OWRB Stream System Management

Total Page:16

File Type:pdf, Size:1020Kb

OWRB Stream System Management Oklahoma Surface Water Resources OWRB Water Rights Permitting - Stream System Management Basins 2-9-4 Boise City Texas Beaver Harper Buffalo Newkirk Nowata Miami Cimarron Alva Grant Washington Guymon Kay 2-5-4 Cherokee Medford 2-9-3 2-10-1 2-14 Bartlesville Ottawa Beaver 2-10-2 Craig Woods Ponca City 2-15-2 Pawhuska Nowata Alfalfa 2-12 Vinita Osage Woodward Jay 2-5-3 Enid Noble Pawnee 2-13 2-16 Woodward Pawnee Rogers Major Pryor Arkansas River Basin Red River Basin Fairview Garfield Perry Delaware Ellis Owasso Claremore Mayes 2-1, Poteau River 1-1, Red River Mainstem (To Kiamichi River) Arnett 2-11 Sand Springs Dewey 2-9-2 Stillwater 2-2, Lower Arkansas River 1-2, Little River (McCurtain County) Taloga Tulsa 2-15-1 2-9-1 Broken Arrow Adair Payne Sapulpa Cherokee 2-3, Lower Canadian River (To Lake Eufaula) 1-3, Kiamichi River Wagoner Kingfisher Tahlequah 2-6-3 Guthrie Wagoner 2-4, Middle Arkansas River 1-4-1, Muddy Boggy River Blaine Kingfisher 2-4 Tulsa 2-17 Stilwell Watonga Creek Roger Mills Logan 2-5-1, Lower North Canadian River 1-4-2, Clear Boggy Creek Muskogee Chandler 2-5-2, Middle North Canadian River 1-5, Red River Mainstem (To Blue River) 2-5-2 Canadian Edmond 1-8-4 Custer 2-7 Okmulgee Muskogee Cheyenne Arapaho Oklahoma 2-5-3, Upper North Canadian River 1-6, Blue River Weatherford El Reno Yukon Bethany Lincoln Okfuskee Sequoyah Oklahoma City Okmulgee Elk City Del City Sallisaw 2-5-4, North Canadian Headwaters 1-7, Red River Mainstem (To Washita) Okemah Midwest City Washita Mustang 2-6-1, Lower Canadian River 1-8-1, Lower Washita 1-15-2 2-6-2 Moore McIntosh Sayre 2-5-1 Eufaula Beckham New Cordell Stigler 1-8-3 Norman 2-6-2, Middle Canadian River 1-8-2, Middle Washita Caddo 2-2 Pottawatomie Seminole Cleveland Wewoka 2-6-3, Upper Canadian River 1-8-3, Upper Washita 2-3 Haskell Anadarko Holdenville Hobart 2-8 Poteau 2-7, Deep Fork River 1-8-4, Washita Headwaters 1-18 Purcell 1-8-2 McClain Greer Kiowa McAlester Wilburton 2-1 2-8, Little River 1-9, Lower Washita - Mainstem Red River Hughes Mangum Grady 2-6-1 (To Lake Texoma) Le Flore 1-15-1 Latimer 2-9-1, Lower Cimarron River Harmon Ada Pittsburg 1-10, Walnut Bayou 1-13-1 Pauls Valley Hollis 1-16 2-9-2, Middle Cimarron River Altus Pontotoc 1-11, Mud Creek Comanche Garvin Jackson Lawton Stephens Coal 2-9-3, Upper Cimarron River 1-12, Beaver Creek Murray Duncan Sulphur Coalgate 2-9-4, Cimarron Headwaters 1-17 1-8-1 1-4-1 1-13-1, Cache Creek Frederick 1-13-2 1-12 Walters 1-4-2 Atoka 1-3 2-10-1, Lower Salt Fork Arkansas River 1-13-2, Deep Red Creek And West Cache Creek Tillman Pushmataha 1-14 Cotton Johnston Carter Atoka 2-10-2, Upper Salt Fork Arkansas River 1-14, Red River Mainstem (To North Fork of Red) Tishomingo Antlers 1-2 Waurika 1-11 Ardmore 2-11, Arkansas - Cimarron Rivers (To Keystone Lake) 1-15-1, Lower North Fork Red River Jefferson Madill McCurtain 1-10 1-6 Choctaw 2-12, Arkansas River Mainstem (To Kansas State Line) 1-9 Hugo 1-15-2, Upper North Fork Red River Durant Love Bryan 2-13, Bird Creek Marietta Marshall 1-16, Salt Fork Red River 1-5 Idabel 2-14, Caney River 1-17, Prairie Dog Town Fork Red River 1-7 1-1 2-15-1, Verdigris River (To Oologah Dam) 1-18, Elm Fork Red River 2-15-2, Verdigris River (To Kansas State Line) 2-16, Grand (Neosho) River 2-17, Illinois River This map represents surface water management basins used by the OWRB for surface water rights administration. For more information please visit the 0 50 OWRB’s web site at: ( http://www.owrb.ok.gov ) 10/04/2011 Miles.
