с практическим применением математических моделей в организационно - технологических и технических решениях.

Ключевые слова: природно-климатические факторы, воздействия, строительные процессы, отклонения, математические модели, оптимизация, параметры, себестоимость, эффективность.

47

CHEMISTRY UDC 547.78:631.8.022.3

SYNTHESIS OF (3-S-SUBSTITUTED)-1H-1,2,4-TRIAZOLYL-PYRIMIDINE DERIVATIVES

R.S. Hakobyan Shushi University of Technology ______In the plan of search for new chemical means of plant protection in a series of nonfused bi- and triheterocyclic systems, the synthesis of starting pyrimidinyl-trimethyl-ammonium chloride was carried out. For this under the action of 4-chloro-6-methyl-2-(methylthio)pyrimidine with trimethylamine the corresponding trimethyl-(6-methyl-2-methylthio-pyrimidin-4-yl)-ammonium chloride was synthesized. The further reaction of the latter with 3-S-substiuted 1H-1,2,4-triazoles afforded a series of compounds with combination of 1,2,4- triazole and pyrimidine cycles in the same molecule. To introduce a third heterocycle (pyrazole ring) in the molecule, the same salt was treated with 3-((1,3,5-trimethyl-1H-pyrazol-4-yl)thio)-1H-1,2,4-triazole. Currently, all synthesized compounds undergo laboratory-vegetation testing to discover among them the pesticide and growth-regulating properties.

Key words: 4-chloro-6-methyl-2-(methylthio)pyrimidine, 3-S-substiuted 1H-1,2,4-triazoles, pyrazole, heterocyclization, tautomeria.

Introduction Pyrimidine and 1,2,4-triazole derivatives exhibit a wide spectrum of biological activity and have application not only in medical practice but also in agriculture as chemical means of plant protection. Some of the nucleic acids, vitamins, antibiotics (amitsetin, bleomycin), certain drugs (barbiturates, pyrimidine sulfonamides, ftorafur, orotic acid), strong poison (tetrodotoxin), coenzymes (uridine diphosphate glucose) contain the pyrimidine cycle. As a result of continuing researches in the series of substituted pyrimidines, the compounds possessing antitumor [1, 2], anti-tuberculosis [3], cardiotonic [4], anti-HIV[ 5], antibacterial [6] and antiviral (hepatitis C) [7] activities were discovered, some derivatives are proposed as potential antagonists of adenosine receptors [8] and protein kinase inhibitors [9]. Among the pyrimidine derivatives a series of pyrimidinamine and pyrimidine organothiophosphate insecticides, rodenticides and acaricides, pyrimidine fungicides, pyrimidinediamine, pyrimidinyloxybenzylamine, pyrimidinyloxy(thio)benzoic acid derivatives with herbicidal activity and a large series of new pyrimidinylsulfonylurea herbicides are used in agriculture [10]. The arsenal of pesticides based on 1,2,4-triazole is also very large. There are well known triazole and triazolone herbicides, triazole fungicides, triazole organothiophosphate insecticides. The compounds with combination of these two pharmacophore heterocycles – triazolopyrimidines are used as herbicides and fungicides [10]. However, the increase of environmental requirements, as well as the fact that the harmful organisms and causative agents of plant diseases eventually acquire resistance against the chemical means of plant protection, make it necessary to systematically replenish the arsenal of pesticides with the new preparations having different mechanisms of action.

Problem Statement According to literature there are very few data about the biological properties for the systems, where the pyrimidine ring is directly linked to another pharmacophore heterocycle, particularly 1,2,4- triazole, which derivatives also exhibit pesticidal activity. In this regard, the targeted synthesis of new compounds with a combination of two pharmacophore heterocycles in the same molecule could lead 48

CHEMISTRY to new biologically active derivatives, with respect to which mentioned resistance has not yet emerged. The aim of present research was the synthesis of novel series of nonfused bi- and triheterocyclic systems derivatives for further subsequent screening of their biological activity to search for new chemical means of plant protection.

Results and discussion As the starting reagent 4-chloro-6-methyl-2-(methylthio)pyrimidine (1), that was synthesized according the method described in [11]. Under the action of trimethylamine it was converted into corresponding pyrimidinyl-trimethyl-ammonium chloride (2). The latter at mild condintions (heating at 45-50 0C in acetone medium for 2 h) reacted with a series of previously synthesized 3-S-substituted 1,2,4-triazoles and afforded the targeted compounds with combination of pyrimidine, 1,2,4-triazole (3a-f) and also pyrazole heterocycles (3g).

SCH HN N 3 SCH3 SCH3 SR N N N(CH3)3 N N N N N N H C Cl + - 3 H3C N (CH3)3Cl H3C N SR N 1 2 3a-g

R = CH3(a), CH2C6H5(b), CH2COOCH3(c); H3C CH3 N CH2COOC2H5,(d), CH2CONH2(e), CH2CH2O-C6H4-CH3-p(f), (g). N

H3C

3-Substituted 1,2,4-triazoles may exist in different tautomeric forms, depending on the position of mobile hydrogen atom at one of the three nitrogen atoms of the heterocycle. In our early studies based on 1H and 13C NMR spectral data we had proved that the substitution occurs predominantly at nitrogen atom of the first position of triazole ring [12]. Currently, all synthesized compounds undergo laboratory-vegetation testing to discover among them the pesticide and growth-regulating properties. During the preliminary screening some of the synthesized compounds have shown growth stimulant properties. These compounds are selected for deeper study and further field trials.

Experimental The 1H NMR (300 MHz) and 13C NMR (75 MHz) spectra were recorded at 30 0C on Varian Mercury-300 spectrometer with standard pulse sequences operating in the mixture of solvents DMSO- d6 and CCl4 (1:3) using tetramethylsilane (0.0 ppm) as internal standard. The NMR multiplicities br s, s, d, t, q, and m stand for broad singlet, singlet, doublet, triplet, quartet and multiplet, respectively. The reaction progress and purity of the obtained substances were checked by using the tlc method on “Silufol UV-254” plates and acetone/hexane mixture (2:1) as eluent. All melting points were determined in open capillaries and are uncorrected. Compound 1 was synthesized according the method described in [2].

Trimethyl-(6-methyl-2-methylthio-pyrimidin-4-yl)-ammonium chloride (2). To a solution of compound 1 (0.01 mol) in 10 mL of absolute benzene, at 5 0C a solution of trimethylamine (0.01

49

CHEMISTRY mol) in 5 mL of absolute benzene was added. The reaction mixture was allowed to stand at 20 0C for 24 h. The precipitate was filtered off, washed with absolute ether and stored in desiccator. Yield: 87%; 0 1 m.p. 136-137 C. H NMR δ ppm: 2.59 (s, 3H, CH3); 2.60 (s, 3H, SCH3); 7.77 (s, 1H, CH-pyrim.).

Anal. Calcd for C9H16ClN3S: Cl, 15.17; N, 17.98; S, 13,.72. Found: Cl, 15.03; N, 17.69; S, 13.88.

Synthesis of compounds (3a-g). To a suspension of potassium salt of S-substituted 1,2,4-triazole (0.01 mol) in 20 mL of acetone, at 20 0C compound 2 was added by portions with continuous stirring. The mixture was allowed to stand at the same temperature overnight, then heated at 45-50 0C for 3-4 h until complete removal of trimethylamine. The solvent was evaporated, the residue was processed with water, filtered off and dried.

4-Methyl-2-(methylthio)-6-(3-(methylthio)-1H-1,2,4-triazol-1-yl)pyrimidine (3a). Yield: 0 1 85%; m.p. 100-102 C. H NMR δ ppm: 2.56 (s, 3H, CH3); 2.60 (s, 3H, SCH3); 7.35 (s, 1H, CH- pyrim.); 9.24 (s, 1H, CH-triazol). Anal. Calcd for C9H11N5S2: N, 27.64; S, 25.31. Found: N, 27.79; S, 25.12.

4-Methyl-2-(methylthio)-6-(3-(benzylthio)-1H-1,2,4-triazol-1-yl)pyrimidine (3b). Yield: 0 1 81%; m.p. 78-80 C. H NMR δ ppm: 2.52 (s, 3H, CH3); 2.56 (s, 3H, SCH3); 3.81 (s, 2H, CH2); 7.05-

7.20 (m, 5H, C6H5); 7.35 (s, 1H, CH-pyrim.); 9.26 (s, 1H, CH-triazol). Anal. Calcd for C15H15N5S2: N, 21.26; S, 19.47. Found: N, 21.12; S, 19.25.

Methyl 2-((1-(6-methyl-2-(methylthio)pyrimidin-4-yl)-1H-1,2,4-triazol-3-yl)thio)acetate 0 1 (3c). Yield: 61%; m.p. 104-106 C. H NMR δ ppm: 2.54 (s, 3H, CH3); 2.58 (s, 3H, SCH3); 3.75 (s,

3H, OCH3); 3.83 (s, 2H, CH2); 7.35 (s, 1H, CH-pyrim.); 9.24 (s, 1H, CH-triazol). Anal. Calcd for

C11H13N5O2S2: N, 22.49; S, 20.60. Found: N, 22.60; S, 20.78.

Ethyl 2-((1-(6-methyl-2-(methylthio)pyrimidin-4-yl)-1H-1,2,4-triazol-3-yl)thio)acetate (3d). 0 1 Yield: 64%; m.p. 92-93 C. H NMR δ ppm: 1.25 (t, J=7.1 Hz, 3H, OCH2CH3); 2.55 (s, 3H, CH3);

2.58 (s, 3H, SCH3); 3.84 (s, 2H, CH2); 4.05 (q, J=7.1 Hz, 2H, OCH2CH3); 7.36 (s, 1H, CH-pyrim.);

9.26 (s, 1H, CH-triazol). Anal. Calcd for C12H15N5O2S2: N, 21.52; S, 19.71. Found: N, 21.33; S, 19.49.

2-((1-(6-Methyl-2-(methylthio)pyrimidin-4-yl)-1H-1,2,4-triazol-3-yl)thio)acetamide (3e). 0 1 Yield: 75%; m.p. 230-232 C. H NMR δ ppm: 2.54 (s, 3H, CH3); 2.58 (s, 3H, SCH3); 3.85 (s, 2H,

CH2); 6.97 and 7.34 (brs, 2H, NH2); 7.36 (s, 1H, CH-pyrim.); 9.26 (s, 1H, CH-triazol). Anal. Calcd for

C10H12N6OS2: N, 28.36; S, 21.64. Found: N, 28.15; S, 21.41.

4-Methyl-2-(methylthio)-6-(3-((2-(p-tolyloxy)ethyl)thio)-1H-1,2,4-triazol-1-yl)pyrimidine 0 1 (3f). Yield: 98%; m.p. 114-115 C. H NMR δ ppm: 2.27 (s, 3H, CH3-tolyl); 2.54 (s, 3H, CH3); 2.58 (s,

3H, SCH3); 3.53 (t, J=6.7, 2H, SCH2); 4.26 (t, J=6.7, 2H, OCH2); 6.77-7.04 (m, 4H, C6H4); 7.31 (s, 1H, CH-pyrim.); 9.26 (s, 1H, CH- triazol). 13C NMR δ ppm: 13.40, 19.89, 23.72, 29.67, 66.02, 102.44, 113.97, 128.98, 129.20, 143.00, 153.91, 155.70, 162.83, 169.83, 171.54. Anal. Calcd for

C17H19N5OS2: N, 18.75; S, 17.17. Found: N, 18.58; S, 17.40.

4-Methyl-2-(methylthio)-6-(3-((1,3,5-trimethyl-1H-pyrazol-4-yl)thio)-1H-1,2,4-triazol-1- 0 1 yl)pyrimidine (3g). Yield: 72%; m.p. 144-146 C. H NMR δ ppm: 2.25 and 2.47 (s,s 6H, 2×CH3- pyrazol); 2.54 (s, 3H, CH3); 2.58 (s, 3H, SCH3); 3.56 (s, 3H, NCH3); 7.37 (s, 1H, CH-pyrim.); 9.28 (s, 1H, CH-triazol). 13C NMR δ ppm: 9.58, 11.42, 13.37, 23.73, 35.99, 99.52, 102.43, 142.60, 142.87,

50

CHEMISTRY

149.63, 153.97, 163.48, 169.77, 171.44. Anal. Calcd for C14H17N7S2: N, 28.22; S, 18.46. Found: N, 28.38; S, 18.22.

Conclusion A novel series of nonfused bi- and triheterocyclic systems derivatives are synthesized. During the preliminary laboratory-vegetation testing a growth-regulating activity of some substances was discovered. This fact indicates that the obtained compounds may be of interest in the search for new plant growth regulators.

