POLYNOMIAL INTERPOLATION for N Given Points There Exists a Unique

Total Page:16

File Type:pdf, Size:1020Kb

POLYNOMIAL INTERPOLATION for N Given Points There Exists a Unique POLYNOMIAL INTERPOLATION For n given points there exists a unique polynomial of degree n − 1 which passes through these points. For example, suppose you are given the three points (x0, y0), 2 (x1, y1) and (x2, y2). Then there is polynomial of degree 2, p2(x) = a0 +a1x+a2x , such that p2(x0) = y0, p2(x1) = y1, and p2(x2) = y2. This is the quadratic interpolating polynomial through the three given points. Example: Find the quadratic function passing through (0, 1), (1, 4) and (2, 8). 2 Solution: We want a second degree polynomial p2(x) = a0 + a1x + a2x such that the following is true. 2 p2(0) = a0 + a1(0) + a2(0) = 1 =⇒ a0 = 1 2 p2(0) = a0 + a1(1) + a2(1) = 4 =⇒ a0 + a1 + a2 = 4 2 p2(0) = a0 + a1(2) + a2(2) = 8 =⇒ a0 + 2a1 + 4a2 = 8 This produces a linear system of three equations with three unknowns, a0, a1, a2. This can be solved by Gaussian Elimination. Exercise 1: Solve the above for a0, a1, a2 to find the quadratic interpolating polynomial. Check your answer. Exercise 2: Write down the linear system of equations generated when finding 2 the coefficients for the interpolating cubic polynomial p3(x) = a0 + a1x + a2x + 3 a3x passing through the points (x0, y0), (x1, y1), (x2, y2), and (x3, y3). DO NOT SOLVE. This idea can be generalized to finding an nth degree polynomial which interpolates n + 1 given points. However, we will see later that this will lead to instabilities such as high oscillations. Thus, in interpolation, another method known as cubic spline interpolation is much more preferable. Exercise 3: To see how higher degree polynomial interpolation is not a good thing, visit the following web site: http://www-hm.ma.tum.de/ws0304/in1/links/Interpol/Lagrange.html This is a Java applet for interpolating polynomials. First click on the button for ”Polynomial” . Try to put about eight points in a straight line by clicking them in with your mouse . Then move one of the points in the middle up and down. Click on ”Move points” to do this. You will see that the interpolating polynomial will change drastically even far away from the perturbed node. Next, click on the button for ”cubic spline”. For the cubic spline, there will not be any high oscillations. 1.
Recommended publications
  • Mathematical Construction of Interpolation and Extrapolation Function by Taylor Polynomials Arxiv:2002.11438V1 [Math.NA] 26 Fe
    Mathematical Construction of Interpolation and Extrapolation Function by Taylor Polynomials Nijat Shukurov Department of Engineering Physics, Ankara University, Ankara, Turkey E-mail: [email protected] , [email protected] Abstract: In this present paper, I propose a derivation of unified interpolation and extrapolation function that predicts new values inside and outside the given range by expanding direct Taylor series on the middle point of given data set. Mathemati- cal construction of experimental model derived in general form. Trigonometric and Power functions adopted as test functions in the development of the vital aspects in numerical experiments. Experimental model was interpolated and extrapolated on data set that generated by test functions. The results of the numerical experiments which predicted by derived model compared with analytical values. KEYWORDS: Polynomial Interpolation, Extrapolation, Taylor Series, Expansion arXiv:2002.11438v1 [math.NA] 26 Feb 2020 1 1 Introduction In scientific experiments or engineering applications, collected data are usually discrete in most cases and physical meaning is likely unpredictable. To estimate the outcomes and to understand the phenomena analytically controllable functions are desirable. In the mathematical field of nu- merical analysis those type of functions are called as interpolation and extrapolation functions. Interpolation serves as the prediction tool within range of given discrete set, unlike interpola- tion, extrapolation functions designed to predict values out of the range of given data set. In this scientific paper, direct Taylor expansion is suggested as a instrument which estimates or approximates a new points inside and outside the range by known individual values. Taylor se- ries is one of most beautiful analogies in mathematics, which make it possible to rewrite every smooth function as a infinite series of Taylor polynomials.