Recommended publications
  • Baylor Geological Studies
    BAYLORGEOLOGICA L STUDIES PAUL N. DOLLIVER Creative thinking is more important than elaborate FRANK PH.D. PROFESSOR OF GEOLOGY BAYLOR UNIVERSITY 1929-1934 Objectives of Geological Training at Baylor The training of a geologist in a university covers but a few years; his education continues throughout his active life. The purposes of train­ ing geologists at Baylor University are to provide a sound basis of understanding and to foster a truly geological point of view, both of which are essential for continued professional growth. The staff considers geology to be unique among sciences since it is primarily a field science. All geologic research in­ cluding that done in laboratories must be firmly supported by field observations. The student is encouraged to develop an inquiring ob­ jective attitude and to examine critically all geological concepts and principles. The development of a mature and professional attitude toward geology and geological research is a principal concern of the department. Frontis. Sunset over the Canadian River from near the abandoned settlement of Old Tascosa, Texas. The rampart-like cliffs on the horizon first inspired the name "Llano Estacado" (Palisaded Plain) among Coronado's men. THE BAYLOR UNIVERSITY PRESS WACO, TEXAS BAYLOR GEOLOGICAL STUDIES BULLETIN NO. 42 Cenozoic Evolution of the Canadian River Basin Paul N. DoUiver BAYLOR UNIVERSITY Department of Geology Waco, Texas Spring 1984 Baylor Geological Studies EDITORIAL STAFF Jean M. Spencer Jenness, M.S., Editor environmental and medical geology O. T. Ph.D., Advisor, Cartographic Editor what have you Peter M. Allen, Ph.D. urban and environmental geology, hydrology Harold H. Beaver, Ph.D.
    [Show full text]
  • Notropis Girardi) and Peppered Chub (Macrhybopsis Tetranema)
    Arkansas River Shiner and Peppered Chub SSA, October 2018 Species Status Assessment Report for the Arkansas River Shiner (Notropis girardi) and Peppered Chub (Macrhybopsis tetranema) Arkansas River shiner (bottom left) and peppered chub (top right - two fish) (Photo credit U.S. Fish and Wildlife Service) Arkansas River Shiner and Peppered Chub SSA, October 2018 Version 1.0a October 2018 U.S. Fish and Wildlife Service Region 2 Albuquerque, NM This document was prepared by Angela Anders, Jennifer Smith-Castro, Peter Burck (U.S. Fish and Wildlife Service (USFWS) – Southwest Regional Office) Robert Allen, Debra Bills, Omar Bocanegra, Sean Edwards, Valerie Morgan (USFWS –Arlington, Texas Field Office), Ken Collins, Patricia Echo-Hawk, Daniel Fenner, Jonathan Fisher, Laurence Levesque, Jonna Polk (USFWS – Oklahoma Field Office), Stephen Davenport (USFWS – New Mexico Fish and Wildlife Conservation Office), Mark Horner, Susan Millsap (USFWS – New Mexico Field Office), Jonathan JaKa (USFWS – Headquarters), Jason Luginbill, and Vernon Tabor (Kansas Field Office). Suggested reference: U.S. Fish and Wildlife Service. 2018. Species status assessment report for the Arkansas River shiner (Notropis girardi) and peppered chub (Macrhybopsis tetranema), version 1.0, with appendices. October 2018. Albuquerque, NM. 172 pp. Arkansas River Shiner and Peppered Chub SSA, October 2018 EXECUTIVE SUMMARY ES.1 INTRODUCTION (CHAPTER 1) The Arkansas River shiner (Notropis girardi) and peppered chub (Macrhybopsis tetranema) are restricted primarily to the contiguous river segments of the South Canadian River basin spanning eastern New Mexico downstream to eastern Oklahoma (although the peppered chub is less widespread). Both species have experienced substantial declines in distribution and abundance due to habitat destruction and modification from stream dewatering or depletion from diversion of surface water and groundwater pumping, construction of impoundments, and water quality degradation.