References 1. R. Jorda, L. Havlek, I.W. McNae, D.M. Walkinshaw, J. Voller, A. Sturc, J. Navratilova, M. Kuzma, M. Mistrík, J. Bartek, M. Strnad, V. Krystof. Pyrazolo[4,3-d]pyrimidine Bioisostere of Roscovitine: Evalution of a Novel Selective Inhibitor of Cyclin-Dependent Kinases with Antiproliferative Activity. J. Med. Chem. 2011, v. 54, № 8, p. 2980. 2. Yen-Shih Tung, Mohane Selvaraj Coumar, Yu-Shan Wu, Hui-Yi Shiao, Jang-Yang Chang, Jing-Ping Liou, Paritosh Shukla, Chun-Wei Chang, Chi-Yen Chang, Ching-Chuan Kuo, Teng- Kuang Yeh, Chin-Yu Lin, Jian-Sung Wu, Su-Ying Wu, Chun-Chen Liao, Hsing-Pang Hsieh. Synthesis and Biological Evaluation of 5,6-Fused Bicyclic Heteroaromatics To Identify Orally Bioavailable Anticancer Agents. J. Med. Chem. 2011, v. 54, p. 3076. 3. N. Shakya, N.C. Srivastav, N. Desroches, B. Agrawal, D.Y. Kunimoto, R. Kumar. 3′-Bromo analogues of pyrimidine nucleosides as a new class of potent inhibitors of Micobacterium tuberculosis. J. Med. Chem. 2010, v. 53, № 10, p. 4130. 4. P. Dorigo, D. Fraccarollo, G. Santostasi, I. Maragno, M. Floreani, P.A. Borea, L. Mosti, L. Sansebastiano, P. Fossa, F. Orsini, F. Benetollo, G. Bombieri. Synthesis and crdiotonic activity of novel pyrimidine derivatives: crystallographic and quantum chemical studies. J. Med. Chem. 1996, v. 39, № 19, p. 3671. 5. A. San-Felix, S. Velazquez, M.J. Perez-Perez, J. Balzarini, E. De Clercq, M.J. Camarasa. Novel series of TSAO-T derivatives. Synthesis and anti-HIV-1 activity of 4-, 5-, and 6-substituted pyrimidine analogues. J. Med. Chem. 1994, v. 37, № 4, p. 453-460. 6. B.S. Rauckman, M.Y. Tidwell, J.V. Johnson, B. Roth. 2,4-Diamino-5-(6-quinolylmethyl)-and- [(tetrahydro-6-quinolyl)methyl]pirimidine derivatives.Further specificity studies. J. Med. Chem. 1989, v. 32, № 8, 1927. 7. N.C. Srivastav, N. Shakya, M. Mak, B.Agrawal, D. L.Tyrrell, R.Kumar J. Med. Chem. 2010, v. 53, № 19, p. 7156. 8. V. Yaziji, D. Rodriguez, H. Gutierrez-de-Teran, A. Coelho, O. Caamano, X. Garcı´a-Mera, Jose Brea, M.I. Loza, M.I. Cadavid, E. Sotelo. Pyrimidine derivatives as potent and selective A3 adenosine receptor antagonists. J. Med. Chem. 2011, v. 54, № 2, p. 457-471. 9. P. Stanetty, G. Hattinger, M. Schnürch, M.D. Mihovilovic. Novel and Efficient Access to Phenylamino-pyrimidine Type Protein Kinase C Inhibitors Utilizing a Negishi Cross-Coupling Strategy. J. Org. Chem. 2005, v. 70, № 13, p. 5215. 10. http://www.alanwood.net/pesticides/class_pesticides.html 11. V.A.Pivazyan, E.A.Ghazaryan, R.S.Shainova, R.A.Tamazyan, A.G.Ayvazyan, A.P.Yengoyan. Synthesis of Novel Derivatives on the Basis of 4-Hydrazinyl-6-methyl-2-(alkylthio)pyrimidines and Their Preliminary Biological Evalution.American Chemical Science Journal, 2016, v.16, № 3, p.1-10. 12. K.A. Eliazyan, L.V. Shahbazyan, V.A. Pivazyan, E.A. Ghazaryan, A.P.Yengoyan. Synthesis of Novel 1,3-Substituted 1H–[1,2,4] –Triazole-3-thiol Derivatives. //Heteroatom. Chem., 2009, №7, p. 405-410.

51

CHEMISTRY

______

: 4- -6- -2- , 3-S- 1H-1,2,4- , , , :

СИНТЕЗ ПРОИЗВОДНЫХ (3-S-ЗАМЕЩЕННЫХ)-1H-1,2,4,-ТРИАЗОЛ-ПИРИМИДИНОВ

Р.С. Акопян Шушинский технологический университет ______В целях обнаружения новых средств защиты растений в ряду соединений, содержащих неконденсированные два или три гетероцикла, в качестве исходного вещества использовался пиримидинил триметил аммоний хлорид. Для этого взаимодействием 4-хлор-6-метил-2- метилтио пиримидина с триметиламином ситезирован триметил-(6-метил-2-метилтио- пиримидин-4-ил)аммоний хлорид. При дальнейшем взаимодействии полученного хлорида с 3- S-замещенным 1H-1,2,4-триазолом получаются новые соединения, содержащие циклы неконденсированных пиримидина и триазола. В результате реакции полученной соли с 3- ((1,3,5-триметил-1H-пиразол-4-ил)тио)-1H-1,2,4-триазолом, получается соединение, молекула которого содержит 3 гетероцикла: пиримидин, триазол, пиразол. Все полученные соединения прошли лабораторно-вегетативное исследование в целях обноружения в них новых пестицидов и регуляторов роста растений.

Ключевые слова: 4-Хлор-6-метил-2-метилтио пиримидин, 3- S-замещенный 1H-1,2,4- триазол, пиразол, гетероциклизация, таутомерия.

52

CHEMISTRY

UDC 541.127

MECHANISM OF INHIBITION OF CUMENE OXIDATION THE EXTRACT OF FLAX SEEDS

R.L. Vardanyan1, L.R. Vardanyan1, S.A. Hayrapetyan1, P.G. Baghdasaryan2 1Goris State University 2Shushi University of Technology ______Antioxidant property of the ethylacetate extract of flax seeds was studied by the example of model reaction of the initiated oxidation of сumene. It was established that extract of flax seeds exhibits antioxidant property at cumene oxidation. However, in contrast to classical inhibitors (phenols, aromatic amines, etc.) kinetic curves of oxygen absorption in the presence of flax seeds extract were not characterized by an induction period. At that, in parallel with increasing in content of extract in the reaction mixture the velocity of cumene oxidation decreased on certain degree and became independent of its concentration. A mechanism was suggested to describe the effect of flax seeds extract on the kinetics of cumene oxidation (RH). И  RO2(Vi ) K RO2  lnH RO2...H ln

K2 RO2  RH ROOH  R

K2 RO2...H ln RH ROOH  lnH  R

K6 RO2  RO2 

K 7 RO 2 ...H ln  RO 2  Molecular products

K7 RO 2 ...H ln 

According to the suggested mechanism the limit velocity of cumene oxidation is described by the equation

[RH ]Vi V  , and at low concentrations when not all RO2 radicals are in associates ( RO2 ...H ln ), then: 2k7

V0 V 2k7K[ln H]0   1 V V0 2 (k6Vi )

where Vo and V are the velocities of cumene oxidation with and without the extract, respectively.

k 2 ' Temperature dependences of and k7К , characterizing antioxidant activity of the extract of flax k7 seeds were determined. It was revealed that ′ 푘2 7 ′ = 3,38 ∙ 10 푒푥푝[−(10550 ± 50)/푅푇] 푘7

′ 11 푘7[퐾] = 1,69 ∙ 10 exp⁡[−(13850 ± 50)/푅푇

Key words: flax, antioxidant, inhibitor, oxidation of cumene , peroxide radical.

53

CHEMISTRY

Introduction Flax oil has used both in cooking and in folk and scientific medicine since ancient time to cure various diseases. Its beneficial actions are due to the rich content of biologically active substances. In particular, the composition of flax seed of canadian varieties on a dry matter basis the following: fat component is 41%, proteins -21%, cellulose-28%, aromatic acids, lignin, phenolic compounds-6%, ash-4% [1]. It should be noted that the composition of flaxseed (as well as the composition of the essential oil of any medicinal plants) varies with varieties, environment, seasonal growing conditions and methods of processing flax [2]. Of phenolic compounds in flaxseed encountered phenolic acids: ferulic, Trans-sinova, Trans- coumaric, Ttans-caffeic, from 7.9 to 10.3 mg/g [3], and lignans –mostly diglycoside secoisolariciresinol (SDG)-from 13.6 to 32.1 mg/g [4].

R=R'=H, coumaric acid, R=H, R'=OH, coffee acid, ' R=H, R=OCH3 ferulic acid,, ' R=R=OCH3 sinova acid

Established [5,6] that the physiological effects of phenolic compounds in plants is the regulation of growth and reproduction in plant protection from the harmful effects of UV radiation, infection of plants by fungi, to control the actions of other biologically active compounds. It is indicated [7,8] that the lignans of flax seeds can be used for therapeutic purposes to inhibit and stop the growth of tumor cells as antiallergen in the treatment of atherosclerosis and coronary heart failure. In addition, these phenolic compounds should have strong antioxidant properties. To test this, in this thesis we have been studied the ethyl acetate antioxidant activity of the extract of flax seeds on example of model reaction of cumene oxidation.

SDG

The experimental part The flax seeds purchased in the supermarket in Yerevan . The extract was obtained as follows: flax seeds are dried in a drying cabinet at a temperature of 318К to constant weight, then rubbed in a ceramic mortar, the resulting mixture was added ethyl acetate ratio of 1:20 (1G of a mixture of 20ml of solvent). As a result got extract in the form of a clear slightly yellow liquid with a density of 0,8520 g/ml and an optical density D20=1,4850. To study the antioxidant action of the extract of flax seeds (EFS) in the radical-chain oxidation processes in the model system was chosen of the initiated liquid phase oxidation of cumene, for which the mechanism of all elementary steps are well studied [9]. Initiated azodiisobutyronitrile (AIBN) oxidation of cumene was studied by varying the content of the EFS and the concentration of AIBN in the environment of chlorobenzene in the

54

CHEMISTRY temperature range of 328-348К. The concentration of cumene in all experiments was of 2.87 mol/l, the volume of the reaction mixture 5ml. The kinetic process of the oxidation of cumene was observed by gasvolumetric method , measuring the amount of absorbed oxygen at a given temperature in an oxygen atmosphere on the setup described in the paper [9]. The study of the oxidation process was carried out in the kinetic region where the rate of oxygen uptake did not depend on the stirring speed of the reaction mixture. Used reagents, cumene, chlorobenzene, AIBN, ethyl acetate were purified according to the method described in the paper [10].

Results and discussion Figure 1 presents typical kinetic curves of oxygen absorption of the oxidized cumene respectively, in the absence of the studied extract (D. 1) and in the presence of extracts from the seeds of flax (curves 2 and 3). From the kinetic curves it is seen that in the presence of the investigated extracts, unlike previously, we investigated extracts of several medicinal plants [11-12], oxygen uptake proceeds without induction periods, i.e. extract flax seed acts as a moderator of the oxidation process. Moreover, with increasing amounts of the dissolved extract in the reaction mixture the rate of oxygen uptake, decreasing, tends to a constant value (Fig.2) and further depends on concentration of ESL. A similar phenomenon was detected at different temperatures. The results of these study are given in the table.

2.0

1.8 4 3 1.6 2 1

l 1.4

/

1.2

mol

, 1.0 3 0.8

10

]

2 0.6

O

0.4

Δ

[ 0.2

0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 t, min. Figure 1. Kinetic curves of O2 absorption, oxidizing cumene in the absence (1) and in the presence of 2 (2) 4,8 (3) and 12mg (4) EFS. Vi=0,78∙10-7 mol/l∙s 339 K.

For experimentally discovered facts it is possible to give the following explanation. The oxidation of organic matter by peroxide radicals react with antioxidants (in our case of phenols) taking the H-atom from the O-H. In the past century it has been proven that peroxide radicals form a hydrogen bond with a hydroxyl-bearing compounds [13,14].

. ′ . ′ 푅푂2 + 퐻푂푅 ⇔ 푅푂2 … 퐻푂푅 Since EFS is contained in a sufficient amount of phenolic compounds (see introduction), they also like water and alcohols can form associates with the peroxide radicals of the type PhOH...O_2^.R. As the peroxide radical removes H-atom from the same context, therefore, the reaction 〖RO〗_2^. InH can be presented as follows . 푘′ . . 7 ′ 푅푂2 + 퐼푛퐻 ⇔ 푅푂2 … 퐻퐼푛 → ⁡푅푂푂퐻 + 퐼푛 푘 ′ ′ 8 ⁡퐼푛 + 푅푂2 … 퐻퐼푛 → molecular products

55

CHEMISTRY

3.5

3.0

3 2.5 2 1 2.0

1.5

1.0

0.5

0.0 0 2 4 6 8 10 12 14

Figure 2 . The dependence of the rate of oxidation of cumene from the content содержания EFS.