    [Show full text]
  • On Multivariate Interpolation
    On Multivariate Interpolation Peter J. Olver† School of Mathematics University of Minnesota Minneapolis, MN 55455 U.S.A. [email protected] http://www.math.umn.edu/∼olver Abstract. A new approach to interpolation theory for functions of several variables is proposed. We develop a multivariate divided difference calculus based on the theory of non-commutative quasi-determinants. In addition, intriguing explicit formulae that connect the classical finite difference interpolation coefficients for univariate curves with multivariate interpolation coefficients for higher dimensional submanifolds are established. † Supported in part by NSF Grant DMS 11–08894. April 6, 2016 1 1. Introduction. Interpolation theory for functions of a single variable has a long and distinguished his- tory, dating back to Newton’s fundamental interpolation formula and the classical calculus of finite differences, [7, 47, 58, 64]. Standard numerical approximations to derivatives and many numerical integration methods for differential equations are based on the finite dif- ference calculus. However, historically, no comparable calculus was developed for functions of more than one variable. If one looks up multivariate interpolation in the classical books, one is essentially restricted to rectangular, or, slightly more generally, separable grids, over which the formulae are a simple adaptation of the univariate divided difference calculus. See [19] for historical details. Starting with G. Birkhoff, [2] (who was, coincidentally, my thesis advisor), recent years have seen a renewed level of interest in multivariate interpolation among both pure and applied researchers; see [18] for a fairly recent survey containing an extensive bibli- ography. De Boor and Ron, [8, 12, 13], and Sauer and Xu, [61, 10, 65], have systemati- cally studied the polynomial case.
    [Show full text]
  • Easy Way to Find Multivariate Interpolation
    IJETST- Vol.||04||Issue||05||Pages 5189-5193||May||ISSN 2348-9480 2017 International Journal of Emerging Trends in Science and Technology IC Value: 76.89 (Index Copernicus) Impact Factor: 4.219 DOI: https://dx.doi.org/10.18535/ijetst/v4i5.11 Easy way to Find Multivariate Interpolation Author Yimesgen Mehari Faculty of Natural and Computational Science, Department of Mathematics Adigrat University, Ethiopia Email: [email protected] Abstract We derive explicit interpolation formula using non-singular vandermonde matrix for constructing multi dimensional function which interpolates at a set of distinct abscissas. We also provide examples to show how the formula is used in practices. Introduction Engineers and scientists commonly assume that past and currently. But there is no theoretical relationships between variables in physical difficulty in setting up a frame work for problem can be approximately reproduced from discussing interpolation of multivariate function f data given by the problem. The ultimate goal whose values are known.[1] might be to determine the values at intermediate Interpolation function of more than one variable points, to approximate the integral or to simply has become increasingly important in the past few give a smooth or continuous representation of the years. These days, application ranges over many variables in the problem different field of pure and applied mathematics. Interpolation is the method of estimating unknown For example interpolation finds applications in the values with the help of given set of observations. numerical integrations of differential equations, According to Theile Interpolation is, “The art of topography, and the computer aided geometric reading between the lines of the table” and design of cars, ships, airplanes.[1] According to W.M.
    [Show full text]
  • Math 541 - Numerical Analysis Interpolation and Polynomial Approximation — Piecewise Polynomial Approximation; Cubic Splines
    Polynomial Interpolation Cubic Splines Cubic Splines... Math 541 - Numerical Analysis Interpolation and Polynomial Approximation — Piecewise Polynomial Approximation; Cubic Splines Joseph M. Mahaffy, [email protected] Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University San Diego, CA 92182-7720 http://jmahaffy.sdsu.edu Spring 2018 Piecewise Poly. Approx.; Cubic Splines — Joseph M. Mahaffy, [email protected] (1/48) Polynomial Interpolation Cubic Splines Cubic Splines... Outline 1 Polynomial Interpolation Checking the Roadmap Undesirable Side-effects New Ideas... 2 Cubic Splines Introduction Building the Spline Segments Associated Linear Systems 3 Cubic Splines... Error Bound Solving the Linear Systems Piecewise Poly. Approx.; Cubic Splines — Joseph M. Mahaffy, [email protected] (2/48) Polynomial Interpolation Checking the Roadmap Cubic Splines Undesirable Side-effects Cubic Splines... New Ideas... An n-degree polynomial passing through n + 1 points Polynomial Interpolation Construct a polynomial passing through the points (x0,f(x0)), (x1,f(x1)), (x2,f(x2)), ... , (xN ,f(xn)). Define Ln,k(x), the Lagrange coefficients: n x − xi x − x0 x − xk−1 x − xk+1 x − xn Ln,k(x)= = ··· · ··· , Y xk − xi xk − x0 xk − xk−1 xk − xk+1 xk − xn i=0, i=6 k which have the properties Ln,k(xk) = 1; Ln,k(xi)=0, for all i 6= k. Piecewise Poly. Approx.; Cubic Splines — Joseph M. Mahaffy, [email protected] (3/48) Polynomial Interpolation Checking the Roadmap Cubic Splines Undesirable Side-effects Cubic Splines... New Ideas... The nth Lagrange Interpolating Polynomial We use Ln,k(x), k =0,...,n as building blocks for the Lagrange interpolating polynomial: n P (x)= f(x )L (x), X k n,k k=0 which has the property P (xi)= f(xi), for all i =0, .