    [Show full text]
  • Hon. H. A. Beckwith, Chairman Board of Water Engineers 302 West Fifteenth Street Austin, Texas Opinion No
    Hon. H. A. Beckwith, Chairman Board of Water Engineers 302 West Fifteenth Street Austin, Texas Opinion No. V-1307 Re: Purposes for which the appropriation to the In- terstate Compact Commis- Bion may be used during the biennium ending Au- gust 31, 1953. Dear Sir: You have requested an opinion of this office re- lating to the purposes for which expenditures may be made from the appropriation to the Interstate Compact Commission in the general anoronriation bill for the biennium ending August 31, 1953.--I-i.@. 426, Acts 52nd Leg., R. S. 1951, ch. 499, p. 1228, at p. 1374. The various statutes pertaining to the Interstate Compact Commission and related agencies will be summarized in chronological order so that your specific questions can be placed in the proper perspective. The Le lslature created the Interstate Compact Commission In 19& 9, and authorized the Governor to appoint an Interstate Compact Commissioner 'to negotiate an agree- ment with each of the affected States respecting the use, control and disposition of'the waters of the Canadian, Red and Sabine Rivers and their tributaries" and to tlmakethe necessary investigations and procure the necessary data for the proper performance of his duties, and may, with the approval of the Governor, employ such clerical, legal, engineering and other assistance as may be necessary in the performance of such duties." H.B. 594, Acts 51st Leg., R.S. 1949, ch. 380, p. 716 (Art. 7466g, V.C.S.) The stat- ute and emergency clause make clear that the Commissioner's duties were the negotiation of agreements and the investi- gating and procuring or data necessary to the negotiations concerning the above-named rivers.
    [Show full text]
  • RFP No. 212F for Endangered Species Research Projects for the Prairie Chub
    1 RFP No. 212f for Endangered Species Research Projects for the Prairie Chub Final Report Contributing authors: David S. Ruppel, V. Alex Sotola, Ozlem Ablak Gurbuz, Noland H. Martin, and Timothy H. Bonner Addresses: Department of Biology, Texas State University, San Marcos, Texas 78666 (DSR, VAS, NHM, THB) Kirkkonaklar Anatolian High School, Turkish Ministry of Education, Ankara, Turkey (OAG) Principal investigators: Timothy H. Bonner and Noland H. Martin Email: [email protected], [email protected] Date: July 31, 2017 Style: American Fisheries Society Funding sources: Texas Comptroller of Public Accounts, Turkish Ministry of Education- Visiting Scholar Program (OAG) Summary Four hundred mesohabitats were sampled from 36 sites and 20 reaches within the upper Red River drainage from September 2015 through September 2016. Fishes (N = 36,211) taken from the mesohabitats represented 14 families and 49 species with the most abundant species consisting of Red Shiner Cyprinella lutrensis, Red River Shiner Notropis bairdi, Plains Minnow Hybognathus placitus, and Western Mosquitofish Gambusia affinis. Red River Pupfish Cyprinodon rubrofluviatilis (a species of greatest conservation need, SGCN) and Plains Killifish Fundulus zebrinus were more abundant within prairie streams (e.g., swift and shallow runs with sand and silt substrates) with high specific conductance. Red River Shiner (SGCN), Prairie Chub Macrhybopsis australis (SGCN), and Plains Minnow were more abundant within prairie 2 streams with lower specific conductance. The remaining 44 species of fishes were more abundant in non-prairie stream habitats with shallow to deep waters, which were more common in eastern tributaries of the upper Red River drainage and Red River mainstem. Prairie Chubs comprised 1.3% of the overall fish community and were most abundant in Pease River and Wichita River.