-7 -1 -8 -1 -8 -1 1) Vi=1,25 ∙ 10 М∙с ; 348K, 2) Vi=7,83 ∙ 10 М∙с ; 339K, 3) Vi=3,44 ∙ 10 М∙с ; 328K

This mechanism leads to the following conclusions. 1. It is known that the peroxide radical, linked by hydrogen bond, can continue the chain [13]. Obviously, the same property must have a radical 〖RO〗_2^'HIn... 푘. . 2 ′ ⁡⁡푅푂2 … 퐻퐼푛 + 푅퐻 → 푅푂푂퐻 + 퐼푛퐻 + 푅 At sufficiently high concentrations of the inhibitor (in our case, EFS), when all 〖RO〗_2^. radicals are in the form of associate 〖 RO 〗 _2^....HIn, there should be a limit on the oxidation rate independent of the concentration of the inhibitor. In these conditions the rate of chain oxidation equal ′ . ′ ′ ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡푉∞ = 푘2[푅퐻][푅푂2 … 퐻퐼푛] = 푘2[푅퐻]푉푖/2푘7 (1)

2. At relatively low concentrations of the inhibitor (EFS) when the oxidation rate depends on its concentration, (V>V_∞) an open circuit can occur in the reaction 〖RO〗_2^....HIn (→┴k_7^' ) ROOH 〖In〗^.

and the reactions 〖〖RO〗_2^. RO〗_2^....HIn(→┴k_7 ROOH ROOIn) 푘 . . 6 푅푂2 + 푅푂2 →⁡ molecular products

Such breakage of the chains leads to the following dependence of the oxidation rate on the concentration of the inhibitor (EFS) . 푉 = 푘2[푅퐻][푅푂2] (2)

Using the condition of stationarity for 푅푂2. radicals, get . 2 ′ . . . 푉푖 = 푘6[푅푂2] + 2푘7[푅푂2 … 퐻퐼푛] + 2푘7[푅푂2][푅푂2 … 퐻퐼푛] (3)

Hence, determining the concentration 〖RO〗_2^ radicals and putting in equation (2), given that [〖RO〗_2^....HIn]=K[InH][〖RO〗_2^.], get

′ ′ 1/2 푘7퐾[퐼푛퐻] 푣푖(푘6+2푘7퐾[퐼푛퐻]) 푉 = 푘2[푅퐻] {(1 + ′ 2 ) − 1} (4) 푘6+2푘7퐾[퐼푛퐻] (푘2퐾[퐼푛퐻] ) 56

CHEMISTRY

given that the rate of oxidation of cumene in the absence of inhibitor is described by the equation

푘2 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡푉0 = [푅퐻]√푉푖 (5) √푘6 and that in the initial moment of time [InH]=〖[InH]〗_0, get

푉0 푉 ′ 1/2 − = 2푘7퐾[퐼푛퐻]0/(푘6푉푖) (6) 푉 푉0

Where V_i is the speed of initiation, [InH]_0 is the initial concentration of inhibitor and antioxidants in the studied extracts, K is a constant balance〖RO〗_2^. InH(⇔┴.) ROOH〖In〗^'. The concentration of antioxidant substances determined on the assumption that in the extract of flax seed contains about 13.7% lignin [4].

3.5

3.0

2.5

2.0

1.5

mol/ls

, 3 1.0 6 2 1

10 ∙ 0.5

푉 0.0 0 1 2 3 4 5 7 푉1 ∙ 10 , mol/ls

Figure 3. The dependence of the limiting oxidation rate of 2.87 M cumene speed of initiation. MELs =12mg; Т=348 (1); 339 (2) и 328 К (3).

From figure 3 it follows that the detected speed limit oxidation of the dome described by the equation (1). Where calculated temperature dependence of the ratio of the rate constants of the reaction k_2^'/k_7^' in Arrenius coordinates. It is obtained that ′ ⁡푘2 7 ′ = 3,38 ∙ 10 푒푥푝[−(10550 ± 50)/푅푇] (7) ⁡푘7 At relatively low concentrations of EFS (푚퐸퐹푆 < 2мг), when chains are torn as linear and quadratic, i.e. in terms of 푉 > 푉∞ the experimental data are described (Fig. 4) by equation (6). Using the results of table and figure. 4, given the fact that for cumene k_6=4,74∙〖10〗^5 e^(-1800/RT) [15], the determined temperature dependence of the product of the constants k_7^' K.

57

CHEMISTRY

Таble 1. Data for the oxidation of 2.87 mol/l of cumene in the presence of EFS 4 7 6, 푉 푉 ′ [퐼푛퐻] ∙ 10 , 푉푖 ∙ 10 , 푉푂2 ∙ 10 0 푘2 ′ −2 푇; 퐾 푚ЭСЛ, мг − ⁄ ′ 푘7 ∙ 퐾 ∙ 10 моль/л моль/л∙с моль/л∙с 푉 푉0 푘7 348 0 0 1,25 3,00 . . . 348 0,5 0,219 1,25 2,67 0,22 - 3,34 348 1,0 0,437 1,25 2,41 0,44 - 3,34 348 1,5 0,656 1,25 2,22 0,61 - 3,40 348 2,0 0,875 1,25 1,99 0,83 - 3,16 348 4,0 1,749 1,25 1,75 1,13 - - 348 8,0 3,498 1,25 1,60 1,34 - - 348 12,0 5,247 1,25 1,40 1,50 8,10 - 348 12,0 5,247 0,50 0,60 1,15 8,36 - 348 12,0 5,247 2,50 2,80 0,70 7,80 - 339 0 0 0,783 2,00 - - - 339 0,5 0,219 0,783 1,85 0,16 - 1,89 339 1,0 0,437 0,783 1,69 0,33 - 1,90 339 1,5 0,656 0,783 1,56 0,50 - 1,91 339 2,0 0,875 0,783 1,40 0,73 - 2,12 339 4 1,749 0,783 1,00 1,50 - - 339 8 3,498 0,783 0,72 2,50 - - 339 12 5,247 0,783 0,60 3,00 5,38 - 339 12 5,247 1,50 1,20 1,92 5,57 - 339 12 5,247 2,45 1,85 1,39 5,26 - 339 12 5,247 3,10 2,20 3,00 5,00 - 339 16 7,996 0,78 0,60 3,00 5,34 - 328 0 0 0,344 1,00 - - - 328 0,5 0,219 0,344 0,94 0,125 - 0,91 328 1,0 0,437 0,344 0,88 0,25 - 0,90 328 1,5 0,656 0,344 0,83 0,37 - 0,90 328 2,0 0,875 0,344 0,78 0,50 - 0,91 328 4,0 1,749 0,344 0,42 1,96 - - 328 8,0 3,498 0,344 0,15 6,50 3,13 - 328 12,0 5,247 0,344 0,15 6,50 3,18 - 328 12,0 5,247 1,680 0,80 2,41 3,32 - 328 12,0 5,247 3,000 1,35 1,73 3,14 - 328 12,0 5,247 4,000 1,85 1,30 3,22 -

1.0

0 1 0.8 2 3

V/V

- 0.6

/V

0

V 0.4

0.2 4 0.0 [퐼푛퐻]010 , mol/l 0.0 0.2 0.4 0.6 0.8 1.0 Figure 4. The dependence of the parameter V0/V-V/V0 on the concentration of inhibitors contained in EFS. 58

CHEMISTRY

′ 11 ⁡푘7[퐾] = 1,69 ∙ 10 exp⁡[−(13850 ± 50)/푅푇 (8)

-7 -1 -8 -1 -8 -1 1) Vi=1,25 ∙ 10 М∙с ; 348K, 2) Vi=7,83 ∙ 10 М∙с ; 348 K, 3) Vi=3,44 ∙ 10 М∙с ; 348K

Conclusion On the basis of kinetic data of oxidation of cumene in the presence of the extract of flax seeds proposed mechanism for the reaction of peroxide radicals with inhibitors, including preliminary education in between associates through hydrogen bond, values of V_(∞ ) , V_0/V-V/V_0 and k_(6 ) the calculated constants (k_2^')/(k_7^' ) and k_7^' [K].

References 1. Duke J. A. Handbook of Phytochemical Constituents of GRAS Herbs and Other Economic Plants (and Database) Boca Raton, Florida: CRC Press, 1992. 2. Bhatty R.S. Flaxseed in Human Nutrition. Ed. By S.C. Cunnane and L.U. Thompson. AOSC Press. Champaign, IL., 1995, p.22-42. 3. Sosulski, F. W. ; Dabrowski ,K.J. Composition of free and hydrolyzable phenolic acids in the flours and hulls of ten legume species. J. Agric. Food. Chem. , 1984. V.32. p.128-130. 4. Westcott N. D., Muir A. D. // Proc. Flax Inst. 1996. V. 56. P. 77–80 5. Ayres D.C., Loike J.D. //Chemistry and Pharmacology of natural products. // Ed. By J.C. phillipson, D.C. Ayres, H. Baxter. Cambige University press. 1990. p. 402. 6. Barret J.R. // Environ health persp. 1996. V.104. P.478-482. 7. Aldercreutz H.// Scand. J. Can. Lab. Invest. 1990. V.50. P.3-23. 8. Kotani Y., Iwamoto S., Nishizawa Y. pat. 04290822. 1992. 9. Эмануель Н.М., Денисов Е.Т., Майуз З.К. Цепные реакции окисления углеводородов в жидкой фазе. М., Мир, 1965, 375 с. 10. Гордон А., Форд Р. Спутник химика, М., Мир, 1976, 541с. 11. Шутова Т.Г., Шутова А.Г., Варданян Л.Р., Айрапетян С.А., Варданян Р.Л., Агабеков В.Е. Ингибирование окисления эмульсий ненасыщенных жирных кислот эфирными маслами монарды дудчатой и тысячелистника обыкновенного // Труды БГУ. Физиологические, биохимические и молекулярные основы функционирования биосистем. 2013. т. 8 , ч. 1, с.111-116. 12. Л.Р. Варданян, Шутова А.Г., С.А. Айрапетян, Р.Л. Варданян, В.Е. Агабеков, В.Н., Решетников. Количественное содержание и активность антиоксидантов в лекарственных растениях различных климатических зон // Даклады НАН Беларусi. 2013, т.57, №.5 с.72-76. 13. Заиков Г.Е., Майзус З.К., Эмануель Н.М.// Докл. АН СССР, 1967, т.174, с. 127-131. 14. Денисов Е.Т., Варданян Р.Л.// Изб. АН СССР, сер. Хим., 1972, №11, с. 2463-2467. 15. Денисов Е.Т., Константы скорости гомолитических жидкофазных реакции., М., Наука, 1971, 711с.

References 1. Duke J. A. Handbook of Phytochemical Constituents of GRAS Herbs and Other Economic Plants (and Database) Boca Raton, Florida: CRC Press, 1992. 2. Bhatty R.S. Flaxseed in Human Nutrition. Ed. By S.C. Cunnane and L.U. Thompson. AOSC Press. Champaign, IL., 1995, p.22-42.

59

CHEMISTRY

3. Sosulski, F. W. ; Dabrowski ,K.J. Composition of free and hydrolyzable phenolic acids in the flours and hulls of ten legume species. J. Agric. Food. Chem. , 1984. V.32. p.128-130. 4. Westcott N. D., Muir A. D. // Proc. Flax Inst. 1996. V. 56. P. 77–80 5. Ayres D.C., Loike J.D. //Chemistry and Pharmacology of natural products. // Ed. By J.C. phillipson, D.C. Ayres, H. Baxter. Cambige University press. 1990. p. 402. 6. Barret J.R. // Environ health persp. 1996. V.104. P.478-482. 7. Aldercreutz H.// Scand. J. Can. Lab. Invest. 1990. V.50. P.3-23. 8. Kotani Y., Iwamoto S., Nishizawa Y. pat. 04290822. 1992. 9. Emanuel N. M., Denisov E.T., Majus Z. K. Chain reactions of hydrocarbon oxidation in the liquid phase. M., Mir, 1965, 375 p. 10. Gordon A., Ford R. The chemist's companion, M., Mir, 1976, 541p. 11. Shutova T. G., Shutova A. G., Vardanyan L. R., Ayrapetyan S. A., Vardanyan R. L., Agabekov V. E. Inhibition of oxidation of emulsions of unsaturated fatty acids essential oils of monarda fistular and yarrow // Proceedings of BSU. Physiological, biochemical and molecular bases of functioning of Biosystems. 2013. vol. 8 , part 1, pp. 111-116. 12. Vardanyan L. R. , Shutova A. G., Hayrapetyan S. A,, Vardanyan R. L., Agabekov V.E., Reshetnikov. V.N. Quantitative content and activity of antioxidants in medicinal plants from different climatic zones // Doklady national Academy of Sciences of Belarus. 2013, vol. 57, No. 5 pp. 72-76. 13. Zaikov G. E., Mayzus, Z. K., Emanuel N. M.// Dokl. An SSSR, 1967, vol. 174, pp. 127-131. 14. Denisov E. T., Vardanyan R. L.// Huts. An SSSR, ser. Chem., 1972, No. 11, pp. 2463-2467. 15. Denisov, E.T. The rate constants of homolytic liquid-phase reaction. M., Nauka, 1971, p.711

