Efficacy of Ketoprofen Vs. Ibuprofen and Diclofenac: a Systematic Review of the Literature and Meta-Analysis P

Total Page:16

File Type:pdf, Size:1020Kb

Efficacy of Ketoprofen Vs. Ibuprofen and Diclofenac: a Systematic Review of the Literature and Meta-Analysis P Efficacy of ketoprofen vs. ibuprofen and diclofenac: a systematic review of the literature and meta-analysis P. Sarzi-Puttini1, F. Atzeni1, L. Lanata2, M. Bagnasco2 1Rheumatology Unit, L. Sacco University Hospital, Milan, Italy; 2Medical Department, Dompé SpA, Milan, Italy. Abstract Objective The aim of this systematic review of the literature and meta-analysis of randomised controlled trials (RCTs) was to compare the efficacy of orally administered ketoprofen with that of ibuprofen and/or diclofenac. Methods The literature was systematically reviewed in accordance with the Cochrane Collaboration guidelines. The search was restricted to randomised clinical trials published in the Medline and Embase databases up to June 2011, and comparing the efficacy of oral ketoprofen (50–200 mg/day) with ibuprofen (600-1800 mg/day) or diclofenac (75–150 mg/day). Results A total of 13 RCTs involving 898 patients met the inclusion criteria: eight comparing ketoprofen with ibuprofen, and five comparing ketoprofen with diclofenac. The results of the meta-analysis showed a statistically significant difference in efficacy in favour of ketoprofen. The difference between ketoprofen and the pooled ibuprofen/diclofenac data was also statistically significant (0.459, 95% CI 0.33-0.58; p=0.00) at all point-estimates of the mean weighted size effect. Ketoprofen was significantly superior to both diclofenac (mean = 0.422; 95% CI 0.19-0.65; p=0.0007) and ibuprofen (mean = 0.475; 95% CI 0.32-0.62; p=0.0000) at all point-estimates. Heterogeneity for the analysed efficacy outcome was not statisically significant in any of the meta-analyses. Conclusion The efficacy of orally administered ketoprofen in relieving moderate-severe pain and improving functional status and general condition was significantly better than that of ibuprofen and/or diclofenac. Key words ketoprofen, diclofenac, ibuprofen, efficacy Clinical and Experimental Rheumatology 2013; 31: 731-738. Meta-analysis of ketoprofen efficacy / P. Sarzi-Puttini et al. Piercarlo Sarzi-Puttini, MD, Introduction followed to guarantee the homogeneity Fabiola Atzeni, MD, PhD, The management of mild-to-moderate between studies and to lower the risk of Luigi Lanata, MD, pain has traditionally been based on the bias. Michela Bagnasco, PhD use of non-steroidal anti-inflammatory The aim of this systematic literature re- Please address correspondence to: Pier- drugs (NSAIDs) and the synthetic non- view and meta-analysis of RCTs was to carlo Sarzi-Puttini, MD, opioid analgesic paracetamol (acetami- compare the pain relieving efficacy of Dipartimento di Reumatologia, Ospedale Universitario L. Sacco, nophen), both of which are effective, ketoprofen with that of ibuprofen and Via G.B. Grassi 74, widely recommended, and extensively diclofenac. 20127 Milano, Italy. used (1). Among the NSAIDs, keto- E-mail: sarzi@tiscali.it profen, ibuprofen and diclofenac have Methods Received on December 7, 2012; accepted been used for the last 30 years (1-3). The meta-analysis was designed and in revised form on March 18, 2013. Ketoprofen is potent and effective in performed in accordance to the PRIS- © Copyright CLINICAL AND relieving pain due to traumatic, ortho- MA (Preferred Reporting Items for EXPERIMENTAL RHEUMATOLOGY 2013. pedic and rheumatic disorders because Systematic Reviews and Meta-Analy- of its anti-inflammatory and analgesic ses) statement (10). properties (1). Its main mechanism of analgesic action is the inhibition of cy- Literature search clo-oxygenase (COX), which decreas- A systematic search was made of the es the production of prostaglandin E2 Medline and Embase electronic data- (PGE2), but it also inhibits the lipoxy- bases up to June 2011 in order to iden- genase pathway of the arachidonic acid tify clinical trials comparing ketoprofen cascade (4), thus decreasing leukot- with ibuprofen or diclofenac following riene synthesis. Furthermore, like other a previously defined protocol. No geo- NSAIDs, it has both peripheral and graphical neither language limits were central sites of activity (5) as a result of applied. The search was extended to inhibiting central prostaglandin biosyn- grey literature sources, such as abstract thesis (6, 7) by inhibiting brain COX from Annual Scientific Meetings of and nitric oxide synthase. It has been the American College od Rheumatol- shown that the analgesic efficacy of ogy (ACR) congress, European League its oral administration to patients with Against Rheumatism (EULAR) con- chronic rheumatic diseases such as os- gress from 2009 to 2011, non peer re- teoarthritis (OA) and rheumatoid arthri- view or unpublished randomised trials. tis (RA) is greater than that of naproxen The databases were searched using or acetylisalycilic acid. A comparative various combinations of the key words: multicentre study evaluating the ef- “clinical trial”, “ibuprofen”, “Brufen”, ficacy and tolerability of ketoprofen “diclofenac” “Voltaren”, “Orudis”, and diclofenac sodium in subjects with “OKi” and “ketoprofen”. acute rheumatic and traumatic condi- We applied inclusion and exclusion cri- tions showed an improvement in pain teria by subquestions and designs. All symptoms, with complete pain relief PRISMA steps were followed, includ- being observed in 25% of the patients ing checklist (data not shown). treated with ketoprofen as against 10% of those treated with diclofenac (8). An Study selection interesting multicentre, double-blind All selected titles and abstracts were study of 165 patients with traumatic independently reviewed by two rheu- pain-related sports injuries compared matologists (PCSP and FA) in accord- the analgesic efficacy of one week’s ance with the Cochrane Collaboration treatment with ketoprofen (50 mg/b.i.d. guidelines (11). per os) or ibuprofen (600 mg/b.i.d per The inclusion criteria used to select the os), and found that 50% pain relief was studies were established a priori and in- Funding: this study was supported by an achieved by more of the patients treated cluded prospective RCTs involving pa- unrestricted grant from Dompé SpA, Italy. Dompé SpA played had no role in the study with ketoprofen (76% vs. 58%; p<0.05) tients aged >18 years that compared the design, literature search, data collection, and in a shorter time (9). clinical efficacy of oral ketoprofen in data analysis, or data interpretation. In our meta-analysis we decided to in- treating moderate-severe pain with that Competing interests: All the authors have clude only trials comparing directly of oral ibuprofen or diclofenac, with or received consultancy fees or Congress ketoprofen with ibuprofen and/or di- without a placebo control group. invitations from Dompé. clofenac; this approach was actually Furthermore, in order to guarantee the 732 Meta-analysis of ketoprofen efficacy / P. Sarzi-Puttini et al. adherence to therapeutic doses and the homogeneity of the effect sizes, we only included trials in which ketopro- fen, ibuprofen and diclofenac were used at daily doses within the respec- tive therapeutical ranges of 50-200 mg/ day, 600-1800 mg/day, and 75-150 mg/ day. These doses are in accordance with the posology recommended in clinical practice for the treatment of moderate to severe pain. The clinical trials that did not concen- trate on efficacy were excluded, as were those that did not directly compare ke- toprofen with diclofenac or ibuprofen, those which compared ketoprofen with diclofenac or ibuprofen combined with a narcotic or non-narcotic agent, those in which the NSAIDs were not admin- istered orally or administred at daily doses outside the specified therapeuti- cal ranges. Retrospective studies were excluded to minimise heterogeneity, and no consideration was given to re- Fig. 1. Flow chart of the selection process. views, letters, editorials, conference pa- pers, case reports, basic science papers tion, allocation concealment, incom- (0–4 point scale), pain (0-20 point or clinical practice guidelines. plete outcome data, selective outcome scale), pain (1-5 point scale), pain re- Initially, the titles and/or abstracts of all reporting, blinding of participants and lief (0–4 point scale), responders (pain of the identified trials were reviewed personnel and blinding of outcome as- relief score >2: i.e. 50% pain relief), independently by two of the authors. sessment (11). These items were con- total symptom rating score (0–4 point This was followed by a second review sidered as key domains for RoB assess- scale), joint index, and the percentage of the eligible full-text publications ment and classified as ‘‘adequate’’ (low of improved patients vs. the percentage using a recognised method of positive risk of bias), ‘‘inadequate’’ (high risk of unimproved patients. inclusion. Disagreements regarding the of bias), or ‘‘unclear’’. Studies with ad- inclusion of articles were resolved by equate procedures in all domains were Statistical analysis discussions involving all of the authors. considered to have a low risk of bias; The meta-analysis was made using the ones with inadequate procedures in standardised mean differences (SMD) Study quality assessment and one or more key domain(s) were con- of each RCT. The weighted mean dif- risk of bias in included