Deepstate: Symbolic Unit Testing for C and C++
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chopped Symbolic Execution
Chopped Symbolic Execution David Trabish Andrea Mattavelli Noam Rinetzky Cristian Cadar Tel Aviv University Imperial College London Tel Aviv University Imperial College London Israel United Kingdom Israel United Kingdom [email protected] [email protected] [email protected] [email protected] ABSTRACT the code with symbolic values instead of concrete ones. Symbolic Symbolic execution is a powerful program analysis technique that execution engines thus replace concrete program operations with systematically explores multiple program paths. However, despite ones that manipulate symbols, and add appropriate constraints on important technical advances, symbolic execution often struggles to the symbolic values. In particular, whenever the symbolic executor reach deep parts of the code due to the well-known path explosion reaches a branch condition that depends on the symbolic inputs, it problem and constraint solving limitations. determines the feasibility of both sides of the branch, and creates In this paper, we propose chopped symbolic execution, a novel two new independent symbolic states which are added to a worklist form of symbolic execution that allows users to specify uninter- to follow each feasible side separately. This process, referred to as esting parts of the code to exclude during the analysis, thus only forking, refines the conditions on the symbolic values by adding targeting the exploration to paths of importance. However, the appropriate constraints on each path according to the conditions excluded parts are not summarily ignored, as this may lead to on the branch. Test cases are generated by finding concrete values both false positives and false negatives. Instead, they are executed for the symbolic inputs that satisfy the path conditions. -
Practical Unit Testing for Embedded Systems Part 1 PARASOFT WHITE PAPER
Practical Unit Testing for Embedded Systems Part 1 PARASOFT WHITE PAPER Table of Contents Introduction 2 Basics of Unit Testing 2 Benefits 2 Critics 3 Practical Unit Testing in Embedded Development 3 The system under test 3 Importing uVision projects 4 Configure the C++test project for Unit Testing 6 Configure uVision project for Unit Testing 8 Configure results transmission 9 Deal with target limitations 10 Prepare test suite and first exemplary test case 12 Deploy it and collect results 12 Page 1 www.parasoft.com Introduction The idea of unit testing has been around for many years. "Test early, test often" is a mantra that concerns unit testing as well. However, in practice, not many software projects have the luxury of a decent and up-to-date unit test suite. This may change, especially for embedded systems, as the demand for delivering quality software continues to grow. International standards, like IEC-61508-3, ISO/DIS-26262, or DO-178B, demand module testing for a given functional safety level. Unit testing at the module level helps to achieve this requirement. Yet, even if functional safety is not a concern, the cost of a recall—both in terms of direct expenses and in lost credibility—justifies spending a little more time and effort to ensure that our released software does not cause any unpleasant surprises. In this article, we will show how to prepare, maintain, and benefit from setting up unit tests for a simplified simulated ASR module. We will use a Keil evaluation board MCBSTM32E with Cortex-M3 MCU, MDK-ARM with the new ULINK Pro debug and trace adapter, and Parasoft C++test Unit Testing Framework. -
Parallel, Cross-Platform Unit Testing for Real-Time Embedded Systems
University of Denver Digital Commons @ DU Electronic Theses and Dissertations Graduate Studies 1-1-2017 Parallel, Cross-Platform Unit Testing for Real-Time Embedded Systems Tosapon Pankumhang University of Denver Follow this and additional works at: https://digitalcommons.du.edu/etd Part of the Computer Sciences Commons Recommended Citation Pankumhang, Tosapon, "Parallel, Cross-Platform Unit Testing for Real-Time Embedded Systems" (2017). Electronic Theses and Dissertations. 1353. https://digitalcommons.du.edu/etd/1353 This Dissertation is brought to you for free and open access by the Graduate Studies at Digital Commons @ DU. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ DU. For more information, please contact [email protected],[email protected]. PARALLEL, CROSS-PLATFORM UNIT TESTING FOR REAL-TIME EMBEDDED SYSTEMS __________ A Dissertation Presented to the Faculty of the Daniel Felix Ritchie School of Engineering and Computer Science University of Denver __________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy __________ by Tosapon Pankumhang August 2017 Advisor: Matthew J. Rutherford ©Copyright by Tosapon Pankumhang 2017 All Rights Reserved Author: Tosapon Pankumhang Title: PARALLEL, CROSS-PLATFORM UNIT TESTING FOR REAL-TIME EMBEDDED SYSTEMS Advisor: Matthew J. Rutherford Degree Date: August 2017 ABSTRACT Embedded systems are used in a wide variety of applications (e.g., automotive, agricultural, home security, industrial, medical, military, and aerospace) due to their small size, low-energy consumption, and the ability to control real-time peripheral devices precisely. These systems, however, are different from each other in many aspects: processors, memory size, develop applications/OS, hardware interfaces, and software loading methods. -