______

∙ И → 푅푂2⁡(푉푖) 퐾 ∙ . 푅푂2 + ⁡퐼푛퐻 → 푅푂2 … 퐻퐼푛 푘 ′ 2 ′ 푅푂2 + ⁡푅퐻⁡ → 푅푂푂퐻 + 푅 ⁡ 푘. . 2 ′ 푅푂2 … 퐻퐼푛 + 푅퐻 → 푅푂푂퐻 + 퐼푛퐻 + 푅 푘 ′ ′ 6 푅푂2 +⁡푅푂2 ⁡→⁡ 푘 . . 7 ⁡푅푂2 … 퐻퐼푛 + 푅푂2 → Մոլեկ. պրոդուկտներ 푘′ . 7 푅푂2 … 퐻퐼푛 →⁡

60

CHEMISTRY

′ 푉∞ = [푅퐻]푉푖/2푘7 ′ . 푅푂2 푅푂2 … 퐻퐼푛

푉0 푉 ′ 1/2 − = 2푘7퐾[퐼푛퐻]0/(푘6푉푖) 푉 푉0

푉О⁡

′ ′ 푘2 ′ 푘2 7 ′ ′ 푘7К ′ = 3,38 ∙ 10 푒푥푝[−(10550 ± 50)/푅푇] 푘7[퐾] = 1,69 ∙ 푘7 푘7 1011exp⁡[−(13850 ± 50)/푅푇

МЕХАНИЗМ ИНГИБИРОВАНИЯ ОКИСЛЕНИЯ КУМОЛА ЭКСТРАКТОМ СЕМЯН ЛЬНА

Р.Л. Варданян1, Л.Р. Варданян1, С.А. Айрапетян1, П.Г. Багдасарян2 1Горисский государственный университет 2Шушинский технологический университет ______На примере модельной реакции инициированного окисления кумола исследовано антиоксидантное свойство этилацетатного экстракта семян льна. Установлено, что экстракт семян льна проявляет антиоксидантное свойство при окисление кумола. Однако, в отличие от классических ингибиторов (фенолы, ароматические амиы и др.), кинетические кривые поглощения кислорода в присутствии экстракта семян льна проходят без периодов индукции. Причем, с увеличением содержания экстракта в реакционной смеси, при данной скорости инициирования, скорость окисления кумола замедляется до определенной степени и не зависит от его концентрации. Предложен механизм действия экстракта семян льна на кинетику ∙ окисления кумола (RH). И → 푅푂2⁡(푉푖). 퐾 ∙ . 푅푂2 + ⁡퐼푛퐻 → 푅푂2 … 퐻퐼푛 푘 ′ 2 ′ 푅푂2 + ⁡푅퐻⁡ → 푅푂푂퐻 + 푅 ⁡ 푘. . 2 ′ 푅푂2 … 퐻퐼푛 + 푅퐻 → 푅푂푂퐻 + 퐼푛퐻 + 푅 푘 ′ ′ 6 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡푅푂2 +⁡푅푂2 ⁡→⁡ 푘 . . 7 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡푅푂2 … 퐻퐼푛 + 푅푂2 → Молек. продукты 푘′ . 7 푅푂2 … 퐻퐼푛 →⁡

Согласно предложенной схеме предельная скорость окисления кумола (V∞) ′ ′ описывается уравнением 푉∞ = [푅퐻]푉푖/2푘7 , а при низких концентрациях, когда не все 푅푂2 . радикалы находятся в ассоциатах (푅푂2 … 퐻퐼푛). 푉0 푉 ′ 1/2 − = 2푘7퐾[퐼푛퐻]0/(푘6푉푖) 푉 푉0 где, 푉О⁡ и V –скорости окисления кумола, соответственно, в отсутствие и в присутствие экстракта.

61

CHEMISTRY

′ 푘2 ′ Определены температурные зависимости ′ и 푘7К, характеризующие антиоксидантные 푘7 ′ 푘2 7 активности экстракта семян льна. Получено, что ′ = 3,38 ∙ 10 푒푥푝[−(10550 ± 50)/푅푇] , 푘7 ′ 11 푘7[퐾] = 1,69 ∙ 10 exp⁡[−(13850 ± 50)/푅푇

Ключевые слова: лен, антиоксидант, ингибитор, окисление кумола, пероксидный радикал.

62

AGRICULTURE

UDC 631.8.022.3:330.5.055.2

THE ECONOMIC EFFICIENCY EFFECT AND AFTEREFFECT OF FERTILIZERS AND AMELIORANTS IN TERMS OF ASKERAN REGION OF NKR

N.V. Farsiyan1, S.K. Yeritsyan2, V.M. Danielyan2 1 Shushi Universiy of Technology 2Armenian National Agriculture University ______

The purpose of research is to increase winter wheat yield and profit margins in view of the direct impact of fertilizers and ameliorators on potato and aftereffect on winter wheat crop rotation. Studies have shown that the direct impact of fertilizers and ameliorators on potatoes and the aftereffect on the yield of winter wheat and the amount of profit depend on the species and the totality of their application. The minimum yield and profit obtained when the system NPK fertilizer was applied as a potassium of KCl (option (N90P90K90 (KCl)). In this case, the direct effect of fertilizers increases the yield of potatoes in comparison with the control was 33.0 t / ha (21.0 %), and profit -.. 371. thousand Armenian drams. The use of bentonite or plaster on the background N90P90K90 (KCl) was also not effective, the difference in yield relative to control accordingly was 50.0 and 29.0 kg / ha, and profit -.. 593.5 and 301.0 thousand AMD. In the system of fertilizer, where potassium chloride was replaced by treated dacitе tuff or against this background as bio- fertilizer-MM was used, the maximum yield of tuber was reached, amounting to 218 and 241 kg / ha, that relative to the control was up 61ts / ha (38.8%) and 84 t / ha (53.5%), and with respect to the embodiment (N90P90K90 (KCl)) - 28 and 51 kg / ha (14,7- 26.8%). In this case, the profit amounted to 749.0 and 945.1 thousand Armenian drams. Research of the aftereffect of ameliorators fertilizers on winter wheat showed the same pattern, which was observed under the influence of fertilizers in experiments with potatoes. That is, the lower-effect was where potassium chloride was used as a fertilizer, and also when applied gypsum or bentonite were added. In these embodiments, the difference in yield relative to control-1 amounted to 4,5-6,9 kg / ha, the profit - 51,75-79,35 thousand Armenian drams.. Higher additional crop (9,7-11,9 t / ha) and additional income (111,55-136,8 thousand Armenian drams) were achieved with the use of option N90P90K90 (OTD), and the use of this background MM-bio fertilizers. In these embodiments, the additional yield and profit in relation to the control of -2 (option (N90P90K90 (KCl)) were respectively 5,2 -7,4 kg / ha, 59.8 -85.1 thousand Armenian drams. The study of action and aftereffect of fertilizers is of great agronomic and economic importance [3, 7- 10]. In particular, the dose and type of fertilizer for subsequent cultures [1, 5 ,6] are determined by it. It is known that the organic phosphate, potash and ameliorators provide the higher aftereefect [2, 4-6]. In this group it is worth to mention the cultivated dacitic tuff (CCT), which is a slow-acting fertilizer that contains potassium, calcium, magnesium and phosphorus, and also helps to improve the chemical and physical properties of water and soil [3, 4]. It is known that the cultivated dacite tuff also has a high ability to absorb nutrients - 40-45 mg / eq to 100 g and the moisture absorption reaches 500% [3].

Key words: fertilizer and ameliorants, action and aftereffect, potato, winter wheat, yield, economic efficiency.

The purpose of this research is to increase the yield of winter wheat and the profit taking into account the direct impact of fertilizers and ameliorants on potatoes and aftereffect in the crop rotation of winter wheat.Studies have shown that the direct effect of fertilizers and ameliorants on the potatoes and the residual effect on yield of winter wheat and the profit margin depends on the species and the totality of their application.The minimum yield and profit have been obtained when NPK fertilizers as potash was applied KCl( theoption (N90P90K90 (KCl)).In this case, from the direct action of fertilizers increased yield of potato compared with the control amounted to 33,0 dt/ha (hundredweight per hectare)(21,0%), andthe profit is 371,3 thousand AMD.

63

AGRICULTURE

The use of thebentonite or gypsum on the N90P90K90 background (KCl) was not effective, the difference of the crop relative to the control, respectively, was 50.0 and 29,0 kg/ha, and the profit was 301,0 593,5 thousand AMD.In the system of fertilizer where potassium chloride was replaced with processed dacitic tuff and on this background was also used MM-bio-fertilizer produced maximum yield of the tuber, which amounted to 218 and 241 kg /ha, compared to the control was on 61 dt/ ha (38.8 per cent) and 84 kg/ ha (53.5 per cent) higher , and in relation to the option (N90P90K90 (KCl)) and 28 and 51 dt/ ha (14.7 to 26.8 percent).The profit amounted to respectively 749,0 and 945,1 thousand AMD.Study of the aftereffect of fertilizers and ameliorants on winter wheat showed the same pattern which was observed under the action of fertilizer experiments with potatoes.That is, the aftereffect of lower where in the system of fertilizers as a potassium used potassium chloride, and when this background was applied the bentonite or gypsum.In these embodiments the difference of yield relative to control 1 was 4.5 and 6.9 dt /ha, and the profit was 51,75-79,35 thousand AMD.A higher additional yield ( 9.7-11.9 C/ha) and additional profit (111,55- 136,8 thousand AMD) was achieved with the use of the variant N90P90K90(OTD), and the use of this background, MM-bio-fertilizer. In these embodiments, the additional yield and income compared to the control -2 (option (N90P90K90 (KCl)) were respectively 5.2-7.4 kg/ha, 59,8 -85,1 thousand AMD. Study of the effect and aftereffect of fertilizers is of significant agronomic and economic importance [3, 7-10]. This, in particular, define the dose and types of fertilizers for subsequent crops [1, 5, 6]. It is known that [2, 4-6]. This group is treated dacitic tuff (CCT), which is a slow-acting fertilizer containing potassium, calcium, magnesium and phosphorus, and also helps to improve chemical and water-physical soil properties [3, 4].It is known that processed dacitic tuff has high ability to absorb nutrients is 40-45 mg/EQ per 100 g, a moisture absorption as high as 500% [3]. The purpose of researches isthe increase of winter wheat yield and profit margin taking into account direct action of fertilizers and ameliorants on potatoes and aftereffect in the crop rotation of winter wheat. The objective of the research is to identify the economic effectiveness of fertilizers and ameliorants in experiments on potatoes and aftereffect without irrigation in winter wheat. The materials and methods of researches. The direct effect of fertilizers and ameliorants on yield and economic efficiency were studied respectively in the experiments of potato and their residual effect on the experiences of winter wheat.

Experiments with potato Experiments with winter wheat

Without fertilizers (control) Without fertilizers (control -1)

N90P90K90(KCl) N90P90K90(KCl) (control – 2)

N90P90K90(OTD) 600 kg/ha N90P90K90(OTD) 600 kg/ha

N90P90K90(OTD) 600 kg/ha MM N90P90K90(OTD) 600 kg/ha MM

N90P90K90(KCl) +bentonite 300 kg/ha N90P90K90(KCl)+bentonite 300 kg/ha

N90P90K90(KCl) +gypsum 300 kg/ha N90P90K90(KCl) +gypsum 300 kg/ha

64

AGRICULTURE Used theammonium nitrate, double superphosphate, potassium chloride and MM-bio- fertilizer, and as an ameliorant treated dacitic tuff (CCT), bentonite and gypsum. By chemical analysis of soil was determined theagrochemical character of the pilot area, carried out the necessary observations, measurements, calculations, which revealed the effects of fertilizers on potatoes and the residual effect on growth, yield and economic efficiency of winter wheat. The results of the research. The results of the study of the influence of fertilizers and ameliorants on yield of tubers and on economic efficiency are summarized in table 1. The table shows that the size of a crop depends on the type of fertilizer and the totality of their application. Thus, according to the three-year average according to a higher additional yield of tuber (61- 84 kg/ ha) and extra high gain (749,0-945,1 thousand AMD) was obtained when fertilizer NPK was used processed dacitic tuff and on this background were applied MM-bio-fertilizer (variant N90P90K90(OTD) and N90P90K90(OTD) MM). Lower additional harvest of tuber (29-50 kg /ha) and low profits (301,0 - 593,5 thousand AMD) was obtained when fertilizer treated dacitic tuff was replaced by potassium chloride and on this background were applied the bentonite or gypsum.