    [Show full text]
  • The Native Fish Fauna of Major Drainages East of The
    THE NATIVE FISH FAUNA OF MAJOR DRAINAGES EAST OF THE CONTINENTAL DIVIDE IN NEW MEXICO A Thesis Presented to the Graduate Faculty of Biology Eastern New Mexico University In Partial Fulfillment of the Requirements fdr -the7Degree: Master of Science in Biology by Michael D. Hatch December 1984 TABLE OF CONTENTS Page Introduction Study Area Procedures Results and Discussion Summary Acknowledgements Literature Cited Appendices Abstract INTRODUCTION r (t. The earliest impression of New Mexico's native fish fauna =Ems during the 1850's from naturalists attached to various government survey parties. Without the collections from these and other early surveys, the record of the native fish fauna would be severely deficient because, since that time, some 1 4 native species - or subspecies of fish have become extirpated and the ranges of an additionial 22 native species or subspecies have become severly re- stricted. Since the late Miocene, physiographical changes of drainages have linked New Mexico, to varying degrees, with contemporary ichthyofaunal elements or their progenitors from the Rocky Mountains, the Great Plains, the Chihuahuan Desert, the Mexican Plateau, the Sonoran Desert and the Great Basin. Immigra- tion from these areas contributed to the diversity of the state's native ichthyofauna. Over the millinea, the fate of these fishes waxed and waned in ell 4, response to the changing physical and _chenaca-l-conditions of the surrounding environment. Ultimately, one of the most diverse fish faunas of any of the interior southwestern states developed. Fourteen families comprising 67 species of fish are believed to have occupied New Mexico's waters historically, with strikingly different faunas evolving east and west of the Continental Divide.
    [Show full text]
  • Stream Monitoring and Educational Program in the Red River Basin
    Stream Monitoring and Educational U.S. Department of the Interior Program in the Red River Basin, U.S. Geological Survey Texas, 1996–97 100 o 101 o 5 AMARILLO NORTH FORK 102 o RED RIVER 103 o A S LT 35o F ORK RED R IV ER 1 4 2 PRAIRIE DOG TOWN PEASE 3 99 o WICHITA FORK RED RIVER 7 FALLS CHARLIE 6 RIVE R o o 34 W 8 98 9 I R o LAKE CHIT 21 ED 97 A . TEXOMA o VE o 10 11 R 25 96 RI R 95 16 19 18 20 DENISON 17 28 14 15 23 24 27 29 22 26 30 12,13 LAKE PARIS KEMP LAKE LAKE KICKAPOO ARROWHEAD TEXARKANA EXPLANATION 0 40 80 120 MILES Reach 1—Lower Red River (mainstem) Basin Red River Basin in Texas Reach 2—Wichita River Basin NEW OKLAHOMA Reach 3—Pease River Basin MEXICO ARKANSAS Reach 4—Prairie Dog Town Fork Red River Basin Reach 5—North Fork and Salt Fork Red River TEXAS Basins 12 LOUISIANA USGS streamflow-gaging and water-quality station and reference number (table 1) 22 USGS streamflow-gaging station and reference number (table 1) Figure 1. Location of Red River Basin, Texas, and stream-monitoring stations. This fact sheet presents the 1996–97 Texas Panhandle, and becomes the Texas- 200,000 acre-feet are in the basin (fig. 1): stream monitoring and outreach activities Oklahoma boundary. It then flows Lake Kemp, Lake Kickapoo, Lake of the U.S. Geological Survey (USGS), through southwestern Arkansas and into Arrowhead, and Lake Texoma.
    [Show full text]
  • National Register Nomination File
    NPS Form 10-900 OMB No. 1024-0018 United States Department of the Interior National Park Service National Register of Historic Places Registration Form 1. Name of Property Historic Name: SH 203 (Old SH 52) Bridge at Salt Fork of the Red River Other name/site number: State Highway 52 Bridge at Salt Fork of the Red River Name of related multiple property listing: Historic Road Infrastructure of Texas 2. Location Street & number: Texas State Highway 203 at Salt Fork of the Red River City or town: Wellington State: Texas County: Collingsworth Not for publication: Vicinity: 3. State/Federal Agency Certification As the designated authority under the National Historic Preservation Act, as amended, I hereby certify that this nomination request for determination of eligibility meets the documentation standards for registering properties in the National Register of Historic Places and meets the procedural and professional requirements set forth in 36 CFR Part 60. In my opinion, the property meets does not meet the National Register criteria. I recommend that this property be considered significant at the following levels of significance: national statewide local Applicable National Register Criteria: A B C D State Historic Preservation Officer ___________________________ Signature of certifying official / Title Date Texas Historical Commission State or Federal agency / bureau or Tribal Government In my opinion, the property meets does not meet the National Register criteria. _______________________________________________________________________ ___________________________ Signature of commenting or other official Date ____________________________________________________________ State or Federal agency / bureau or Tribal Government 4. National Park Service Certification I hereby certify that the property is: ___ entered in the National Register ___ determined eligible for the National Register ___ determined not eligible for the National Register.