    [Show full text]
  • Spatial Interpolation Methods
    Page | 0 of 0 SPATIAL INTERPOLATION METHODS 2018 Page | 1 of 1 1. Introduction Spatial interpolation is the procedure to predict the value of attributes at unobserved points within a study region using existing observations (Waters, 1989). Lam (1983) definition of spatial interpolation is “given a set of spatial data either in the form of discrete points or for subareas, find the function that will best represent the whole surface and that will predict values at points or for other subareas”. Predicting the values of a variable at points outside the region covered by existing observations is called extrapolation (Burrough and McDonnell, 1998). All spatial interpolation methods can be used to generate an extrapolation (Li and Heap 2008). Spatial Interpolation is the process of using points with known values to estimate values at other points. Through Spatial Interpolation, We can estimate the precipitation value at a location with no recorded data by using known precipitation readings at nearby weather stations. Rationale behind spatial interpolation is the observation that points close together in space are more likely to have similar values than points far apart (Tobler’s Law of Geography). Spatial Interpolation covers a variety of method including trend surface models, thiessen polygons, kernel density estimation, inverse distance weighted, splines, and Kriging. Spatial Interpolation requires two basic inputs: · Sample Points · Spatial Interpolation Method Sample Points Sample Points are points with known values. Sample points provide the data necessary for the development of interpolator for spatial interpolation. The number and distribution of sample points can greatly influence the accuracy of spatial interpolation.
    [Show full text]
  • Comparison of Gap Interpolation Methodologies for Water Level Time Series Using Perl/Pdl
    Revista de Matematica:´ Teor´ıa y Aplicaciones 2005 12(1 & 2) : 157–164 cimpa – ucr – ccss issn: 1409-2433 comparison of gap interpolation methodologies for water level time series using perl/pdl Aimee Mostella∗ Alexey Sadovksi† Scott Duff‡ Patrick Michaud§ Philippe Tissot¶ Carl Steidleyk Received/Recibido: 13 Feb 2004 Abstract Extensive time series of measurements are often essential to evaluate long term changes and averages such as tidal datums and sea level rises. As such, gaps in time series data restrict the type and extent of modeling and research which may be accomplished. The Texas A&M University Corpus Christi Division of Nearshore Research (TAMUCC-DNR) has developed and compared various methods based on forward and backward linear regression to interpolate gaps in time series of water level data. We have developed a software system that retrieves actual and harmonic water level data based upon user provided parameters. The actual water level data is searched for missing data points and the location of these gaps are recorded. Forward and backward linear regression are applied in relation to the location of missing data or gaps in the remaining data. After this process is complete, one of three combinations of the forward and backward regression is used to fit the results. Finally, the harmonic component is added back into the newly supplemented time series and the results are graphed. The software created to implement this process of linear regression is written in Perl along with a Perl module called PDL (Perl Data Language). Generally, this process has demonstrated excellent results in filling gaps in our water level time series.
    [Show full text]
  • Bayesian Interpolation of Unequally Spaced Time Series
    Bayesian interpolation of unequally spaced time series Luis E. Nieto-Barajas and Tapen Sinha Department of Statistics and Department of Actuarial Sciences, ITAM, Mexico [email protected] and [email protected] Abstract A comparative analysis of time series is not feasible if the observation times are different. Not even a simple dispersion diagram is possible. In this article we propose a Gaussian process model to interpolate an unequally spaced time series and produce predictions for equally spaced observation times. The dependence between two obser- vations is assumed a function of the time differences. The novelty of the proposal relies on parametrizing the correlation function in terms of Weibull and Log-logistic survival functions. We further allow the correlation to be positive or negative. Inference on the model is made under a Bayesian approach and interpolation is done via the posterior predictive conditional distributions given the closest m observed times. Performance of the model is illustrated via a simulation study as well as with real data sets of temperature and CO2 observed over 800,000 years before the present. Key words: Bayesian inference, EPICA, Gaussian process, kriging, survival functions. 1 Introduction The majority of the literature on time series analysis assumes that the variable of interest, say Xt, is observed on a regular or equally spaced sequence of times, say t 2 f1; 2;:::g (e.g. Box et al. 2004; Chatfield 1989). Often, time series are observed at uneven times. Unequally spaced (also called unevenly or irregularly spaced) time series data occur naturally in many fields. For instance, natural disasters, such as earthquakes, floods and volcanic eruptions, occur at uneven intervals.