studies sidered to have a high risk of bias; and ference and the 95% confidence interval The quality of the selected publica- ones with unclear procedures in one or (95% CI) were obtained by the combin- tions was assessed using Jadad’s RCT more key domain(s) were considered ing standardised mean differences us- assessment scale (12), which assesses to have an unclear risk of bias. ing a fixed effects model. The statisti- blinding, randomisation and dropouts/ cal heterogeneity of the standardised withdrawn patients. The scale scores Data extraction and outcome mean differences was assessed using range from 0 to 5, with higher scores definition Cochrane’s Q statistic, which shows the indicating less likelihood of bias in The data were extracted using a pre- variation across studies due to hetero- the results and a score of ≥3 indicat- defined data extraction form. The ex- geneity and can be used to assess the ing high quality. However, we also tracted information included first au- consistency of the evidence (13-15).
Recommended publications
  • Colitis Caused by Non-Steroidal Anti-Inflammatory Drugs
    Postgrad Med J: first published as 10.1136/pgmj.62.730.773 on 1 August 1986. Downloaded from Postgraduate Medical Journal (1986) 62, 773-776 Colitis caused by non-steroidal anti-inflammatory drugs S. Ravi', A.C. Keat2 and E.C.B. Keat1 'Cuckfield Hospital, Cuckfield, West Sussex, and2Westminster Hospital, Horseferry Road, London SWIP2AP, UK. Summary: Four cases of acute proctocolitis associated with non-steroidal anti-inflammatory drug therapy are presented. The drugs implicated were flufenamic acid, mefenamic acid, naproxen and ibuprofen. After resolution of symptoms and signs of proctocolitis three of the four patients were subsequently rechallenged with the implicated drug: in each there was a rapid relapse. Introduction Ulcerative colitis is a disease of unknown aetiology Case reports with characteristic clinical features and a protracted course. A similar clinical picture, but running a shorter Case I and usually benign course, is occasionally seen follow- ing the administration of certain drugs. This was first A 77 year old woman was referred with intermittent noticed following the administration of antibiotics, bleeding per rectum for 6 months, associated for the often with pseudomembrane formation. Later, this last 2 months with bloody diarrhoea up to eight times was shown to be associated with infection by toxigenic daily. Previously, she had had troublesome symptoms Clostridium difficile. Until 1978, most cases were from osteoarthritis of her back and knees for which copyright. associated with treatment with clindamycin but since she had been prescribed flufenamic acid 200 mg thrice that time nearly all antibiotics have been implicated. daily. Her general health had remained good but she Other drugs capable of causing proctocolitis, though appeared pale and her haemoglobin was reduced to by different mechanisms, include phenindione (Keat & 8 g/dl.
    [Show full text]
  • KETOFEN ® (Ketoprofen)
    See other side for instructions for use in cattle. KETOFEN® (ketoprofen) Injectable Solution, 100 mg/mL For intravenous use in horses. PHARMACOLOGY KETOFEN is a non-narcotic, non-steroidal anti-inflammatory agent CAUTION with analgesic and antipyretic properties. Federal law restricts this drug to use by or on the order of a In horses, intravenous dosages of ketoprofen ranging from licensed veterinarian. 0.5 to 1.5 mg/lb resulted in dosage dependent anti-inflammatory effects in the chronic adjuvant carpitis model as depicted in the DESCRIPTION following graph. Ketoprofen is a non-steroidal anti-inflammatory agent of the propionic acid class that includes ibuprofen, naproxen and fenoprofen. Active Ingredient: Each mL contains 100 mg ketoprofen/mL of aqueous solution. Inactive Ingredients: 70 mg L-Arginine/mL; citric acid (to adjust pH); benzyl alcohol, 0.025 g (as preservative). It is packaged in a multiple dose bottle. INDICATION KETOFEN® (ketoprofen) is recommended for the alleviation of inflammation and pain associated with musculoskeletal disorders in the horse. DOSAGE AND ADMINISTRATION The recommended dosage is 1 mg/lb (1 mL/100 lbs) of body weight administered intravenously once daily. Treatment may be repeated for up to five days. Onset of activity is within two hours with peak response by 12 hours. Use contents within 4 months of first vial puncture. CONTRAINDICATIONS Additional studies using the same model in horses have There are no known contraindications to this drug when used as shown that the effects of ketoprofen are maximal by 12 hours directed. and still measurable at 24 hours after each dosage as depicted in Intra-arterial injection should be avoided.