    [Show full text]
  • Great Bowls of Fire Get Bragging Rights and a Handsome Keeping Your Community Strong
    THE CLARENDON 11.26.2015 The Texas Panhandle’s First Newspaper. Established 1878. Enterprise THE CLARENDON NEWS & THE DONLEY COUNTY LEADER www.ClarendonLive.com Single 00 Courthouse lighting, chili cookoff this Saturday Copy $1 The Christmas season will start endonLive.com. community. Chili Challenge with a chance to win plaque, and the ballot of one lucky in a big way in Clarendon this week- Small Business Saturday began Saturday’s highlight will be the $250 in Clarendon Cash. taster will receive $250 in Clarendon THIS WEEK end with merchant sales, the light- in 2010 when American Express second annual Courthouse Light- Chili Challenge ballots and a Cash from the Chamber. ing of the Courthouse, and the third founded it to help small businesses ing Celebration, beginning at 5 p.m. list of participating merchants will Also on Saturday night, the 2 Shopping at small annual Chili Challenge. get more exposure during one of the with an appearance by Santa Claus be available for $5 each from the VFW Ladies Auxiliary will hold a businesses can make a big Local merchants are ready to biggest shopping weekends of the and caroling featuring local chil- Clarendon Visitor Center at Mulkey soup dinner at the Clarendon Lions impact this holiday season. help you find something for every- year. dren’s groups. The formal lighting Theatre immediately following the Hall for $5 per person featuring 4 Peggy recalls past holiday one on your Christmas list with their According to small business will be at 6 p.m. Courthouse Lighting. Chili tasters homemade chicken noodle or potato cooking disasters.
    [Show full text]
  • October 2002 Local/ Length Width Persons Damage Location Date Standard (Miles) (Yards) Killed Injured Property Crops Character of Storm
    Time Path Path Number of Estimated October 2002 Local/ Length Width Persons Damage Location Date Standard (Miles) (Yards) Killed Injured Property Crops Character of Storm OKLAHOMA, Western, Central and Southeast Alfalfa County 2 S Cherokee02 1135CST 0 0 Thunderstorm Wind (G52) Grant County Pond Creek02 1730CST 0 0 Hail(0.75) Garfield County 1 W Kremlin02 1745CST 0 0 20K Thunderstorm Wind Severe straight-line winds downed several large tree limbs and blew a boat and trailer about 100 yards. In addition, several house windows were broken; a cattle feeder was blown onto a nearby road; numerous wooden fences were blown over, and the westward-facing wall of a storage shed was pushed in three to five inches. Kay County Ponca City02 1835CST 0 0 Hail(0.88) Hail was reported on the northwest side of the city. Alfalfa County 1 N Cherokee03 0000CST 0 0 60K Flash Flood Four homes received minor damage from high water. Two vehicles were pulled out of high water, and State Highway 8 was closed due to high water. Woodward County 2 SW Mutual03 0200CST 0 0 20K Flash Flood 0800CST A paved road was washed away. Alfalfa County 2 SE Helena03 0300CST 0 0 0 Flash Flood State Highway 45 was closed due to high water. OKZ005-007>008- Woods - Grant - Kay - Woodward - Major - Dewey - Blaine - Kingfisher 010>011-015-017>018 03 0700CST 0 0 25K Flood 06 1430CST Two days of periodic heavy rain fell across much of northwest Oklahoma with some areas receiving nearly seven inches. Large amounts of runoff caused many rivers to rise above flood stage, including the Salt Fork Arkansas River at Tonkawa, the Chikaskia River near Braman and Blackwell, the Cimarron River near Waynoka, Okeene, and Dover, and the North Canadian River near Seiling.
    [Show full text]
  • A History of Fort Bascom in the Canadian River Valley
    New Mexico Historical Review Volume 87 Number 3 Article 4 7-1-2012 Boots on the Ground: A History of Fort Bascom in the Canadian River Valley James Blackshear Follow this and additional works at: https://digitalrepository.unm.edu/nmhr Recommended Citation Blackshear, James. "Boots on the Ground: A History of Fort Bascom in the Canadian River Valley." New Mexico Historical Review 87, 3 (2012). https://digitalrepository.unm.edu/nmhr/vol87/iss3/4 This Article is brought to you for free and open access by UNM Digital Repository. It has been accepted for inclusion in New Mexico Historical Review by an authorized editor of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. Boots on the Ground a history of fort bascom in the canadian river valley James Blackshear n 1863 the Union Army in New Mexico Territory, prompted by fears of a Isecond Rebel invasion from Texas and its desire to check incursions by southern Plains Indians, built Fort Bascom on the south bank of the Canadian River. The U.S. Army placed the fort about eleven miles north of present-day Tucumcari, New Mexico, a day’s ride from the western edge of the Llano Estacado (see map 1). Fort Bascom operated as a permanent post from 1863 to 1870. From late 1870 through most of 1874, it functioned as an extension of Fort Union, and served as a base of operations for patrols in New Mexico and expeditions into Texas. Fort Bascom has garnered little scholarly interest despite its historical signifi cance.