Advanced Systems Security: Symbolic Execution
Systems and Internet Infrastructure Security Network and Security Research Center Department of Computer Science and Engineering Pennsylvania State University, University Park PA Advanced Systems Security:! Symbolic Execution Trent Jaeger Systems and Internet Infrastructure Security (SIIS) Lab Computer Science and Engineering Department Pennsylvania State University Systems and Internet Infrastructure Security (SIIS) Laboratory Page 1 Problem • Programs have flaws ‣ Can we find (and fix) them before adversaries can reach and exploit them? • Then, they become “vulnerabilities” Systems and Internet Infrastructure Security (SIIS) Laboratory Page 2 Vulnerabilities • A program vulnerability consists of three elements: ‣ A flaw ‣ Accessible to an adversary ‣ Adversary has the capability to exploit the flaw • Which one should we focus on to find and fix vulnerabilities? ‣ Different methods are used for each Systems and Internet Infrastructure Security (SIIS) Laboratory Page 3 Is It a Flaw? • Problem: Are these flaws? ‣ Failing to check the bounds on a buffer write? ‣ printf(char *n); ‣ strcpy(char *ptr, char *user_data); ‣ gets(char *ptr) • From man page: “Never use gets().” ‣ sprintf(char *s, const char *template, ...) • From gnu.org: “Warning: The sprintf function can be dangerous because it can potentially output more characters than can fit in the allocation size of the string s.” • Should you fix all of these? Systems and Internet Infrastructure Security (SIIS) Laboratory Page 4 Is It a Flaw? • Problem: Are these flaws? ‣ open( filename, O_CREAT ); -
Unit Testing Is a Level of Software Testing Where Individual Units/ Components of a Software Are Tested. the Purpose Is to Valid
Unit Testing is a level of software testing where individual units/ components of a software are tested. The purpose is to validate that each unit of the software performs as designed. A unit is the smallest testable part of software. It usually has one or a few inputs and usually a single output. In procedural programming a unit may be an individual program, function, procedure, etc. In object-oriented programming, the smallest unit is a method, which may belong to a base/ super class, abstract class or derived/ child class. (Some treat a module of an application as a unit. This is to be discouraged as there will probably be many individual units within that module.) Unit testing frameworks, drivers, stubs, and mock/ fake objects are used to assist in unit testing. METHOD Unit Testing is performed by using the White Box Testing method. When is it performed? Unit Testing is the first level of testing and is performed prior to Integration Testing. BENEFITS Unit testing increases confidence in changing/ maintaining code. If good unit tests are written and if they are run every time any code is changed, we will be able to promptly catch any defects introduced due to the change. Also, if codes are already made less interdependent to make unit testing possible, the unintended impact of changes to any code is less. Codes are more reusable. In order to make unit testing possible, codes need to be modular. This means that codes are easier to reuse. Development is faster. How? If you do not have unit testing in place, you write your code and perform that fuzzy ‘developer test’ (You set some breakpoints, fire up the GUI, provide a few inputs that hopefully hit your code and hope that you are all set.) If you have unit testing in place, you write the test, write the code and run the test. -
Including Jquery Is Not an Answer! - Design, Techniques and Tools for Larger JS Apps
Including jQuery is not an answer! - Design, techniques and tools for larger JS apps Trifork A/S, Headquarters Margrethepladsen 4, DK-8000 Århus C, Denmark [email protected] Karl Krukow http://www.trifork.com Trifork Geek Night March 15st, 2011, Trifork, Aarhus What is the question, then? Does your JavaScript look like this? 2 3 What about your server side code? 4 5 Non-functional requirements for the Server-side . Maintainability and extensibility . Technical quality – e.g. modularity, reuse, separation of concerns – automated testing – continuous integration/deployment – Tool support (static analysis, compilers, IDEs) . Productivity . Performant . Appropriate architecture and design . … 6 Why so different? . “Front-end” programming isn't 'real' programming? . JavaScript isn't a 'real' language? – Browsers are impossible... That's just the way it is... The problem is only going to get worse! ● JS apps will get larger and more complex. ● More logic and computation on the client. ● HTML5 and mobile web will require more programming. ● We have to test and maintain these apps. ● We will have harder requirements for performance (e.g. mobile). 7 8 NO Including jQuery is NOT an answer to these problems. (Neither is any other js library) You need to do more. 9 Improving quality on client side code . The goal of this talk is to motivate and help you improve the technical quality of your JavaScript projects . Three main points. To improve non-functional quality: – you need to understand the language and host APIs. – you need design, structure and file-organization as much (or even more) for JavaScript as you do in other languages, e.g. -
Test Generation Using Symbolic Execution