    [Show full text]
  • Food and Drug Administration, HHS § 201.323
    Food and Drug Administration, HHS § 201.323 liver damage or gastrointestinal bleed- calcium, choline salicylate, magnesium ing). OTC drug products containing in- salicylate, or sodium salicylate] or ternal analgesic/antipyretic active in- other pain relievers/fever reducers. [Ac- gredients may cause similar adverse ef- etaminophen and (insert one nonste- fects. FDA concludes that the labeling roidal anti-inflammatory analgesic/ of OTC drug products containing inter- antipyretic ingredient—including, but nal analgesic/antipyretic active ingre- not limited to aspirin, carbaspirin cal- dients should advise consumers with a cium, choline salicylate, magnesium history of heavy alcohol use to consult salicylate, or sodium salicylate] may a physician. Accordingly, any OTC cause liver damage and stomach bleed- drug product, labeled for adult use, ing.’’ containing any internal analgesic/anti- (b) Requirements to supplement ap- pyretic active ingredients (including, proved application. Holders of approved but not limited to, acetaminophen, as- applications for OTC drug products pirin, carbaspirin calcium, choline sa- that contain internal analgesic/anti- licylate, ibuprofen, ketoprofen, magne- pyretic active ingredients that are sub- sium salicylate, naproxen sodium, and ject to the requirements of paragraph sodium salicylate) alone or in combina- (a) of this section must submit supple- tion shall bear an alcohol warning ments under § 314.70(c) of this chapter statement in its labeling as follows: to include the required warning in the (1) Acetaminophen. ‘‘Alcohol Warn- product’s labeling. Such labeling may ing’’ [heading in boldface type]: ‘‘If you be put into use without advance ap- consume 3 or more alcoholic drinks proval of FDA provided it includes the every day, ask your doctor whether exact information included in para- you should take acetaminophen or graph (a) of this section.
    [Show full text]
  • CELEBREX™ (Celecoxib Capsules)
    01/05/99 4:16 PM draft label 1 CELEBREX™ 2 (celecoxib capsules) 3 4 5 DESCRIPTION 6 7 CELEBREX (celecoxib) is chemically designated as 4-[5-(4-methylphenyl)-3- 8 (trifluoromethyl)-1H-pyrazol-1-yl] benzenesulfonamide and is a diaryl substituted 9 pyrazole. It has the following chemical structure: 10 O NH2 S O N N CF3 11 CH3 12 13 14 The empirical formula for celecoxib is C17H14F3N3O2S, and the molecular weight is 381.38. 15 16 CELEBREX oral capsules contain 100 mg and 200 mg of celecoxib. 17 18 The inactive ingredients in CELEBREX capsules include: croscarmellose sodium, edible 19 inks, gelatin, lactose monohydrate, magnesium stearate, povidone, sodium lauryl sulfate 20 and titanium dioxide. 21 22 CLINICAL PHARMACOLOGY 23 24 Mechanism of Action 25 CELEBREX is a nonsteroidal anti-inflammatory drug that exhibits anti-inflammatory, 26 analgesic, and antipyretic activities in animal models. The mechanism of action of 27 CELEBREX is believed to be due to inhibition of prostaglandin synthesis, primarily via 28 inhibition of cyclooxygenase-2 (COX-2), and at therapeutic concentrations in humans, 29 CELEBREX does not inhibit the cyclooxygenase-1 (COX-1) isoenzyme. 30 31 Pharmacokinetics 32 33 Absorption 34 Peak plasma levels of celecoxib occur approximately 3 hrs after an oral dose. Both peak 35 plasma levels (Cmax) and area under the curve (AUC) are roughly dose proportional 36 across the clinical dose range of 100-200 mg studied. At higher doses, under fasting 37 conditions, there is a less than proportional increase in Cmax and AUC which is thought 38 to be due to the low solubility of the drug in aqueous media.