Table 1

The economic efficiency of application of fertilizers and ameliorants in experiments with potatoes Costs of obtaining additional yield,

Sale The price thousand drams. The The The price 1 of The total resulting averag differenc h, t additiona The cost expenditures extra Options e yield e of l yield, of The , thousand profit, for 3 yield, The The operation other AMD thousan years h/ha thousan thousand materia salar of expense d AMD d AMD AMD l costs y machiner s y

Without 1 fertilizers 157 ------(control-1)

N P K 2 90 90 90 190 33 15,0 495,0 80,8 32,0 5,0 5,9 123,7 371,3 (KCl)

N90P90K9 3 0 (OTD) 218 61 15,0 915,0 92,8 57,7 7,6 7,9 166,0 749,0 600 kg/ha

N90P90K9 0 (OTD) 4 241 84 15,0 1260,0 147,8 143,0 9,9 15,0 314,9 945,1 600 kg/ha MM

N90P90K9 0 (KCl) 5 207 50 15,0 750,0 90,1 52,3 6,6 7,5 156,5 593,5 bentonite 300 kg/ha

N90P90K9 0 (KCl) 6 186 29 15,0 435,0 92,8 30,4 4,4 6,4 134,0 301,0 gypsum 300 kg/ha

65

AGRICULTURE

Table 2

The economic efficiency and the residual effect of fertilizers and ameliorants on crop rotation of winter wheat (an average data for 3 years) The difference of yield, The price of additional yield, thousand h/ha Sale price 1 AMD Grain ha, № Options yield, relative to h/ha relative to thousand relative to control relative to control control - 1 AMD - 1 - 2 control - 2

Without fertilizers (control-1) 1 25,9 - - - - -

N90P90K90(KCl) (control-2) 2 30,4 4,5 - 11,5 51,75 -

N90P90K90(OTD) 3 35,6 9,7 5,2 11,5 111,55 59,8

N90P90K90(OTD) MM 4 37,8 11,9 7,4 11,5 136,85 85,1

5 N90P90K90(KCl) bentonite 32,8 6,9 2,4 11,5 79,35 27,6

6 N90P90K90(KCl) gypsum 30,6 4,7 0,2 11,5 54,05 2,3

Table 2 shows the data and the residual effect of fertilizers on yield and economic efficiency of winter wheat (Awnless wheat 1).

Table 2 shows that the yield significantly depends on the effectiveness of fertilizer. So, according to the average three-year data, in the variant without fertilizer (control 1) grain yield was minimal and amounted to 25.9 kg/ha.

The grain yield was low also in the control-2, where a previous culture (potato) was made N90P90K90(KCl) and the crop totaled 30.4 C/ ha, which relative to control 1, above, only 4.5 t /ha.In experiments with winter wheat the minimum delay observed when in this background were used the ameliorants – gypsum or bentonite. In this case the grain of harvest amounted to only 30,6-32.8 C/ ha.When in the system of fertilizer NPK potassium chloride was replaced by processed dacitic tuff (CCT) and on this background was also used MM-bio-fertilizer was obtained high grain yield of 35.6- 37.2 C/ ha, which relative to control 1, above 9.7 - 11.9 C /ha, and relative to control-2 – 5.2-7.4 kg/ ha.

It is obvious that due to the residual effect of fertilizers the additional harvest did not cause the additional costs, so the project amount received can be considered as additional profit.Table 2 shows that the grain yield depending on application of fertilizer system on the predecessor (potatoes) totaled 30.4-of 37.8 C/ ha, profit 51,75-136,85 thousand drams, and higher yield and profit obtained when the system as NPK potassium fertilizer was applied OTD, and the same background of MM-bio-fertilizer,

66

AGRICULTURE respectively – 111,55 and 136,85 thousand AMD.These data should be considered when constructing the system of fertilizers of winter wheat.

Conclusion. Mainly based on the results of yield and economic efficiency of winter wheat and potato for 3 years, we suggest to fertilize potatoes N90P90K90(CCT) with simultaneous application of MM - bio-fertilizers, which will provide additional harvest in 84 kg/ ha and additional income -945,1 thousand AMD.

After the potatoes on the same field without the use of fertilizers N90P90K90 background(OTD) or N90P90K90(OTD) MM in relation to the control of additional grain yield was 9.7 -11,9 kg/ ha and additional income ─111,55-136,85 thousand AMD, as compared to variant N90P90K90(KCl) additional harvest was 5.2-7.4 kg /ha, and additional profit – 59,8-85,1 thousand AMD. The use of bentonite or gypsum did not give positive results as in the experiments with potatoes and winter wheat.

References 1. Акопян Г.А., Гулян А.А. Возделывание озимой пшеницы в Арцахе (методические указания). - Степанакерт, 2007. – 32 с. 2. Галстян С. Б. Изменение урожайности и элементов урожая озимой пшеницы сорта Безостая 1 в зависимости от периода посева и удобрений I С.Б. Галстян, В. А. Алексанян II Агронаука. 2013. №9-10. – С. 500-503. 3. Ерицян С.К. Влияние дацитового туфа на рост и урожайность озимой пшеницы в разных почвенно-климатических условиях Армении / С.К. Ерицян, М.М. Аджамоглян, Л.С. Ерицян, Т. Кеник Ричард II Известия ГАУА. 2010. № 3. – С. 29-33. 4. Казаченко А.А., Джигайло Д.И., Лобода Б.П., Фицуро Д.Д. Эффективность орловских цеолитов на картофеле // Картофель и овощи № 5, 2013. – С. 27-28. 5. Лобода Б. П. Применение природных удобрений на основе свободного кремнезема Хотынского месторождения цеолитов в сельском хозяйстве / Б.П. Лобода, В.М. Ходырев. – М., 2010. –12 с. 6. Максютов Н.А., Жданов В.М., Скороходов В.Ю. и др. Урожайность яровой твердой пшеницы в зависимости от погодных условий, предшественников и фона питания в степной зоне Южного Урала // Земледелие № 7, 2015. – С. 14-16. 7. Мерзлая Г.Е. Действие и последействие систем удобрения с использованием навоза / Г.Е. Мерзлая, А.И. Еськов, С. И. Тарасов // Плодородие.-2011, -№3. - С. 16-19. 8. Саргсян А. Биоудобрения ММ на основе микроорганизмов и минеральных композитов, модифицированных по новой технологии / А. Саргсян, О. Саргсян, Р. Мадоян, Р. Геворкян II Образование и наука Арцаха. 2013. №1-2. – С. 101-104. 9. Трущенко А.Ю., Шаманин В.П. Оценка показателей водного режима аналогов яровой мягкой пшеницы Саратовская 29 // Аграрная наука № 7, 2014. – С. 20-21. 10. Хорошкин А.Б. Листовые подкормки картофеля (краткий обзор) // Картофель и овощи № 11, 2015. – С. 25-26.

References 1. G.A. Hakobyan, A. Ghulyan, Winter wheat cultivation in Artsakh (guidelines), // G.A.Akopian, A.A Gulian // Stepanakert, 2007. - p32 2. S.B.Galstyan, Change of productivity and the elements of Bezostay 1 winter crop depending on sowing period and fertilizer. // S.B Galstyan, V. Aleksanyan // Agricultural science, 2013. №9-10,pp 500-503.

67

AGRICULTURE

3. S.K.Yeritsyan, Influence of dacite tuff on the growth and yield of winter crop in different soil and climatic conditions of Armenia // S.K. Yeritsyan, M.M. Adzhamoglyan, L.S. Yeritsyan, Richard T. Kenik // News ASAU. 2010. №3, pp29-33. 4. A.A.Kozachenko Efficiency of Orlov zeolites on potato // A.A. Kozachenko, D.I. Dzhigayl, B.P. Loboda, D.D. Fitsuro //.Potato and vegetables, N5, 2013, pp27-28. 5. B.P.Loboda The use of natural fertilizers on the basis of free silica from Khotyn field zeolites in agriculture // B.P. Loboda, V.M. Hodyrev. // M., 2010. p12. 6. N.A. Maksyutov Yields of spring durum wheat, depending on weather conditions, precursors and background power in the steppe zone of Southern Urals // N.A. Maksyutov, V.M. Zhdanov, V.Y. Skorohodov,etc. .// Farming N 7, 2015, pp14-16. 7. G.E.Merzlaya Action and aftereffect of fertilizer systems with the use of manure / G.E.Merzlaya, A.I. Eskov, S. Tarasov // Plodorodie 2011, N3, pp 16-19. 8. A. Sargsyan Biofertilizers MM based on micro-organisms and mineral composites modified according to the new technology / A. Sargsyan, O. Sargsyan, R. Madoyan, R. Gevorgyan //Education and Science in Artsakh. 2013. №1-2. - S. 101-104. 9. A.Truschenko Estimation of the water regime of unique spring wheat Saratov 29 // A.J. Truschenko, V.P. Shamanin // Agricultural science N 7, 2014.pp 20-21. 10. A.B. Khoroshkin, Potato Leaf feeding (an overview) // A.B. Khoroshkin // Potatoes and Vegetables № 11, 2015, pp 25-26.

68

AGRICULTURE

»

ЭКОНОМИЧЕСКАЯ ЭФФЕКТИВНОСТЬ ДЕЙСТВИЯ И ПОСЛЕДЕЙСТВИЯ УДОБРЕНИЙ И МЕЛИОРАНТОВ В УСЛОВИЯХ АСКЕРАНСКОГО РАЙОНА НКР

Н.В. Фарсиян1, С.К. Ерицян2, В.М. Даниелян2 Шушинский технологически университет Национальный аграрный университет Армении

Цель исследования – повышение урожайности озимой пшеницы и величины прибыли с учетом прямого воздействия удобрений и мелиорантов на картофель и последействия на севообороте озимой пшеницы. Исследованиями доказано, что прямое воздействие удобрений и мелиорантов на картофель и последействие на урожайность озимой пшеницы и величину прибыли зависят от их вида и совокупности их применения. Минимальный урожай и прибыль получены, когда в

системе удобрения NPK в качестве калийного применялся KCl (вариант (N90P90K90 (KCl)). В этом случае от прямого действия удобрений повышение урожая картофеля по сравнению с контролем составило 33,0 ц/га (21,0%), а прибыль – 371,3 тыс. драмов. Применение бентонита

или гипса на фоне N90P90K90 (KCl) также не было эффективным, разница урожая по отношению к контролю соответственно составила 50,0 и 29,0 ц/га, а прибыль – 593,5 и 301,0 тыс. драмов. В системе же удобрения, где хлорид калия заменялся обработанным дацитовым туфом или на этом фоне применялось также ММ-биоудобрение, получен максимальный урожай клубня, составивший 218 и 241 ц /га, что по отношению к контролю было выше на 61ц/ га (38,8%) и 84

ц/ га (53,5%), а по отношению к варианту (N90P90K90 (KCl)) – 28 и 51 ц/ га (14,7-26,8%). При этом прибыль составила соответственно 749,0 и 945,1 тыс. драмов. Исследование последействия удобрений и мелиорантов на озимую пшеницу показало такую же закономерность, какая наблюдалась при действии удобрений в опытах с картофелем. То есть последействие более низкое там, где в системе удобрения в качестве калийного применялся хлорид калия, а также когда на этом фоне применялся бентонит или гипс. В этих вариантах разница урожая по отношению к контролю-1 составила 4,5-6,9 ц /га, прибыль – 51,75-79,35 тыс.

69

AGRICULTURE

драмов. Более высокий дополнительный урожай (9,7-11,9 ц/га) и дополнительная прибыль

(111,55-136,8 тыс. драмов) достигались при применении варианта N90P90K90(ОДТ), а также применения на этом фоне ММ-биоудобрения. В этих вариантах дополнительный урожай и

прибыль по отношению к контролю -2 (вариант (N90P90K90 (KCl)) составили соответственно 5,2- 7,4 ц/га, 59,8 -85,1 тыс. драмов. Изучение действия и последействия удобрений имеет важное агротехническое и экономическое значение [3, 7-10]. Этим, в частности, определяются доза и виды удобрений для последующих культур [1, 5, 6]. Известно, что более высокое последействие оказывают органические, фосфорные, калийные удобрения и мелиоранты [2, 4-6]. В этой группе выделяется также обработанный дацитовый туф (ОДТ), который является медленно действующим удобрением, содержащим калий, кальций, магний и фосфор, а также способствует улучшению химических и водно-физических свойств почвы [3, 4]. Известно, что обработанный дацитовый туф имеет также высокую способность поглощать питательные вещества – 40-45 мг/экв на 100 г, а влагопоглощение достигает 500% [3].

Ключевые слова: удобрение и мелиоранты, действие и последействие, картофель, озимая пшеница, урожайность, экономическая эффективность.

