Synaptogenesis and Development of Pyramidal Neuron Dendritic Morphology in the Chimpanzee Neocortex Resembles Humans
Synaptogenesis and development of pyramidal neuron dendritic morphology in the chimpanzee neocortex resembles humans Serena Bianchia,1,2, Cheryl D. Stimpsona,1, Tetyana Dukaa, Michael D. Larsenb, William G. M. Janssenc, Zachary Collinsa, Amy L. Bauernfeinda, Steven J. Schapirod, Wallace B. Bazed, Mark J. McArthurd, William D. Hopkinse,f, Derek E. Wildmang, Leonard Lipovichg, Christopher W. Kuzawah, Bob Jacobsi, Patrick R. Hofc,j, and Chet C. Sherwooda,2 aDepartment of Anthropology, The George Washington University, Washington, DC 20052; bDepartment of Statistics and Biostatistics Center, The George Washington University, Rockville, MD 20852; cFishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029; dDepartment of Veterinary Sciences, The University of Texas MD Anderson Cancer Center, Bastrop, TX 78602; eNeuroscience Institute and Language Research Center, Georgia State University, Atlanta, GA 30302; fDivision of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, GA 30322; gCenter for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201; hDepartment of Anthropology, Northwestern University, Evanston, IL 60208; iDepartment of Psychology, Colorado College, Colorado Springs, CO 80903; and jNew York Consortium in Evolutionary Primatology, New York, NY 10024 Edited by Francisco J. Ayala, University of California, Irvine, CA, and approved April 18, 2013 (received for review February 13, 2013) Neocortical development in humans is characterized by an ex- humans only ∼25% of adult mass is achieved at birth (8). Con- tended period of synaptic proliferation that peaks in mid-child- comitantly, the postnatal refinement of cortical microstructure in hood, with subsequent pruning through early adulthood, as well humans progresses along a more protracted schedule relative to as relatively delayed maturation of neuronal arborization in the macaques.
[Show full text]