    [Show full text]
  • IBUPROFEN Ibuprofen Film-Coated Tablet 200 Mg
    NEW ZEALAND CONSUMER MEDICINE INFORMATION IBUPROFEN Ibuprofen film-coated tablet 200 mg IBUPROFEN also relieves fever • asthma, wheezing or What is in this leaflet (high temperature). shortness of breath • swelling of the face, lips, Please read this leaflet carefully Although IBUPROFEN can relieve tongue which may cause before you start IBUPROFEN. the symptoms of pain and difficulty in swallowing or inflammation, it will not cure your breathing This leaflet answers some common condition. • hives, itching or skin rash. questions about IBUPROFEN. • stomach ache, fever, chills, IBUPROFEN contains the active nausea and vomiting It does not contain all the available ingredient ibuprofen. Ibuprofen • fainting information. It does not take the belongs to a group of medicines place of talking to your doctor or called non-steroidal anti- If you are allergic to aspirin or pharmacist. inflammatory drugs (or NSAIDs). NSAID medicines and take IBUPROFEN, these symptoms All medicines have risks and Your doctor may have prescribed may be severe. benefits. Your doctor has weighed this medicine for another reason. the risks of you taking IBUPROFEN Do not take IBUPROFEN if you against the benefits they expect it Ask your doctor if you have any are in your third trimester of will have for you. questions about why this pregnancy. medicine has been prescribed for It may affect your developing baby if If you have any concerns about you. you take it during this time. taking this medicine, ask your doctor or pharmacist. Many medicines used to treat Do not take IBUPROFEN if you headache, period pain and other have (or have previously) Keep this leaflet with the aches and pains contain aspirin or vomited blood or material that medicine.
    [Show full text]
  • Diclofenac Topical Patch Gel Solution Monograph
    Diclofenac Topical Patch, Gel and Solution National Drug Monograph March 2016 VHA Pharmacy Benefits Management Services, Medical Advisory Panel, and VISN Pharmacist Executives The purpose of VA PBM Services drug monographs is to provide a focused drug review for making formulary decisions. Updates will be made when new clinical data warrant additional formulary discussion. Documents will be placed in the Archive section when the information is deemed to be no longer current. FDA Approval Information Description/Mechanism of Action Diclofenac is the only nonsteroidal antiinflammatory drug (NSAID) approved in the U.S. for topical application. The mechanism of diclofenac is believed to be inhibition of prostaglandin synthesis, primarily by nonselectively inhibiting cyclooxygenase. The agents covered in this review are the four diclofenac topical products approved for analgesic purposes: Diclofenac epolamine / hydroxyethylpyrrolidine patch (DEHP) 1.3% approved in January 2007 Diclofenac sodium topical gel 1%, approved in October 2007 Diclofenac sodium topical solution 1.5% with dimethyl sulfoxide (DMSO, 45.5% w/w), approved in November 2009 Diclofenac sodium topical solution 2% with dimethyl sulfoxide (DMSO, 45.5% w/w), approved in January 2014 Indication(s) Under Review in this document (may include off Solution 1.5% Solution 2% label) Patch 1.3% Gel 1% (Drops) (MDP) Topical treatment Relief of the pain of Treatment of signs Treatment of the Also see Table 1 Product Descriptions of acute pain due osteoarthritis of joints and symptoms of pain of below. to minor strains, amenable to topical osteoarthritis of the osteoarthritis of sprains, and treatment, such as the knee(s) the knee(s) contusions knees and those of the hands.