    [Show full text]
  • Stormwater Management Program 2013-2018 Appendix A
    Appendix A 2012 Texas Integrated Report - Texas 303(d) List (Category 5) 2012 Texas Integrated Report - Texas 303(d) List (Category 5) As required under Sections 303(d) and 304(a) of the federal Clean Water Act, this list identifies the water bodies in or bordering Texas for which effluent limitations are not stringent enough to implement water quality standards, and for which the associated pollutants are suitable for measurement by maximum daily load. In addition, the TCEQ also develops a schedule identifying Total Maximum Daily Loads (TMDLs) that will be initiated in the next two years for priority impaired waters. Issuance of permits to discharge into 303(d)-listed water bodies is described in the TCEQ regulatory guidance document Procedures to Implement the Texas Surface Water Quality Standards (January 2003, RG-194). Impairments are limited to the geographic area described by the Assessment Unit and identified with a six or seven-digit AU_ID. A TMDL for each impaired parameter will be developed to allocate pollutant loads from contributing sources that affect the parameter of concern in each Assessment Unit. The TMDL will be identified and counted using a six or seven-digit AU_ID. Water Quality permits that are issued before a TMDL is approved will not increase pollutant loading that would contribute to the impairment identified for the Assessment Unit. Explanation of Column Headings SegID and Name: The unique identifier (SegID), segment name, and location of the water body. The SegID may be one of two types of numbers. The first type is a classified segment number (4 digits, e.g., 0218), as defined in Appendix A of the Texas Surface Water Quality Standards (TSWQS).
    [Show full text]
  • [Short Report Title]
    Regional Water Plan – Panhandle Water Planning Area VOLUME I January, 2000 Prepared for the Panhandle Water Planning Group through a contract with the Panhandle Regional Water Plan Regional Planning Panhandle Water Planning Area Commission Amarillo, Texas PPC99134 Prepared by: Freese and Nichols, Inc. 4055 International Plaza Suite 200 Fort Worth, TX 76109 817/735-7300 The Texas Agricultural Experiment Station The Texas Agricultural Extension Service USDA Natural Resource Conservation Service Bureau of Economic Geology TABLE OF CONTENTS VOLUME I Chapter No. Page No. EXECUTIVE SUMMARY E-1 1.0 SENATE BILL 1 1-1 1.1 REGIONAL WATER PLANNING AREA 1-3 1.1.1 Population 1-4 1.1.2 Economic Activities 1-8 1.1.3 Climate 1-9 1.2 Major Water Providers 1-11 1.3 Sources of Water 1-12 1.3.1 Groundwater 1-12 1.3.2 Surface Water 1-20 1.4 Current Water Users and Demand Centers 1-25 1.4.1 Municipal Use 1-25 1.4.2 Industrial Use 1-26 1.4.3 Agricultural Use 1-28 1.5 Natural Resources 1-32 1.5.1 Natural Region 1-32 1.5.2 Regional Vegetation 1-34 1.5.3 Regional Geology 1-37 1.5.4 Mineral Resources 1-37 1.5.5 Soils 1-39 1.5.6 Wetlands 1-41 1.5.7 Aquatic Resources 1-42 1.5.8 Wildlife Resources 1-43 1.6 Threats and Constraints to Water Supply 1-44 1.7 Existing Programs and Goals 1-47 1.7.1 Federal Programs 1-47 1.7.2 Interstate Programs 1-48 1.7.3 State Programs 1-49 1.7.4 Local Programs 1-51 1.7.5 Other Information 1-52 2.0 CURRENT AND PROJECTED POPULATION AND WATER DEMAND FOR THE REGION 2-1 2.1 Population 2-3 2.2 Historical Water Use and Projected Water Demand 2-6 2.3 Major Water Providers 2-16 3.0 EVALUATION OF ADEQUACY OF CURRENT WATER SUPPLIES 3-1 3.1 Groundwater Supplies 3-2 3.1.1 Major Aquifers 3-5 3.1.2 Minor Aquifers 3-7 3.2 Surface Water Supplies 3-10 i TABLE OF CONTENTS VOLUME I Chapter No.
    [Show full text]