70

ECONOMICS

UDC 338.012:69.003

PROBLEMS OF PRESENT-DAY HIGHER EDUCATION IN SOCIO-ECONOMIC CONTEXT AND THEIR SOLUTION

A.Kh. Markosyan1, S.H. Tokmajyan1, A.M. Margaryan2 1Institute of Water Problems and Water Engineering after Acadenician I.V.Eghiazarov 2Shushi University of Technology

Man as a member of social whole is able to contribute to society only if he has certain knowledge, skills and qualities. Thus, formation of the main productive force and human capital assets of society is achieved through education, and its highly professional specialists are prepared at higher education institutes. This circumstance becomes decisive for landlocked nations and in addition having scarce natural resources (especially hydrocarbon fuel) and surrounded by ill-disposed neighboring countries. Under such unfavorable conditions to provide sustainable economic growth and reduce poverty - education and especially higher education has never been as important to the future of the country as it is right now. It cannot guaranty rapid economic development – but sustained progress is impossible without it. Authors attach importance to formation and realization of a general public idea, a well developed strategy designed not for one or three years but for a 20-25-year period to be implemented by various projects. In this case to implement long-term and targeted social-economic programs it is necessary to carefully spend each unit of resources (financial, human, material) and direct them to set up targets and first of all to reveal and expand possibilities for development of the nation human capital assets. The difficulties and major unsolved issues the system of higher education of the Republic of Armenia faces today, such as sizeable diminishing of students body, not optimal structure of specialities, reduction of academic load of natural sciences and specialities have been revealed and analyzed. As a consequence there is a lost and emigration of a great number of highly professional faculty, overproduction of economists, teachers, doctors, lawyers etc., who can not get jobs they are trained for. State regulation of the system is inefficient and inadequate to meet the education quality demand, weak is influence of applicable tools on teaching process, status of higher education institutions have not been finally solved – both foundations and state non commercial organizations exist simultaneously, decrease of numbers of foreign citizens enrolment our universities. The fact is that if in 2000-2004 in the higher education sphere of the Republic of Armenia 23941 specialists have been prepared of which 12109 were foreign citizens amounting 50,6 per cent of the whole, and during 2010-2015 these numbers were 115108, 16379, and 14,2 per cent, respectively. These numbers show that the system of higher education of the Republic of Armenia lost its competing abilities in the international market of education by 356.3 per cent and to compensate the loss the gross enrolment of students was increased for no argumentation at all. As a result the quality of higher education worsened and on the other hand foreign currency inflow has become scanty. Based on the pathway leading to the above mentioned major problems solutions new approaches have been suggested for implementation and improvements of the higher education cluster of the nation.

Key words: long-term and targeted socio-economic programs, higher education, number of students, suboptimal structure of specialties, natural and social sciences, professoriate, public administration of higher education.

Introduction If social-economic changes in the last 25 years are to be analyzed and assessed we would notice that in contrast to the majority of former Soviet republics, in Armenia transition from communism to market relations took place in geopolitical, regional, intergovernmental, and social- economic difficult conditions. It is suffice to recall that on December 7, 1988 Spitak earthquake killed 25,000 people, one third of the country economy was leveled fully-fledgedto the ground (in northern regions), nearly half million people became refugee and got shelter in Armenia because of Armenian population massacre in Sumgait town of Azerbaijan, the railway connecting Armenia and Russian 71

ECONOMICS Federation is in blockade, closed borders of Armenia at the east and west, collapse of the Soviet Union and break of economic relations with former , Nogorno Karabagh continuing conflict. This is not the full list of difficulties Armenia faces today. These factors make final transition to market economy fully-fledged difficult. Moreover, due to the above situation major share of physical, financial and manpower resources is spent for overcoming existing difficulties which has a high social-economic cost. It also is clear that the single way and source to overcome these difficulties and to improve the well-being of population is the economic growth of the nation, effective use of scarce human and natural resources, not amassing a fortune for a handful people but solve the problem of mass unemployment by maintaining old jobs and new job creation for the most of population providing increase of real incomes. In all countries economy is a sphere where goods and services are produced for ordinary people creating good conditions for them to live, work, repose, receive treatment, build family house, have and bring up children, in a word, to lead a comfortable and happy life in their native land. It is important to note that the if society and most of its members are charged positively, have such goals which mobilize most of society members and thus create a community of purposeful and productive people and thus give rise to living and producing material wealth, thus transforming aimless and meaningless reality to conscious cooperation of people. And only in that case when we will form a national idea realizable by various programs designed not for one but for 20-25 period, then to implement such programs we can raise necessary funds involving also possibilities of our diaspora, provide our compatriots’ participation in making fundamental changes in our national economy leading to its steady growth. It is fact that there is no lack of money in the world. Simply investors should be fully confident to receive a profit from investment. In other words it is important to chose such a model of economy which will serve to achieve our objects. Here we have to do with fundamental issue of correct choice of financial, material, human resources and means to be spent for implementation of socioeconomic programs or according to economic terminology used by economists within the country to optimal (best) distribution of resources for different possibilities of development. The content of this distribution can be very different, as far as it can be different criteria and levels of efficiency. Effectiveness of a resource can be measured counting on the basis of per capita, group of people, enterprise, branch, and finally for the whole nation. In addition, economic, social, and socioeconomic and even political effectiveness of incurred costs also can be measured. For not to be confused in professional terms and effectiveness calculations difficulties and details, just note that costs-result ratio criteria is performance of expenses which will create more new outcome (value), and again as economists say – more added value. Looking into the main financial program (state budget) of Armenia it is not difficult to see that the lion’s share in budget outlays is given to social protection of population (in the expenses structure of 2015 state budget it was 29.7percent), public services (19.7 percent), defense (15.3percent), public order and legal system (9.4percent), education (9.2percent), health protection (6.4percent), economic relations (4.0percent) [1]. The above figures show that in the budget structure education costs are essential and almost all the time there is continual demand for education costs raise. However, in view of present education quality level it should be withhold, since especially in the higher education here highly educated professionals are prepared for foreign countries or fill army of mass unemployment [2]. Today there is a widespread notion that education is the best and most reliable way to well- being. Higher education at the same time improves individual lives and enriches wider society. Higher education is associated with better skills, higher wages and productivity, which makes both individuals and the country richer. It is not difficult to see a substantial overlap between private and public interests in higher education. But there is a problem of jobs. Therefore, without having adequate job

72

ECONOMICS expenses spent on higher education becomes worthless. As a result not only scarce human but also financial means become wasteful. Let us assume that an “average” student of higher education spends five years and enters the labor market at the age of 25 and retires at the age of 65 after working 40 years, then the ratio of these figures will be 12,5% (5:40), that is an essential part of the entire working period is a waste. On the other hand, most active employment age is 25 to 45 years of age which means that the above index is doubled achieving 25%. It turns out that the most active employment period which is about one quarter of life is spent without any positive achievement. Resources which are spent for receiving public good but the negative result is achieved can be used in other spheres to get real products. For the sake of expressiveness note that combined enrollment in 2010/2011 academic year was 26443 students, in 2014/2015 – 17473. During five years around the numbers of university entrants decreased by 9,000 which is around 34 percent. This enrollment decline is a result of serious socioeconomic recession in the country. It is important to note that in 2010/2011 academic year 19,5 percent of university 5164 entrants chose economics and management specialities. In 2014/2015 academic year the absolute number of university entrants decreased but again 19,9 percent of university 3484 entrants again chose economics and management specialities. It's as plain as day that the country does not need that amount of economists. It should also be noted that in 2010/2011 academic year in the system of higher education of the Republic of Armenia the number of student body was 111003 of which 19854 in economics and management departments, and in 2014/2015 academic year that number was 79623 [3]. It is well known that in the Republic of Armenia the higher education, in the main, is chargeable and the state assumes payment of fees for students involved in the list set by the state order. It seems that individuals are free to spend money they earn and it is not the business of the state, at best the state should worry about effectiveness of money spent in the sphere of education. However, for the society and therefore the state the result obtained from each dram spent within the country is important. Taking into consideration numbers of today’s student body the sum of money spent for students amount to an enormous number. Thus, if it is assumed that 90 percent of students (over 80 000) on average pay 40 000 drams annual tuition fees then the total annual fee will amount to 32 milliard drams, and on the 5-year period it will amount to 160 milliard drams. As a matter of fact only a small part of that amount, at best 20 percent, serves the purpose. In a country where 585 milliard drams state debt (the ratio of state debt to gross domestic product was 16,4 percent) in 2008 mounted to 2456 milliard drams at the end of 2015 (the ratio of state debt to GDP was 48,8 percent) arriving to a dangerous limit. In such conditions spending such money to maintain the system of higher education becomes wastefulness since if 80 percent of that amount were given to the Government of the Republic of Armenia as a domestic debt, then it will be advantageous to both the owner of that amount and the Republic of Armenia [4].

Conflict settings A question may rise what the Government of the Republic of Armenia should have done in the person of the authorized state body – the Ministry of Education and Science – in order that both parties were content with the solution. If proceed from the above mentioned principal proposition that activity of each organ of the Government should be assessed based upon requirement of increase of balance of payments entries, then at furst sught it seems that during last years things went that way – numbers of students increased several times. However, its only at the first sight. If study economics of higher education aspect in depth and in the first place clear up its export potential them we will find that over a long period of time the potential of higher education was used not for maintaining the relative value of higher education services’ export but opposite process took place. In accordance with the official statistics in 200/2004 academic year in the system of higher education in the Republic of Armenia graduated 23941 student of which 12109 were foreign citizens which is 50.6 percent of the whole, in

73

ECONOMICS 2005/2006 academic year the numbers of university graduates were 86078 of which 19793 were foreign citizens amounting 23 percent, from 2010 to 2015 these figures are were 11508, 16379, and 14.35 percent, respectively. It is not difficult to see that from 2010 to 2015 period compared with 2000 to 2004 period percentage of graduated foreign citizens from 50.6 fell almost 3.5 times becoming 14,3, and this is happening when the absolute number of foreign citizens studying in higher education institutes of the Republic of Armenia in the above mentioned period increased by 4270 [5,6,7]. It is evident that foreign currency inflow increase and as a matter of fact the investments potential could be used more effectively. And if we have in view that a foreign citizen pays not only tuition fee but due to multiplication effect makes a number of expenses (rent, electricity, gas, shopping, garbage disposal), then it will be clear that by using the present physical possibilities of our higher education system and potential of faculty the country can earn significant amount of foreign currency. We deeply believe that in the sphere of higher education should be on of the main directions of state policy – by a volume of higher education exporting services can be estimated by its contribution in the system of education of the country. This can become a reliable way for solution of a number of seemingly insoluble problems. First, based on the international labor marker requirement will be formed a competitive system of the higher education of the Republic of Armenia. Second, higher education structure formed based on the above will suggest a new list of specialties required by the local market. Third, the faculty receiving training (advisable in leading foreign educational centers) can solve its employment problem. It is important to also note, that in contrast to copper ore export which is a nonrenewable natural resource and one day will be worked out but export of educational services has no end, it is an endless process of knowledge, human thought, and experience transfer.

Research results Some time ago a university teacher enjoyed universal respect. Today, unfortunately, the situation is different, to put it mildly. The reason is how the public today comprehend the role of higher education in society. The question of an ordinary narrow-minded “For whom our universities prepare such amount of specialists of whom there is no strong demand in the labor market?” remains without answer. The point of issue is that wages of university teachers are very low (no wonder that professors of the Republic of Armenia are in the international list of the most low paid professors in the world) and as a rule the result is in sad state. The graduate cannot get a job for which he is prepared. One of the reasons is low quality of higher education of the Republic of Armenia which is another subject of discussion. We not at all share an opinion (for example, opinion of Mr.Golodets, premier minister of Russian Federation) according to which only 35 percent of society are in need of higher education and 65 percent are indifferent to higher education. As regards this “Аргументы и факты” weekly tells the following joke: - Holms, they say Russians had the best education in the world. What has happened to it? - Golodets, Vatson…[8]. From the above joke we can arrive at a conclusion that the aim of the higher education should be preparation of highly professional specialist for the national economy taking into consideration not only the labor market demand at the moment but also possible changes of specialties required at the labor market by submitting a list of new ones and rejecting some of the previous ones. Education quality should be one of the key characteristics of this cluster and its recognition not only in the country but also abroad. Export of educational services should become one of the main directions of activity of our higher educational institutions and be able to make attractive educational offer to neighboring countries. Taking into account the fact that many industrial developed countries offering the best higher educational programs have established their higher education institutions in Yerevan we can establish the fact that Armenian higher education institutions now are participants of a

74

ECONOMICS educational and research competition which is one of guarantees of successful export of educational services. It is well known that unity of individual spheres of economy and clusters or a single whole and having development programs for each of them, therefore it is not difficult to picture a road map for effective growth of the whole economy. The problem is just that up to now in the international public division of labor we have not determine our place. Economy of the Republic of Armenia still has not became a part, though a too small one, of the world economy (note that GDP of the Republic of Armenia in 2015 was 10.56 US dollars which is negligible quantity compared with the world GDP). However, if you are a part of a whole then that whole will feel the need for keeping economic relations with you. To achieve this goal the structure of economy of the Republic of Armenia needs undergoing essential improvements and major quantitative and qualitative changes based on the following fundamental principles: a) not to be dependent on export of such products of which prices are controlled in world commodity exchanges (for example, copper and other metals ores). The point is that your goods prices are set by others and you practically have no chance to influence on or interfere in price formation. Recently we see considerable price lessening of metals (for example, copper, zinc) and our exporters to compensate their losses repeatedly increase metal mining volume; b) instead of exporting ore, concentrate, or half-finished product it is necessary to produce finished products to earn additional income, thus increasing budget receipts and creating many new jobs; c) to expand production based on artificial materials; d) to develop industry and particularly food processing industry regarding it as a primary task; e) development of agriculture is a necessary condition of industry development for it can feed manufacturing industry by food raw materials and source of raw materials; f) taking into account that our agriculture has all necessary conditions for development (water, land, labor resources, and climatic conditions ) there are all preconditions for providing this very important part of our economy and food safety of population; g) to develop IT and telecom spheres.