    [Show full text]
  • Diclofenac Sodium Enteric-Coated Tablets) Tablets of 75 Mg Rx Only Prescribing Information
    ® Voltaren (diclofenac sodium enteric-coated tablets) Tablets of 75 mg Rx only Prescribing Information Cardiovascular Risk • NSAIDs may cause an increased risk of serious cardiovascular thrombotic events, myocardial infarction, and stroke, which can be fatal. This risk may increase with duration of use. Patients with cardiovascular disease or risk factors for cardiovascular disease may be at greater risk. (See WARNINGS.) • Voltaren® (diclofenac sodium enteric-coated tablets) is contraindicated for the treatment of perioperative pain in the setting of coronary artery bypass graft (CABG) surgery (see WARNINGS). Gastrointestinal Risk • NSAIDs cause an increased risk of serious gastrointestinal adverse events including inflammation, bleeding, ulceration, and perforation of the stomach or intestines, which can be fatal. These events can occur at any time during use and without warning symptoms. Elderly patients are at greater risk for serious gastrointestinal events. (See WARNINGS.) DESCRIPTION Voltaren® (diclofenac sodium enteric-coated tablets) is a benzene-acetic acid derivative. Voltaren is available as delayed-release (enteric-coated) tablets of 75 mg (light pink) for oral administration. The chemical name is 2-[(2,6-dichlorophenyl)amino] benzeneacetic acid, monosodium salt. The molecular weight is 318.14. Its molecular formula is C14H10Cl2NNaO2, and it has the following structural formula The inactive ingredients in Voltaren include: hydroxypropyl methylcellulose, iron oxide, lactose, magnesium stearate, methacrylic acid copolymer, microcrystalline cellulose, polyethylene glycol, povidone, propylene glycol, sodium hydroxide, sodium starch glycolate, talc, titanium dioxide. CLINICAL PHARMACOLOGY Pharmacodynamics Voltaren® (diclofenac sodium enteric-coated tablets) is a nonsteroidal anti-inflammatory drug (NSAID) that exhibits anti-inflammatory, analgesic, and antipyretic activities in animal models. The mechanism of action of Voltaren, like that of other NSAIDs, is not completely understood but may be related to prostaglandin synthetase inhibition.
    [Show full text]
  • (Ketorolac Tromethamine Tablets) Rx Only WARNING TORADOL
    TORADOL ORAL (ketorolac tromethamine tablets) Rx only WARNING TORADOLORAL (ketorolac tromethamine), a nonsteroidal anti-inflammatory drug (NSAID), is indicated for the short-term (up to 5 days in adults), management of moderately severe acute pain that requires analgesia at the opioid level and only as continuation treatment following IV or IM dosing of ketorolac tromethamine, if necessary. The total combined duration of use of TORADOLORAL and ketorolac tromethamine should not exceed 5 days. TORADOLORAL is not indicated for use in pediatric patients and it is NOT indicated for minor or chronic painful conditions. Increasing the dose of TORADOLORAL beyond a daily maximum of 40 mg in adults will not provide better efficacy but will increase the risk of developing serious adverse events. GASTROINTESTINAL RISK Ketorolac tromethamine, including TORADOL can cause peptic ulcers, gastrointestinal bleeding and/or perforation of the stomach or intestines, which can be fatal. These events can occur at any time during use and without warning symptoms. Therefore, TORADOL is CONTRAINDICATED in patients with active peptic ulcer disease, in patients with recent gastrointestinal bleeding or perforation, and in patients with a history of peptic ulcer disease or gastrointestinal bleeding. Elderly patients are at greater risk for serious gastrointestinal events (see WARNINGS). CARDIOVASCULAR RISK NSAIDs may cause an increased risk of serious cardiovascular thrombotic events, myocardial infarction, and stroke, which can be fatal. This risk may increase with duration of use. Patients with cardiovascular disease or risk factors for cardiovascular disease may be at greater risk (see WARNINGS and CLINICAL STUDIES). TORADOL is CONTRAINDICATED for the treatment of peri-operative pain in the setting of coronary artery bypass graft (CABG) surgery (see WARNINGS).
