Follow up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes
Total Page:16
File Type:pdf, Size:1020Kb
Publications of the Astronomical Society of Australia (PASA), Vol. 34, e069, 21 pages (2017). © Astronomical Society of Australia 2017; published by Cambridge University Press. doi:10.1017/pasa.2017.65 Follow Up of GW170817 and Its Electromagnetic Counterpart by Australian-Led Observing Programmes I. Andreoni1,2,3,54, K. Ackley2,4,5, J. Cooke1,2,6, A. Acharyya7, J. R. Allison8,9,G.E.Anderson10, M. C. B. Ashley11, D. Baade12, M. Bailes1,2, K. Bannister13, A. Beardsley14,M.S.Bessell7,F.Bian7, P. A. Bland15, M. Boer16, T. Booler10, A. Brandeker17,I.S.Brown18, D. A. H. Buckley19, S.-W. Chang7,6, D. M. Coward20,S.Crawford19, H. Crisp20, B. Crosse10, A. Cucchiara21, M. Cupák15,J.S.deGois10, A. Deller1, H. A. R. Devillepoix15, D. Dobie8,13,6,E.Elmer22,D.Emrich10, W. Farah1,T.J.Farrell3, T. Franzen23, B. M. Gaensler24,D.K.Galloway2,4,5, B. Gendre21,16, T. Giblin25, A. Goobar26,J.Green13, P. J. Hancock10,B.A.D.Hartig15,E.J.Howell20,L.Horsley10, A. Hotan23,R.M.Howie27,L.Hu28,29, Y. Hu 30,29,C.W.James8, S. Johnston13, M. Johnston-Hollitt31, D. L. Kaplan18, M. Kasliwal32, E. F. Keane33, D. Kenney10, A. Klotz34,R.Lau32, R. Laugier16,E.Lenc6,8,X.Li35,29, E. Liang36, C. Lidman3, L. C. Luvaul7, C. Lynch8,6,B.Ma30, D. Macpherson20,J.Mao37, D. E. McClelland38,2, C. McCully39,40, A. Möller7,6, M. F. Morales41,D.Morris21, T. Murphy8,6, K. Noysena16,34, C. A. Onken7,6, N. B. Orange42, S. Osłowski1, D. Pallot20, J. Paxman27,S.B.Potter19, T. Pritchard1, W. Raja 13, R. Ridden-Harper7, E. Romero-Colmenero19,43, E. M. Sadler8,6, E. K. Sansom15, R. A. Scalzo7,6,44, B. P. Schmidt7,6, S. M. Scott38,2, N. Seghouani45, Z. Shang30,46,29, R. M. Shannon13,10,2, L. Shao7,47, M. M. Shara48,49, R. Sharp7,6, M. Sokolowski10,6, J. Sollerman17,J.Staff21,K.Steele10, T. Sun28,29, N. B. Suntzeff50,C.Tao51,52,S.Tingay10,6,M.C.Towner15, P. Thierry53,C.Trott10,6, B. E. Tucker7,6, P. Väisänen19,43, V. Venkatraman Krishnan1,6,M.Walker10,L.Wang50,28,29,X.Wang52, R. Wayth10,6, M. Whiting13, A. Williams10, T. Williams19,C.Wolf7,6,2,C.Wu20,X.Wu28,29, J. Yang28, X. Yuan35,29, H. Zhang36, J. Zhou36 and H. Zovaro7 1Centre for Astrophysics and Supercomputing, Swinburne University of Technology, PO Box 218, H29, Hawthorn, VIC 3122, Australia 2The Australian Research Council Centre of Excellence for Gravitational Wave Discovery (OzGrav) 3Australian Astronomical Observatory, 105 Delhi Rd, North Ryde, NSW 2113, Australia 4Monash Centre of Astrophysics, Monash University, VIC 3800, Australia 5School of Physics & Astronomy, Monash University, VIC 3800, Australia 6The Australian Research Council Centre of Excellence for All-Sky Astrophysics (CAASTRO) 7Research School of Astronomy and Astrophysics, The Australian National University, Canberra ACT 2611, Australia 8Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006, Australia 9The Australian Research Council Centre of Excellence for All-sky Astrophysics in 3 Dimensions (ASTRO 3D) 10International Centre for Radio Astronomy Research, Curtin University, Bentley WA 6102, Australia 11School of Physics, University of New South Wales, NSW 2052, Australia 12European Organisation for Astronomical Research in the Southern Hemisphere (ESO), Karl-Schwarzschild-Str. 2, 85748 Garching bei München, Germany 13ATNF, CSIRO Astronomy and Space Science, PO Box 76, Epping, NSW 1710, Australia 14School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA 15Department of Applied Geology, Curtin University, GPO Box U1987, Perth, WA 6845, Australia 16Artémis/Observatoire de la Cote d’Azur/CNRS, Boulevard de l’Observatoire CS 34229 - F 06304 NICE Cedex 4, France 17Department of Astronomy, Stockholm University, Albanova, SE 10691 Stockholm, Sweden 18Department of Physics, University of Wisconsin–Milwaukee, Milwaukee, WI 53201, USA 19South African Astronomical Observatory, PO Box 9, 7935 Observatory, South Africa 20School of Physics, University of Western Australia, Crawley, WA 6009, Australia 21University of the Virgin Islands, 2 John Brewer’s Bay, 00802 St Thomas, US Virgin Islands, USA 22School of Physics and Astronomy, University of Nottingham, Nottingham, UK 23ATNF, CSIRO Astronomy and Space Science, 26 Dick Perry Avenue, Kensington WA 6152, Australia 24Dunlap Institute for Astronomy and Astrophysics, University of Toronto, ON, M5S 3H4, Canada 25Department of Physics, 2354 Fairchild Drive, U.S. Air Force Academy, CO 80840, USA 26The Oskar Klein Centre, Department of Physics, Stockholm University, Albanova, SE 106 91 Stockholm, Sweden 27Department of Mechanical Engineering, Curtin University, GPO Box U1987, Perth, WA 6845, Australia 28Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008, China 29Chinese Center for Antarctic Astronomy, Nanjing 210008, China 30National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China 31Peripety Scientific Ltd., PO Box 11355 Manners Street, Wellington, 6142, New Zealand 32Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA 33SKA Organisation, Jodrell Bank Observatory, SK11 9DL, UK 34IRAP (CNRS/UPS) 34 ave. Edouard Belin, 31400 Toulouse, France 35Nanjing Institute of Astronomical Optics and Technology, Nanjing 210042, China 1 Downloaded from https://www.cambridge.org/core. IP address: 170.106.40.40, on 26 Sep 2021 at 15:04:40, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/pasa.2017.65 2 Andreoni et al. 36School of Astronomy and Space Science and Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, Nanjing 210093, China 37Yunnan Observatories, Chinese Academy of Sciences, 650011 Kunming, Yunnan Province, China 38Research School of Physics and Engineering, The Australian National University, Canberra ACT 2611, Australia 39Las Cumbres Observatory, 6740 Cortona Dr., Suite 102, Goleta, CA 93117-5575, USA 40Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA 41Department of Physics, University of Washington, Seattle, WA 98195, USA 42OrangeWave Innovative Science LLC, Moncks Corner, SC 29461, USA 43Southern African Large Telescope Foundation, P.O. Box 9, 7935 Observatory, South Africa 44Centre for Translational Data Science, University of Sydney, NSW 2006, Australia 45Centre de Recherche en Astronomie, Astrophysique et Géophysique, BP 63, Route de l’Observatoire, Bouzareah, 16340, Alger, Algeria 46Tianjin Normal University, Tianjin 300074, China 47Kavli Institute for Astronomy and Astrophysics, Peking University, 5 Yiheyuan Road, Haidian District, Beijing 100871, P. R. China 48Department of Astrophysics, American Museum of Natural History, Central Park West and 79th Street, New York, NY 10024, USA 49Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK 50George P. and Cynthia Woods Mitchell Institute for Fundamental Physics & Astronomy, Texas A. & M. University, Department of Physics and Astronomy, 4242 TAMU, College Station, TX 77843, USA 51Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille 13288, France 52Physics Department and Tsinghua Center for Astrophysics, Tsinghua University, Beijing, 100084, China 53Observatoire d’Auragne, 31190 Auragne, France 54Email: [email protected] (RECEIVED October 14, 2012; ACCEPTED November 22, 2017) Abstract The discovery of the first electromagnetic counterpart to a gravitational wave signal has generated follow-up observations by over 50 facilities world-wide, ushering in the new era of multi-messenger astronomy. In this paper, we present follow-up observations of the gravitational wave event GW170817 and its electromagnetic counterpart SSS17a/DLT17ck (IAU label AT2017gfo) by 14 Australian telescopes and partner observatories as part of Australian-based and Australian-led research programs. We report early- to late-time multi-wavelength observations, including optical imaging and spectroscopy, mid- infrared imaging, radio imaging, and searches for fast radio bursts. Our optical spectra reveal that the transient source emission cooled from approximately 6 400 K to 2 100 K over a 7-d period and produced no significant optical emission lines. The spectral profiles, cooling rate, and photometric light curves are consistent with the expected outburst and subsequent processes of a binary neutron star merger. Star formation in the host galaxy probably ceased at least a Gyr ago, although there is evidence for a galaxy merger. Binary pulsars with short (100 Myr) decay times are therefore unlikely progenitors, but pulsars like PSR B1534+12 with its 2.7 Gyr coalescence time could produce such a merger. The displacement (∼2.2 kpc) of the binary star system from the centre of the main galaxy is not unusual for stars in the host galaxy or stars originating in the merging galaxy, and therefore any constraints on the kick velocity imparted to the progenitor are poor. Keywords: gamma-ray burst: individual: GRB170817A – gravitational waves – stars: neutron – supernovae: general – supernovae: individual: AT2017gfo 1 INTRODUCTION tributed to the localisation of the GW event. On 2017 August 17 12:41:06, about 2 s after the GW detection, the Gamma-ray The first detection of an electromagnetic (EM) counterpart Burst Monitor (GBM) instrument on board the Fermi satel- to a gravitational wave (GW) event has led to the new era lite independently detected a short gamma-ray burst, labelled of GW multi-messenger astrophysics. The close coordina- as GRB 170817A (Connaughton et al. 2017; Goldstein