Test Generation Using Symbolic Execution Patrice Godefroid Microsoft Research [email protected] Abstract This paper presents a short introduction to automatic code-driven test generation using symbolic execution. It discusses some key technical challenges, solutions and milestones, but is not an exhaustive survey of this research area. 1998 ACM Subject Classification D.2.5 Testing and Debugging, D.2.4 Software/Program Veri- fication Keywords and phrases Testing, Symbolic Execution, Verification, Test Generation Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2012.24 1 Automatic Code-Driven Test Generation In this paper, we discuss the problem of automatic code-driven test generation: Given a program with a known set of input parameters, automatically generate a set of input values that will exercise as many program statements as possible. Variants of this problem definition can be obtained using other code coverage criteria [48]. An optimal solution to this problem is theoretically impossible since this problem is undecidable in general (for infinite-state programs written in Turing-expressive programming languages). In practice, approximate solutions are sufficient. Although automating test generation using program analysis is an old idea (e.g., [41]), practical tools have only started to emerge during the last few years. Indeed, the expensive sophisticated program-analysis techniques required to tackle the problem, such as symbolic execution engines and constraint solvers, have only become computationally affordable in recent years thanks to the increasing computational power available on modern computers. Moreover, this steady increase in computational power has in turn enabled recent progress in the engineering of more practical software analysis techniques. Specifically, this recent progress was enabled by new advances in dynamic test generation [29], which generalizes and is more powerful than static test generation, as explained later in this paper. -
Testing and Debugging Tools for Reproducible Research
Testing and debugging Tools for Reproducible Research Karl Broman Biostatistics & Medical Informatics, UW–Madison kbroman.org github.com/kbroman @kwbroman Course web: kbroman.org/Tools4RR We spend a lot of time debugging. We’d spend a lot less time if we tested our code properly. We want to get the right answers. We can’t be sure that we’ve done so without testing our code. Set up a formal testing system, so that you can be confident in your code, and so that problems are identified and corrected early. Even with a careful testing system, you’ll still spend time debugging. Debugging can be frustrating, but the right tools and skills can speed the process. "I tried it, and it worked." 2 This is about the limit of most programmers’ testing efforts. But: Does it still work? Can you reproduce what you did? With what variety of inputs did you try? "It's not that we don't test our code, it's that we don't store our tests so they can be re-run automatically." – Hadley Wickham R Journal 3(1):5–10, 2011 3 This is from Hadley’s paper about his testthat package. Types of tests ▶ Check inputs – Stop if the inputs aren't as expected. ▶ Unit tests – For each small function: does it give the right results in specific cases? ▶ Integration tests – Check that larger multi-function tasks are working. ▶ Regression tests – Compare output to saved results, to check that things that worked continue working. 4 Your first line of defense should be to include checks of the inputs to a function: If they don’t meet your specifications, you should issue an error or warning. -
The Art, Science, and Engineering of Fuzzing: a Survey
1 The Art, Science, and Engineering of Fuzzing: A Survey Valentin J.M. Manes,` HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel Egele, Edward J. Schwartz, and Maverick Woo Abstract—Among the many software vulnerability discovery techniques available today, fuzzing has remained highly popular due to its conceptual simplicity, its low barrier to deployment, and its vast amount of empirical evidence in discovering real-world software vulnerabilities. At a high level, fuzzing refers to a process of repeatedly running a program with generated inputs that may be syntactically or semantically malformed. While researchers and practitioners alike have invested a large and diverse effort towards improving fuzzing in recent years, this surge of work has also made it difficult to gain a comprehensive and coherent view of fuzzing. To help preserve and bring coherence to the vast literature of fuzzing, this paper presents a unified, general-purpose model of fuzzing together with a taxonomy of the current fuzzing literature. We methodically explore the design decisions at every stage of our model fuzzer by surveying the related literature and innovations in the art, science, and engineering that make modern-day fuzzers effective. Index Terms—software security, automated software testing, fuzzing. ✦ 1 INTRODUCTION Figure 1 on p. 5) and an increasing number of fuzzing Ever since its introduction in the early 1990s [152], fuzzing studies appear at major security conferences (e.g. [225], has remained one of the most widely-deployed techniques [52], [37], [176], [83], [239]). In addition, the blogosphere is to discover software security vulnerabilities. At a high level, filled with many success stories of fuzzing, some of which fuzzing refers to a process of repeatedly running a program also contain what we consider to be gems that warrant a with generated inputs that may be syntactically or seman- permanent place in the literature. -