    [Show full text]
  • Arthritis Treatment Comparison Arthritis Treatment Comparison
    ARTHRITIS TREATMENT COMPARISON ARTHRITIS TREATMENT COMPARISON GENERIC OA of (BRAND) HOW SUPPLIED AS GA JIA JRA OA Knee PsA RA CHELATING AGENTS Penicillamine Cap: 250mg ✓ (Cuprimine) Penicillamine Tab: 250mg ✓ (Depen) CYCLIC POLYPEPTIDE IMMUNOSUPPRESSANTS Cyclosporine Cap: 25mg, 100mg; ✓ (Gengraf, Neoral) Sol: 100mg/mL CYCLOOXYGENASE-2 INHIBITORS Celecoxib Cap: 50mg, 100mg, ✓ ✓ ✓ ✓ (Celebrex) 200mg, 400mg DIHYDROFOLIC ACID REDUCTASE INHIBITORS Methotrexate Inj: 25mg/mL; ✓ ✓ Tab: 2.5mg Methotrexate Tab: 5mg, 7.5mg, ✓ ✓ (Trexall) 10mg, 15mg INTERLEUKIN RECEPTOR ANTAGONISTS Anakinra Inj: 100mg/0.67mL ✓ (Kineret) Tocilizumab Inj: 20mg/mL, ✓ ✓ (Actemra) 162mg/0.9mL GOLD COMPOUNDS Auranofin Cap: 3mg ✓ (Ridaura) Gold sodium thiomalate Inj: 50mg/mL ✓ ✓ (Myochrysine) HYALURONAN AND DERIVATIVES Hyaluronan Inj: 30mg/2mL ✓ (Orthovisc) Sodium hyaluronate Inj: 1% ✓ (Euflexxa) Sodium hyaluronate Inj: 10mg/mL ✓ (Hyalgan) Sodium hyaluronate Inj: 2.5mL ✓ (Supartz) HYLAN POLYMERS Hylan G-F 20 Inj: 8mg/mL ✓ (Synvisc, Synvisc One) KINASE INHIBITORS Tofacitinib Tab: 5mg ✓ (Xeljanz) MONOCLONAL ANTIBODIES Ustekinumab Inj: 45mg/0.5mL, ✓ (Stelara) 90mg/mL MONOCLONAL ANTIBODIES/CD20-BLOCKERS Rituximab Inj: 100mg/10mL, ✓ (Rituxan) 500mg/50mL (Continued) ARTHRITIS TREATMENT COMPARISON GENERIC OA of (BRAND) HOW SUPPLIED AS GA JIA JRA OA Knee PsA RA MONOCLONAL ANTIBODIES/TNF-BLOCKERS Adalimumab Inj: 20mg/0.4mL, ✓ ✓ ✓ ✓ (Humira) 40mg/0.8mL Golimumab Inj: 50mg/0.5mL, ✓ ✓ ✓ (Simponi) 100mg/mL Infliximab Inj: 100mg ✓ ✓ ✓ (Remicade) NON-STEROIDAL ANTI-INFLAMMATORY DRUGS
    [Show full text]
  • The Aryl Propionic Acid R-Flurbiprofen Selectively Induces P75ntr- Dependent Decreased Survival of Prostate Tumor Cells Emily J
    Research Article The Aryl Propionic Acid R-Flurbiprofen Selectively Induces p75NTR- Dependent Decreased Survival of Prostate Tumor Cells Emily J. Quann,1 Fatima Khwaja,1 Kenton H. Zavitz,3 and Daniel Djakiew1,2 1Department of Biochemistry and Molecular & Cellular Biology and the 2Vincent T. Lombardi Cancer Center, Georgetown University Medical Center, Washington, District of Columbia, and 3Myriad Pharmaceuticals Inc., Salt Lake City, Utah Abstract oxygenase (COX), the enzyme which catalyzes the conversion of Epidemiologic studies show that patients chronically consum- arachidonic acid to prostaglandins. Two isoforms of COX exist; ing nonsteroidal anti-inflammatory drugs (NSAID) for arthri- COX-1 is a housekeeping gene that is constitutively expressed at tis exhibit a reduced incidence of prostate cancer. In addition, low levels in most cells types, whereas COX-2 is highly inducible in some NSAIDs show anticancer activity in vitro.NSAIDs response to cytokines, hormones, and growth factors. COX-2 seems exert their anti-inflammatory effects by inhibiting cyclo- to play a significant role in the promotion of colon cancer with 50% oxygenase (COX) activity; however,evidence suggests that of precancerous adenomatous polyps and 85% of colon carcinomas COX-independent mechanisms mediate decreased prostate exhibiting COX-2 overexpression (9). However, the data pertaining cancer cell survival. Hence,we examined the effect of selected to the role of COX-2 in prostate cancer are less conclusive. Although some studies show overexpression, others show expres- aryl propionic acid NSAIDs and structurally related com- pounds on the decreased survival of prostate cancer cell lines sion is low or absent relative to normal tissue (10–14).