    [Show full text]
  • Multivariate Lagrange Interpolation 1 Introduction 2 Polynomial
    Alex Lewis Final Project Multivariate Lagrange Interpolation Abstract. Explain how the standard linear Lagrange interpolation can be generalized to construct a formula that interpolates a set of points in . We will also provide examples to show how the formula is used in practice. 1 Introduction Interpolation is a fundamental topic in Numerical Analysis. It is the practice of creating a function that fits a finite sampled data set. These sampled values can be used to construct an interpolant, which must fit the interpolated function at each date point. 2 Polynomial Interpolation “The Problem of determining a polynomial of degree one that passes through the distinct points and is the same as approximating a function for which and by means of a first degree polynomial interpolating, or agreeing with, the values of f at the given points. We define the functions and , And then define We can generalize this concept of linear interpolation and consider a polynomial of degree n that passes through n+1 points. In this case we can construct, for each , a function with the property that when and . To satisfy for each requires that the numerator of contains the term To satisfy , the denominator of must be equal to this term evaluated at . Thus, This is called the Th Lagrange Interpolating Polynomial The polynomial is given once again as, Example 1 If and , then is the polynomial that agrees with at , and ; that is, 3 Multivariate Interpolation First we define a function be an -variable multinomial function of degree . In other words, the , could, in our case be ; in this case it would be a 3 variable function of some degree .
    [Show full text]
  • Polynomial Interpolation
    Numerical Methods 401-0654 6 Polynomial Interpolation Throughout this chapter n N is an element from the set N if not otherwise specified. ∈ 0 0 6.1 Polynomials D-ITET, ✬ ✩D-MATL Definition 6.1.1. We denote by n n 1 n := R t αnt + αn 1t − + ... + α1t + α0 R: α0, α1,...,αn R . P ∋ 7→ − ∈ ∈ the R-vectorn space of polynomials with degree n. o ≤ ✫ ✪ ✬ ✩ Theorem 6.1.2 (Dimension of space of polynomials). It holds that dim n = n +1 and n P P ⊂ 6.1 C∞(R). p. 192 ✫ ✪ n n 1 ➙ Remark 6.1.1 (Polynomials in Matlab). MATLAB: αnt + αn 1t − + ... + α0 Vector Numerical − Methods (αn, αn 1,...,α0) (ordered!). 401-0654 − △ Remark 6.1.2 (Horner scheme). Evaluation of a polynomial in monomial representation: Horner scheme p(t)= t t t t αnt + αn 1 + αn 2 + + α1 + α0 . ··· − − ··· Code 6.1: Horner scheme, polynomial in MATLAB format 1 function y = polyval (p,x) 2 y = p(1); for i =2: length (p), y = x y+p( i ); end ∗ D-ITET, D-MATL Asymptotic complexity: O(n) Use: MATLAB “built-in”-function polyval(p,x); △ 6.2 p. 193 6.2 Polynomial Interpolation: Theory Numerical Methods 401-0654 Goal: (re-)constructionofapolynomial(function)frompairs of values (fit). ✬ Lagrange polynomial interpolation problem ✩ Given the nodes < t < t < < tn < and the values y ,...,yn R compute −∞ 0 1 ··· ∞ 0 ∈ p n such that ∈P j 0, 1,...,n : p(t )= y . ∀ ∈ { } j j ✫ ✪ D-ITET, D-MATL 6.2 p. 194 6.2.1 Lagrange polynomials Numerical Methods 401-0654 ✬ ✩ Definition 6.2.1.