Conclusions For coming at least 10-15 years we should have to set up such economic structure and ways of rapid economic growth which will be able not only satisfy minimum needs of our population but also lay a steady foundation for production of competitive goods saleable at international commodities market. This must be done on the basis of diversification of economy and accurate forecast of world market developments and tendencies. These factors must be taken into consideration while working out near future pans and programs. In other words we have to answer such questions as “What are the most perspective directions and spheres for involving investments; What do we finally want?” Working out future programs designed to raise our economy are unavoidable and decisive both for microeconomics and microeconomics. Choice of the key economic and trade partners and establishing long-term relations with them, and growth of industry producing exportable items will serve as locomotives providing steady economic growth and real possibilities of solution of socioeconomic problems the country faces today. For development of our society it is important, especially, to unite closely around a common all-nation idea about the future. Such an aim will bring together all possibilities and resources of the nation to achieve these goals. Each successfully achievement will inspire all strata and individuals of the society. To achieve realization of the above plans and programs all positive sections of the society should put aside their trifle ambitions and discords, and reach agreement. At that to unite this all- nation movement and all reasonable forces of Armenia around this united goal can both the political power and opposition. The best part of the society trust neither uncoordinated political opposition nor

75

ECONOMICS political power. Therefore, the society had better to unite closer around the forces striving to achieve the common goal.

References 1. Հայաստանի Հանրապետության սոցիալ-տնտեսական վիճակը 2015թ. հունվար- դեկտեմբերին, Եր., ՀՀ ԱՎԾ, 2016, էջ 105: 2. Աշխատանքի շուկան Հայաստանի Հանրապետությունում, Եր., ՀՀ ԱՎԾ, 2015, էջ 126: 3. Հայաստանի վիճակագրական տարեգիրք 2015, Եր., ՀՀ ԱՎԾ, 2015, էջ 131-132: 4. Հայաստանի Հանրապետության պետական պարտքը, Եր., ՀՀ ֆինանսների նախարարություն, 2016, էջ 7: 5. Հայաստանի վիճակագրական տարեգիրք 2008, Եր., ՀՀ ԱՎԾ, էջ 117, 119, Հայաստանի վիճակագրական տարեգիրք 2004, Եր., ՀՀ ԱՎԾ, էջ 116, 117, 119: 6. Հայաստանի վիճակագրական տարեգիրք 2011, Եր., ՀՀ ԱՎԾ, 2011, էջ 137, 143, Հայաստանի վիճակագրական տարեգիրք 2008, Եր., ՀՀ ԱՎԾ, 2008, էջ 117, 119: 7. Հայաստանի վիճակագրական տարեգիրք 2015, Եր., ՀՀ ԱՎԾ, 2015, էջ 134-137: 8. Аргументы и факты, N 29, 2016, c. 2.

References 1. Social-economic situation of the Republic of Armenia in January-December, 2015, Yerevan, National Statistical Service. 2016, p.105. 2. Labor market of the Republic of Armenia, Yerevan, National Statistical Service. 2015, p.126. 3. Statistical year-book of Armenia 2015, Yerevan, National Statistical Service. 2015, 131- 132pp. 4. State debt of the Republic of Armenia, Yerevan, Ministry of Finances of the Republic of Armenia, 2016, p.7. 5. Statistical year-book of Armenia 2008, Yerevan, National Statistical Service, 117-119pp. Statistical year-book of Armenia 2004, Yerevan, National Statistical Service, 116,117-119pp. 6. Statistical year-book of Armenia 2011, Yerevan, National Statistical Service, 137, 143pp. Statistical year-book of Armenia 2008, Yerevan, National Statistical Service, 117, 119pp. 7. Statistical year-book of Armenia 2015, Yerevan, National Statistical Service. 134-137pp. 8. Argumenti i fakti, N29,2016,p.2.

76

ECONOMICS

ВЫСШЕЕ ОБРАЗОВАНИЕ В КОНТЕКСТЕ СОЦИАЛЬНО-ЭКОНОМИЧЕСКОГО РАЗВИТИЯ РЕСПУБЛИКИ АРМЕНИЯ: АКТУАЛЬНЫЕ ПРОБЛЕМЫ И ПУТИ ИХ РЕШЕНИЯ

А.Х. Маркосян1, С.О. Токмаджян1, А.М. Маргарян2 1Институт водных проблем и гидротехники им. Академика И.В. Егиазарова 2Шушинский технологический университет

В каждом обществе человек или гражданин на благо общества могжет выполнять работу, используя только специфические знания, навыки и качества. Таким образом, становление главной производительной силой и человеческого капитала приходит через образование и через высококвалифицированных специалистов, имеющих высшее образование. Этот факт приобретает решающее значение для тех государств, которые не являются богатыми природными ресурсами (особенно энергетических), а также имеющих выхода к морю, в окружении враждебных стран (в том числе и Армения). '

77

ECONOMICS В таких условиях, предоставление достаточного и устойчивого экономического роста и качества жизни (согласно оффициальным данным уровень бедности в РА составляет около 30%) является образование и особенно высшее образование. Авторы подчеркивают важность реализации национальной идеи, которая будет реализовано через различные программы, осуществления различных целей в течении не одного или двух, а 20-25 лет. В этом случае мы сталкиваемся с проблемой правильного выбора реализации долгосрочных и целевых социально-экономических программ с затратами на единицу и ресурсов (финансовых, материальных и человеческих) в стране, и в первую очередь, открытие возможностей для развития и расширения человекого капитала. Авторами были определены и проанализированы проблемы и трудности высшего образования РА (значительное уменьшение числа студентов, не оптимальная структура профессий, особенно в сокращении естественных наук, в результате потерья высококачественного профессорско-преподавательского состава и эмиграции из страны, определенных специальностей (экономисты, юристы, учителя, врачи и т.д.)) перепроизводство, в результате чего большинство из них становятся безработными, не работают по профессии, которую они получили или эмигрируют, слабое и неэффективное государственное регулирование и воздействие применяемых инструментов на учебно-воспитательного процесса и качества (до сих пор не решен вопрос окончательного статуса университетов: в системе существуют как НКО, так и фонды), в системе наблюдается быстрое снижение числа обучающихся иностранных граждан. Таким образом, если в РА в 2000-2004гг. были приготовлены 23941 специалиста в области высшего образования, из которых 12109 были иностранные граждане (50,6% из общего числа), то в 2010-2015гг. эти цифры составили соответственно 115108, 16379 и 14,2 %. Другими словами, в данный период система высшего образования снизила конкуренентоспособость на международном рынке образования до 356,3 процента, тем самым сосредоточив внимание на количество студентов, что повлияло на качество высшего образования, которая, в свою очередь, лишила страну знчительных потоков валюты. Для решения этой проблемы были предложены новые подходы для развития и реформирования кластера высшего образования.

Ключевые слова: долгосрочные и целевые социально-экономические программы, высшее образование, численность учащихся, неоптимальная структура специальностей, естественные и общественные науки, профессорско-преподавательский состав, государственное управление высшего образования.

78

AUTHORS

Arakelyan A.A. – Institute of Geological Sciences of the NAS RA, Laboratory of Geoinformatics, Sundukyan 1 ap.36, Yerevan, Armenia, +37491 277574; +37410 264983, [email protected]

Baghdasaryan P.G. – Shushi University of Technology, Ashot Bekor str. 4, Shushi, NKR, +37447951169, [email protected]

Baljyan A.P. - Shushi University of Technology, Ashot Bekor str. 4, Shushi, NKR, +37477823541, [email protected].

Danielyan V.M. – Armenian National Agriculture University, Teryan str 74, Yerevan, Armenia +37494444727, [email protected]

Eroyan S.N. - Institute of Water Problems and Hydro-Engineering Named After I.V. Eghiazarov, Armenakyan str. 125, Yerevan, Armenia, +37491402070, [email protected].

Farsiyan N.V. – Shushi University of Technology, Ashot Bekor str. 4, Shushi, NKR, +37497265826, [email protected]

Gabayan G.S. – Shushi University of Technology, Ashot Bekor str. 4, Shushi, NKR, +37498949444, [email protected]

Gasparyan P.Yu. – Shushi University of Technology, Ashot Bekor str. 4, Shushi, NKR,+37497 25 20 41, [email protected].

Hakobyan R.S. – Shushi University of Technology, Ashot Bekor str. 4, Shushi, NKR, +37497254262, [email protected]

Hayrapetyan S.A. – Goris State University, Avangarde str. 4, Goris, Armenia, +37493598058, [email protected]

Hayrapetyan V.G. –Shushi University of Technology, Ashot Bekor str. 4, Shushi, NKR, +37497565068, [email protected]

Israelyan R.G. – Shushi University of Technology, Ashot Bekor str. 4, Shushi, NKR, +37497220322, [email protected]

Kalantaryan M.A. – National University of Architecture and Construction of Armenia, Teryan str. 105, Yerevan, Armenia, +37477429026, [email protected]

Kamalyan D.J. – Shushi University of Technology, Ashot Bekor str. 4, Shushi, NKR, +37447731022, [email protected]

Margaryan A.M. – Shushi University of Technology, Ashot Bekor str. 4, Shushi, NKR, +37434907878, [email protected]

Markosyan A.Kh. – Institute of Water Problems and Hydro-Engineering Named After I.V. Eghiazarov, Armenakyan str. 125, Yerevan, Armenia, +37411527635, [email protected]

Mkrtchyan S.M. - Institute of Water Problems and Hydro-Engineering Named After I.V. Eghiazarov, Armenakyan str. 125, Yerevan, Armenia, +37410654731.

Naghdalyan A.G. – Institute of Water Problems and Hydro-Engineering Named After I.V. Eghiazarov, Armenakyan str. 125, Yerevan, +37410654731, [email protected].

Poghosyan A.A. – Shushi University of Technology, Ashot Bekor str. 4, Shushi, NKR, +37497224722, [email protected].

Sargsyan V.H. – National University of Architecture and Construction of Armenia, Teryan str. 105, Yerevan, Armenia, +37460731505; +37493066068, [email protected].

Tokmajyan H.V. - Shushi University of Technology, Ashot Bekor str. 4, Shushi, NKR, +37447731021, [email protected].

Tokmajyan S.H. – Institute of Water Problems and Hydro-Engineering Named After I.V. Eghiazarov, Armenakyan str. 125, Yerevan, +37491324560, [email protected].

Tokmajyan V.H. - Shushi University of Technology, Ashot Bekor str. 4, Shushi, NKR, +37443040804, [email protected].

Vardanyan L.R. – Goris State University, Avangarde str. 4, Goris, Armenia, +37493387229, [email protected]

Vardanyan R.L. – Goris State University, Avangarde str. 4, Goris, Armenia, +37491006129, [email protected].

Yeritsyan S.K. – Armenian National Agriculture University, Teryan str. 74, Yerevan, Armenia, +37493210576, [email protected].

79

80

АВТОРЫ

Айрапетян В.Г. – Шушинский технологический университет, ул. Ашот Бекора 4, Шуши, НКР, +37497565068, [email protected]

Айрапетян С.А. – Горисский государственный университет, ул. Авангарда 4, Горис, Армения, +37493598058, [email protected].

Акопян Р.С. – Шушинский технологический университет, ул. Ашот Бекора 4, Шуши, НКР, +37497254262, [email protected].

Аракелян А.А. – Институт геолгических наук НАН РА, Лаборатория геоинформатики, ул. Сундукяна 1, кв. 36, Ереван, Армения +37491 277574; +37410 264983, [email protected].

Багдасарян П.Г. – Шушинский технологический университет, ул. Ашот Бекора 4, Шуши, НКР, +37447951169, [email protected], [email protected].

Балджян А.П. – Шушинский технологический университет, ул. Ашот Бекора 4, Шуши, НКР, +37477823541, [email protected].

Варданян Л.Р. – Горисский государственный университет, ул. Авангарда 4, Горис, Армения, +37493387229, [email protected].

Варданян Р.Л. – Горисский государственный университет, ул. Авангарда 4, Горис, Армения, +37491006129, [email protected]

Габаян Г.С. – Шушинский технологический университет, ул. Ашот Бекора 4, Шуши, НКР, +37498949444, [email protected].

Гаспарян П.Ю. – Шушинский технологический университет, ул. Ашот Бекора 4, Шуши, НКР, +37497 25 20 41, [email protected].