Background Goal Unit Testing Regression Testing Automation
Streamlining a Workflow Jeffrey Falgout Daniel Wilkey [email protected] [email protected] Science, Discovery, and the Universe Bloomberg L.P. Computer Science and Mathematics Major Background Regression Testing Jenkins instance would begin running all Bloomberg L.P.'s main product is a Another useful tool to have in unit and regression tests. This Jenkins job desktop application which provides sufficiently complex systems is a suite would then report the results on the financial tools. Bloomberg L.P. of regression tests. Regression testing Phabricator review and signal the author employs many computer programmers allows you to test very high level in an appropriate way. The previous to maintain, update, and add new behavior which can detect low level workflow required manual intervention to features to this product. bugs. run tests. This new workflow only the The product the code base was developer to create his feature branch in implementing has a record/playback order for all tests to be run automatically. Goal feature. This was leveraged to create a Many of the tasks that a programmer regression testing framework. This has to perform as part of a team can be framework leveraged the unit testing automated. The goal of this project was framework wherever possible. to work with a team to automate tasks At various points during the playback, where possible and make them easier callback methods would be invoked. An example of the new workflow, where a Jenkins where impossible. These methods could have testing logic to instance will automatically run tests and update the make sure the application was in the peer review. -
Symstra: a Framework for Generating Object-Oriented Unit Tests Using Symbolic Execution
Symstra: A Framework for Generating Object-Oriented Unit Tests using Symbolic Execution Tao Xie1, Darko Marinov2, Wolfram Schulte3, David Notkin1 1 Dept. of Computer Science & Engineering, Univ. of Washington, Seattle, WA 98195, USA 2 Department of Computer Science, University of Illinois, Urbana-Champaign, IL 61801, USA 3 Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA {taoxie,notkin}@cs.washington.edu, [email protected], [email protected] Abstract. Object-oriented unit tests consist of sequences of method invocations. Behavior of an invocation depends on the method’s arguments and the state of the receiver at the beginning of the invocation. Correspondingly, generating unit tests involves two tasks: generating method sequences that build relevant receiver- object states and generating relevant method arguments. This paper proposes Symstra, a framework that achieves both test generation tasks using symbolic execution of method sequences with symbolic arguments. The paper defines sym- bolic states of object-oriented programs and novel comparisons of states. Given a set of methods from the class under test and a bound on the length of sequences, Symstra systematically explores the object-state space of the class and prunes this exploration based on the state comparisons. Experimental results show that Symstra generates unit tests that achieve higher branch coverage faster than the existing test-generation techniques based on concrete method arguments. 1 Introduction Object-oriented unit tests are programs that test classes. Each test case consists of a fixed sequence of method invocations with fixed arguments that explores a particular aspect of the behavior of the class under test. Unit tests are becoming an important component of software development. -
Introduction to Unit Testing
INTRODUCTION TO UNIT TESTING In C#, you can think of a unit as a method. You thus write a unit test by writing something that tests a method. For example, let’s say that we had the aforementioned Calculator class and that it contained an Add(int, int) method. Let’s say that you want to write some code to test that method. public class CalculatorTester { public void TestAdd() { var calculator = new Calculator(); if (calculator.Add(2, 2) == 4) Console.WriteLine("Success"); else Console.WriteLine("Failure"); } } Let’s take a look now at what some code written for an actual unit test framework (MS Test) looks like. [TestClass] public class CalculatorTests { [TestMethod] public void TestMethod1() { var calculator = new Calculator(); Assert.AreEqual(4, calculator.Add(2, 2)); } } Notice the attributes, TestClass and TestMethod. Those exist simply to tell the unit test framework to pay attention to them when executing the unit test suite. When you want to get results, you invoke the unit test runner, and it executes all methods decorated like this, compiling the results into a visually pleasing report that you can view. Let’s take a look at your top 3 unit test framework options for C#. MSTest/Visual Studio MSTest was actually the name of a command line tool for executing tests, MSTest ships with Visual Studio, so you have it right out of the box, in your IDE, without doing anything. With MSTest, getting that setup is as easy as File->New Project. Then, when you write a test, you can right click on it and execute, having your result displayed in the IDE One of the most frequent knocks on MSTest is that of performance.