    [Show full text]
  • Central Nervous System Toxicity of Mefenamic Acid
    Central Nervous System toxicity of mefenamic acid overdose compared to other NSAIDs: an analysis of cases reported to the United Kingdom National Poisons Information Service. Running header: CNS toxicity of mefenamic acid A Kamour1, S Crichton2, G Cooper3, DJ Lupton4, M Eddleston4,5, JA Vale6, JP Thompson 3, SHL Thomas1,7 1National Poisons Information Service, Newcastle Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Wolfson Unit, Claremont Place, Newcastle upon Tyne, NE2 4HH. 2Department of Primary Care and Public Health, King's College London, Capital House, London, SE1 3QD 3National Poisons Information Service, Cardiff Unit, University Hospital Llandough, Penlan Road, Penarth, Vale of Glamorgan CF64 2XX. 4National Poisons Information Service, Edinburgh Unit, Royal Infirmary of Edinburgh, 51 Little France Crescent, Old Dalkeith Road, Edinburgh EH16 4SA. 5Pharmacology, Toxicology and Therapeutics, University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK. 6National Poisons Information Service, Birmingham Unit, City Hospital, Dudley Road, Birmingham B18 7QH. 7Medical Toxicology Centre, Institute of Cellular Medicine, Wolfson Building, Newcastle University, Newcastle NE2 4HH. Address for correspondence: Dr Ashraf Kamour, Acute Medical Unit, North Manchester General Hospital Delaunays Road, Crumpsall, Manchester, M8 5RB, UK. Tel: +44 (0)161 918 4673 This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/bcp.13169 This article is protected by copyright. All rights reserved. Fax: +44 (0)161 604 5323 Email: ashraf.kamour@pat.nhs.uk Keywords: Mefenamic acid, non-steroidal anti-inflammatory drug, overdose, poisoning, CNS toxicity, convulsions.
    [Show full text]
  • Antinociceptive Interaction and Pharmacokinetics of the Combination Treatments of Methyleugenol Plus Diclofenac Or Ketorolac
    molecules Article Antinociceptive Interaction and Pharmacokinetics of the Combination Treatments of Methyleugenol Plus Diclofenac or Ketorolac Héctor Isaac Rocha-González 1 , María Elena Sánchez-Mendoza 1, Leticia Cruz-Antonio 2, Francisco Javier Flores-Murrieta 1,3, Xochilt Itzel Cornelio-Huerta 1 and Jesús Arrieta 1,* 1 Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Colonia Casco de Santo Tomás, Miguel Hidalgo, Ciudad de México 11340, Mexico; heisaac2013@hotmail.com (H.I.R.-G.); mesmendoza@hotmail.com (M.E.S.-M.); fjfloresmurrieta@yahoo.com.mx (F.J.F.-M.); xochilt_itz@hotmail.com (X.I.C.-H.) 2 Facultad de Estudios Superiores Zaragoza, UNAM, Av. Guelatao No. 66, Colonia Ejército de Oriente, Iztapalapa, Ciudad de México 09230, Mexico; letycruza@yahoo.com.mx 3 Unidad de Investigación en Farmacología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosió Villegas, Secretaría de Salud, Ciudad de México 14080, Mexico * Correspondence: jearrval@yahoo.com.mx; Tel.: +55-5729-6300 (ext. 62740); Fax: +55-5622-5329 Received: 13 October 2020; Accepted: 31 October 2020; Published: 3 November 2020 Abstract: Although nonsteroidal anti-inflammatory drugs (NSAIDs) are one of the main types of drugs used to treat pain, they have several adverse effects, and such effects can be reduced by combining two analgesic drugs. The aim of this study was to evaluate the nociceptive activity of methyleugenol combined with either diclofenac or ketorolac, and determine certain parameters of pharmacokinetics. For the isobolographic analysis, the experimental effective dose 30 (ED30) was calculated for the drugs applied individually. With these effective doses, the peak plasma concentration (Cmax) was found and the other parameters of pharmacokinetics were established.
    [Show full text]