Даниелян В.М. – Национальный аграрный университет Армении, ул. Теряна 74, Ереван, Армения, +37494444727, [email protected].

Ерицян С.К. – Национальный аграрный университет Армении, ул. Теряна 74, Ереван, Армения, +37493210576, [email protected].

Ероян С.Н. - Институт водных проблем и гидротехники им. Академика И.В. Егиазарова, ул. Арменакяна 125, Ереван, Армения, +37491402070, [email protected].

Исраелян Р.Г. – Шушинский технологический университет, ул. Ашот Бекора 4, Шуши, НКР, +37497220922, [email protected].

Калантарян М.А. – Национальный университет архитектуры и строительства Армении, ул. Теряна 105, Ереван, Армения, +37477429026, [email protected]

Камалян Д.Ж. – Шушинский технологический университет, ул. Ашот Бекора 4, Шуши, НКР, +37447731022, [email protected].

Маргарян А.М. – Шушинский технологический университет, ул. Ашот Бекора 4, Шуши, НКР, +37434907878, [email protected].

Маркосяан А.Х. –Институт водных проблем и гидротехники им. Академика И.В. Егиазарова, Арменакяна 125, Ереван, Армения, +37411527635, [email protected].

Мкртчян С.М. - Институт водных проблем и гидротехники им. Академика И.В. Егиазарова, Арменакяна 125, Ереван, Армения, +37410654731.

Нагдалян А.Г. – Институт водных проблем и гидротехники им. Академика И.В. Егиазарова, Арменакяна 125, Ереван, Армения, +37410654731, [email protected].

Погосян А.А. – Шушинский технологический университет, ул. Ашот Бекора 4, Шуши, НКР, +37497224722, [email protected]

Саркисян В.О. – Национальный университет архитектуры и строительства Армении, ул. Теряна 105, Ереван, Армения, +37460731505; +37493066068, [email protected].

Токмаджян В.О. – Шушинский технологический университет, ул. Ашот Бекора 4, Шуши, НКР, +37443040804, [email protected].

Токмаджян О.В. – Шушинский технологический университет, ул. Ашот Бекора 4, Шуши, НКР, +37447731021, [email protected].

Токмаджян С.О. – Институт водных проблем и гидротехники им. Академика И.В. Егиазарова, Арменакяна 125, Ереван, Армения, +37491324560, [email protected].

Фарсиян Н.В. – Шушинский технологический университет, ул. Ашот Бекора 4, Шуши, НКР, +37497265826, [email protected].

81

The article copyright Submission Format Requirements

Articles can be submitted in Armenian, English or Russian up to 14 p. (titled “Economic” up to 24 p). Sheet format A4, margins up , down, left , right 18 mm. The fonts: Armenian – Unicode /GHEA Grapalat/, Russian, English – Times New Roman. The space between the lines – 1,15

1. The title of the article is given in the article’s submitted language , in capital letters, in Armenian 11, Russian and English 12 bold font size at the right bottom of the page. 2. Universal Decimal Classification consisting of 6 symbols at least is given in the left corner of the next page. 3. A line down , in the middle , the article’s submitted language , the title, capital letters, in Armenian 12, Russian and English 14 bold font size. 4. Two lines down, from the left, in the article’s submitted language, the review of the author’s name and surname, initial affiliation, in Armenian 11, Russian and English 12 bold font size 5. Aline , from the left, in the article’s submitted language, ( Italic) is given the name of the organization , in Armenian 9, Russian and English 10 font size. 6. Disabling text in horizontal solid line, from the left corner of the page are given the Key Words (up to 5-8 words), in Armenian 10, Russian and English 11 font size 7. Two lines down, in the article’s submitted language, in the middle, (Italic), is written summery of the article., 10-20 lines, in Armenian 9, Russian and English 10 font size 8. Two lines down is given the main text of the article, in Armenian 10, Russian and English 11 font size.Тhe paragraphs begin from new line, 10 mm from the depths. The expound of the theme are guaranteed of the following scheme: “Introduction”, “conflict settings”, “Research results”, “Conclusion”. In case of need can also be other section with corresponding titles. 9. The formulas are presented in separated lines, in the middle and are numbered on the right, in brackets. The formula , as well as math’s symbols and expressions are given in the text in Microsoft Equation, Italic 10 font size. 10. There can be found pictures, diagrams , graphs and tables in texts. The pictures and diagrams are numbered by transit numbering by sign “Figure”. The description of pictures, diagrams , the names of pictures , diagrams graphs and the signs of description are given below. They can be placed vertical or horizontal in Armenian 9,Russian and English 10 bold font. Tables are numbered by “Table” transit numbering. The names of tables , sign description are given above. They could be placed vertical or horizontal. If the table can’t be placed on a single page, it must be transferred to the other page and mentioned as condonation. In table column must not be left free lines, there must be put dash or write “ not” (“determined”). 11. Pictures , diagrams graphs in electronic version are colored as a rule. 12. At the end of the article , two lines down, from 10 mm left corner is typed “literature” Armenian 11, Russian and English 12 bold font. A line down is presented the list of literature numbered by link sequence . In list the sources must be marked […] and include the authors last name and the first letter of name , full names of theme , publishing dates , ( place publishing, town, year, tom and pages). Official information as well as a-mail computer programs, reports, commands, copyrights patents, in case of patents are given the whole details. The sources are given in original languages. At the same time Armenian and Russian sources are given in Latin fonts. 13. Оn separate pages is given the translation of the article headquarter sand summary.(besides article presented language), Armenian , Russian (resume) and English (summary). 14. The Articles should be sent to the [email protected]. 15. The published and corrected version of the text is submitted with author(s). 16. On a separate sheet of paper are given the information about the authors (surname, name, affiliation (the whole), picture, academic degree, address, telephone, organization, position, e-mail.

82

83

Требования, предъявляемые к оформлению авторских образцов статей Статьи можно представить на армянском, русском и английском языках объемом до 14 страниц (статьи под рубрикой "Экономика" до 24 страниц) Формат страницы: А4, поля сверху, снизу, справа и слева по 18 мм Шрифт армянский - Unicode/GHEAGrapalat/, русский и английский - TimesNewRoman. Междустрочное расстояние - 1,15

1. В верхнем правом углу страницы заглавными буквами (на языке статьи) записывается название рубруки по шрифту: армянский – 11 bold, русский и английский - 12 bold. 2. На следующей строке в верхнем левом углу страницы записывается УДК (минимум шестизначное число). 3. На следующей строке набирается заголовок статьи заглавными буквами по центру по шрифту: армянский – 12 bold, русский и английский - 14 bold. 4. Две строки ниже, слева, на языке статьи набирается фамилия и инициалы автора (соавторов, как правило, не более 4 человек) по шрифту: армянский – 11 bold, русский и английский - 12 bold. 5. На следующей строке, слева, на языке статьи курсивом (Italic) дается название организации (организаций) по шрифту: армянский - 9, русский и английский - 10. 6. Отделив текст горизонтальной выделенной линией, слева даются ключевые слова (5-8 слов) по шрифту: армянский - 10, русский и английский - 11. 7. Две строки ниже, на языке статьи, по центру курсивом (Italic) дается аннотация (10-20 строк) по шрифту: армянский - 9, русский и английский - 10. 8. Две строки ниже, дается основной текст статьи по шрифту: армянский - 10, русский и английский - 11. Абзацы начинаются с новой строки с отступом 10 мм. Рекомендуется следующая схема изложения материала: "Введение", "Постановка задачи", "Результаты исследования", "Заключение". В случае необходимости могут быть также другие разделы с соответствующими названиями. 9. Формулы располагаются отдельной строкой по центру и нумеруются в правой части в скобках. Формулы, а также математические символы и выражения приводятся по “MicrosoftEquation”, курсивом (Italic) по шрифту - 10. 10. В тексте могут быть рисунки, графики, чертежи и таблицы. Рисунки и графики нумеруются по порядку - "Рис.". Названия рисунков, графиков, чертежей, объяснения обозначений приводятся снизу. Их можно расположить в вертикальном или горизонтальном положении по шрифту: армянский - 9 bold, русский и английский - 10 bold. Таблицы нумеруются по порядку - "Таб.". Названия таблиц, объяснения обозначений приводятся сверху. Их можно расположить в вертикальном или горизонтальном положении. Если таблица не помещается на одной странице, нужно продолжить ее на следующей странице, отметив, что это продолжение данной таблицы. В таблице не должно быть свободных столбцов, в этом случае нужно поставить черточку или написать "нет" ("не определено"). 11. Рисунки, графики и чертежи в электронной версии, как правило, приводятся в цветном варианте. 12. В конце статьи, через две строки, с отступом слева 10 мм печатается "Литература" по шрифту: армянский - 11 bold, русский и английский - 12 bold. На следующей строке приводится список использованной литературы, пронумерованный по последовательности ссылок. В списке источники должны указываться в виде [...] и включать фамилию и инициалы автора (авторов), полное название статьи (материала), данные публикации (место, издательство, город, год, том, страницы). В случае официальной информации, в том числе электронных источников, компьютерных программ, отчетов, инструкций, сертификатов об авторских правах, патентов, приводятся полные данные. Источники приводятся на языке оригинала. В то же время армянские и русские источники печатаются также латинскими буквами. 13. На отдельных листках дается перевод названия статьи, фамилии и инициалов автора (авторов), названия организации (организаций), ключевых слов и аннотации (кроме языка статьи) на армянский язык (Ամփոփում), русский язык (Резюме) и английский язык (Summary). 14. Статьи нужно отправить на почту [email protected]. 15. Отредактированная версия текста согласовывается с автором (авторами). 16. На отдельном листе приводятся сведения об авторах (Фамилия, Имя, Отчество (полностью), фотография, ученая степень, ученое звание, адрес, номер телефона, организация, занимаемая должность, адрес электронной почты).

84

CONTENTS

A.A. Arakelyan, Development of the GIS model for identification of minimum flow at any cross- 3 V.H. Sargsyan section of river and its application on example of Arpa river basin

V.G. Hayrapetyan, Some engineering aspects of nature conservation measures to enhance small 10 G.S. Gabayan, H.V. hydropower Tokmajyan

V.H. Tokmajyan, On determination of relationship between maximum hydraulic size of suspended 17 A.P. Baljyan, particles and turbid flow parameters D.J. Kamalyan

S.N. Yeroyan, Assessment of underground and surface water by irrigation water quality 27 S.M. Mkrtchyan, standards M.A. Kalantaryan, A.G. Naghdalyan

P.Yu. Gasparyan Study of cutters operability when steel is machining by variable cutting modes 33

R.G. Israelyan, On construction efficiency increase in mountainous conditions 43 A.A. Pogosyan

R.S. Hakobyan Synthesis of (3-s-substituted)-1h-1,2,4-triazolyl-pyrimidine derivatives 48

R.L. Vardanyan, Mechanism of inhibition of cumene oxidation the extract of flax seeds 53 L.R. Vardanyan, S.A. Hayrapetyan, P.G. Baghdasaryan

N.V. Farsiyan, The economic efficiency effect and aftereffect of fertilizers and ameliorants in 63 S.K. Yeritsyan, terms of Askeran region of NKR V.M. Danielyan

A.Kh. Markosyan, Problems of present-day higher education in socio-economic context and their 71 S.H. Tokmajyan, solution A.M. Margaryan

85

86

СОДЕРЖАНИЕ

А.А. Аракелян, Разработка ГИС модели определения минимального стока в произвольном 3 В.О. Саркисян створе реки и ее применение на примере бассейна р. Арпа

В.Г.Айрапетян, Некоторые инженерные аспекты природоохранных мероприятий малой 10 Г.С. Габаян, гидроэнергетики О.В.Токмаджян

В.О. Токмаджян, К определению зависимоси максимальной гидравлической крупности 17 А.П. Балджян, взвешанных частиц и параметров мутного потока Д.Д. Камалян

С.Н. Ероян, Оценка качества орошаемых и подземных вод ширакского плато по 27 С.М. Мкртчян, международным стандартам М.А. Калантарян, А.Г. Нагдалян

П.Ю. Гаспарян Иследование работаспособности резцов при обработки стали с разными 33 режимами резания Р.Г. Исраелян, K вопросу о повышении эффективности строительства в горных условиях 43 А.А. Погосян

Р.С. Акопян Синтез производных (3-S-замещенных)-1H-1,2,4,-триазол-пиримидинов 48

Р.Л. Варданян, Механизм ингибирования окисления кумола экстрактом семян льна 53 Л.Р. Варданян, С.А. Айрапетян, П.Г. Багдасарян,

Н.В. Фарсиян, Экономическая эффективность действия и последействия удобрений и 63 С.К. Ерицян, мелиорантов в условиях Аскеранского района НКР В.М. Даниелян

А.Х. Маркосян, Высшее образование в контексте социально-экономического развития 71 С.О. Токмаджян, Республики Армения: актуальные проблемы и пути их решения А.М. Маргарян

87