    [Show full text]
  • Sparse Polynomial Interpolation and Testing
    Sparse Polynomial Interpolation and Testing by Andrew Arnold A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Doctor of Philsophy in Computer Science Waterloo, Ontario, Canada, 2016 © Andrew Arnold 2016 I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including any required final revisions, as accepted by my examiners. I understand that my thesis may be made electronically available to the public. ii Abstract Interpolation is the process of learning an unknown polynomial f from some set of its evalua- tions. We consider the interpolation of a sparse polynomial, i.e., where f is comprised of a small, bounded number of terms. Sparse interpolation dates back to work in the late 18th century by the French mathematician Gaspard de Prony, and was revitalized in the 1980s due to advancements by Ben-Or and Tiwari, Blahut, and Zippel, amongst others. Sparse interpolation has applications to learning theory, signal processing, error-correcting codes, and symbolic computation. Closely related to sparse interpolation are two decision problems. Sparse polynomial identity testing is the problem of testing whether a sparse polynomial f is zero from its evaluations. Sparsity testing is the problem of testing whether f is in fact sparse. We present effective probabilistic algebraic algorithms for the interpolation and testing of sparse polynomials. These algorithms assume black-box evaluation access, whereby the algorithm may specify the evaluation points. We measure algorithmic costs with respect to the number and types of queries to a black-box oracle.
    [Show full text]
  • Lecture 19 Polynomial and Spline Interpolation
    Lecture 19 Polynomial and Spline Interpolation A Chemical Reaction In a chemical reaction the concentration level y of the product at time t was measured every half hour. The following results were found: t 0 .5 1.0 1.5 2.0 y 0 .19 .26 .29 .31 We can input this data into Matlab as t1 = 0:.5:2 y1 = [ 0 .19 .26 .29 .31 ] and plot the data with plot(t1,y1) Matlab automatically connects the data with line segments, so the graph has corners. What if we want a smoother graph? Try plot(t1,y1,'*') which will produce just asterisks at the data points. Next click on Tools, then click on the Basic Fitting option. This should produce a small window with several fitting options. Begin clicking them one at a time, clicking them off before clicking the next. Which ones produce a good-looking fit? You should note that the spline, the shape-preserving interpolant, and the 4th degree polynomial produce very good curves. The others do not. Polynomial Interpolation n Suppose we have n data points f(xi; yi)gi=1. A interpolant is a function f(x) such that yi = f(xi) for i = 1; : : : ; n. The most general polynomial with degree d is d d−1 pd(x) = adx + ad−1x + ::: + a1x + a0 ; which has d + 1 coefficients. A polynomial interpolant with degree d thus must satisfy d d−1 yi = pd(xi) = adxi + ad−1xi + ::: + a1xi + a0 for i = 1; : : : ; n. This system is a linear system in the unknowns a0; : : : ; an and solving linear systems is what computers do best.
    [Show full text]
  • Piecewise Polynomial Interpolation
    Jim Lambers MAT 460/560 Fall Semester 2009-10 Lecture 20 Notes These notes correspond to Section 3.4 in the text. Piecewise Polynomial Interpolation If the number of data points is large, then polynomial interpolation becomes problematic since high-degree interpolation yields oscillatory polynomials, when the data may fit a smooth function. Example Suppose that we wish to approximate the function f(x) = 1=(1 + x2) on the interval [−5; 5] with a tenth-degree interpolating polynomial that agrees with f(x) at 11 equally-spaced points x0; x1; : : : ; x10 in [−5; 5], where xj = −5 + j, for j = 0; 1;:::; 10. Figure 1 shows that the resulting polynomial is not a good approximation of f(x) on this interval, even though it agrees with f(x) at the interpolation points. The following MATLAB session shows how the plot in the figure can be created. >> % create vector of 11 equally spaced points in [-5,5] >> x=linspace(-5,5,11); >> % compute corresponding y-values >> y=1./(1+x.^2); >> % compute 10th-degree interpolating polynomial >> p=polyfit(x,y,10); >> % for plotting, create vector of 100 equally spaced points >> xx=linspace(-5,5); >> % compute corresponding y-values to plot function >> yy=1./(1+xx.^2); >> % plot function >> plot(xx,yy) >> % tell MATLAB that next plot should be superimposed on >> % current one >> hold on >> % plot polynomial, using polyval to compute values >> % and a red dashed curve >> plot(xx,polyval(p,xx),'r--') >> % indicate interpolation points on plot using circles >> plot(x,y,'o') >> % label axes 1 >> xlabel('x') >> ylabel('y') >> % set caption >> title('Runge''s example') Figure 1: The function f(x) = 1=(1 + x2) (solid curve) cannot be interpolated accurately on [−5; 5] using a tenth-degree polynomial (dashed curve) with equally-spaced interpolation points.
    [Show full text]