Reptiles of Fais Island, Yap State, Federated States of Micronesia1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reptiles, Birds, and Mammals of Pakin Atoll, Eastern Caroline Islands
Micronesica 29(1): 37-48 , 1996 Reptiles, Birds, and Mammals of Pakin Atoll, Eastern Caroline Islands DONALD W. BUDEN Division Mathematics of and Science, College of Micronesia, P. 0 . Box 159 Kolonia, Polmpei, Federated States of Micronesia 96941. Abstract-Fifteen species of reptiles, 18 birds, and five mammals are recorded from Pakin Atoll. None is endemic to Pakin and all of the residents tend to be widely distributed throughout Micronesia. Intro duced species include four mammals (Rattus exulans, Canis fami/iaris, Fe/is catus, Sus scrofa), the Red Junglefowl (Gallus gal/us) among birds, and at least one lizard (Varanus indicus). Of the 17 indigenous birds, ten are presumed or documented breeding residents, including four land birds, a heron, and five terns. The Micronesian Honeyeater (My=omela rubratra) is the most common land bird, followed closely by the Micro nesian Starling (Aplonis opaca). The vegetation is mainly Cocos forest, considerably modified by periodic cutting of the undergrowth, deliber ately set fires, and the rooting of pigs. Most of the present vertebrate species do not appear to be seriously endangered by present levels of human activity. But the Micronesian Pigeon (Ducula oceanica) is less numerous on the settled islands, probably reflecting increased hunting pressure, and sea turtles (especially Chelonia mydas) and their eggs are harvested indiscriminately . Introduction Terrestrial vertebrates have been poorly studied on many of the remote atolls of Micronesia, and distributional records are lacking or scanty for many islands. The present study documents the occurrence and relative abundance of reptiles, birds, and mammals on Pakin Atoll for the first time. -
Part I ABATAN WATERSHED CHARACTERIZATION REPORT
Part I [Type text] Page 0 Abatan Watershed Characterization Report and Integrated Watershed Management Plan September 2010 Part I ABATAN WATERSHED CHARACTERIZATION REPORT I. INTRODUCTION AND BACKGROUND INFORMATION The Abatan Watershed is the third largest of the 11 major watershed networks that support water needs and other requirements of the island province of Bohol. It covers some 38,628 hectares or close to 9% of the province‟s total land area. It has three distinct land divisions, coastal, lowland and upland. The coastal areas are marine and not along the most of the river. Table 1. Municipalities and their barangays comprising the Abatan Watershed Municipality Barangay Percent Angilan, Bantolinao, Bicahan, Bitaugan, Bungahan, Can-omay, Canlaas, 1. Antequera Cansibuan, Celing, Danao, Danicop, Mag-aso, Poblacion, Quinapon-an, 100 Santo Rosario, Tabuan, Tagubaas, Tupas, Ubojan, Viga, and Villa Aurora Baucan Norte, Baucan Sur, Boctol, Boyog Sur, Cabad, Candasig, Cantalid, Cantomimbo, Datag Norte, Datag Sur, Del Carmen Este, Del Carmen Norte, 2. Balilihan 71 Del Carmen Sur, Del Carmen Weste, Dorol, Haguilanan Grande, Magsija, Maslog, Sagasa, Sal-ing, San Isidro, and San Roque 3. Calape Cabayugan, Sampoangon, and Sohoton 9 Alegria, Ambuan, Bongbong, Candumayao, Causwagan, Haguilanan, 4. Catigbian Libertad Sur, Mantasida, Poblacion, Poblacion Weste, Rizal, and 54 Sinakayanan 5. Clarin Cabog, Danahao, and Tubod 12 Anislag, Canangca-an, Canapnapan, Cancatac, Pandol, Poblacion, and 6. Corella 88 Tanday Fatima, Loreto, Lourdes, Malayo Norte, Malayo Sur, Monserrat, New 7. Cortes Lourdes, Patrocinio, Poblacion, Rosario, Salvador, San Roque, and Upper de 93 la Paz 8. Loon Campatud 1 9. Maribojoc Agahay, Aliguay, Busao, Cabawan, Lincod, San Roque, and Toril 39 10. -
Husbandry Manual for the Shingleback Lizard Tiliqua Rugosa
Husbandry Manual for The Shingleback Lizard Tiliqua rugosa GRAY, 1825 Reptilia:Scincidae Compiler: Andrew Titmuss Date of Preparation: 2007 University of Western Sydney, Hawkesbury © Andrew Titmuss 2007 1 A Husbandry Manual template has been developed to standardise information on captive management needs in a concise, accessible and usable form. Currently there is no Husbandry Manual for the Shingleback Lizard. As these lizards are commonly kept in zoological and private collections in Australia and internationally, a Husbandry Manual could be widely used. This Husbandry Manual is set out as per the husbandry manual template designed by Stephen Jackson and Graeme Phipps. The template is a document that was created to maintain husbandry manual uniformity and thus its effectiveness and ease of use. It is intended as a working document. It is designed to be used by any institution, as well as private collections, holding this species. Although these lizards are easy to keep in captivity they do have some special requirements. The aim of the Husbandry Manual is to summarise and consolidate information regarding OHS, natural history, captive management and ethical husbandry techniques and conservation from a variety of sources. It should provide information on appropriate husbandry with scope for improved health and welfare and captive breeding if required. The University of Western Sydney, Hawkesbury Campus, is planning on keeping Shingleback Lizards amongst other species in their reptile unit. This manual can be used by the University of -
Emoia Impar and Emoia Cyanura)
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.11.902866; this version posted January 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. SIZE-BASED DOMINANCE HIERARCHY IN ONE OF TWO SYMPATRIC CRYPTIC PACIFIC SKINKS (EMOIA IMPAR AND EMOIA CYANURA) MARY “MOLLY” HALLSTEN Department of Integrative Biology, University of California, Berkeley, California 94720 USA Abstract. Emoia impar and Emoia cyanura are two morphologically cryptic Pacific skinks that have different preferred thermal micro-habitats but similar geographic range and overlap. Previously individuals have been noted to display a size-based dominance hierarchy at favored basking sites, though this behavior was not specified between species. I found that only one of the two species, E. impar, naturally presents this size-based dominance hierarchy in areas of high population density. Neither species exhibit the hierarchy in low population density areas. No evidence was found to suggest that the presence of this hierarchy allows one species to exclude the other. Key words: skinks; Emoia; thermal resource partitioning; Moorea, French Polynesia; size- based dominance hierarchy INTRODUCTION Understanding how multiple species co- exist within a shared habitat is a fundamental challenge in ecology (Gause 1934). Hardin (1960) documented the competitive exclusion principle, which states that if two non- interbreeding populations occupy the same ecological niche and geographical territory, and differ in their rate of resource consumption, one species will eventually drive the other to extinction. -
Southwest Pacific Islands: Samoa, Fiji, Vanuatu & New Caledonia Trip Report 11Th to 31St July 2015
Southwest Pacific Islands: Samoa, Fiji, Vanuatu & New Caledonia Trip Report 11th to 31st July 2015 Orange Fruit Dove by K. David Bishop Trip Report - RBT Southwest Pacific Islands 2015 2 Tour Leaders: K. David Bishop and David Hoddinott Trip Report compiled by Tour Leader: K. David Bishop Tour Summary Rockjumper’s inaugural tour of the islands of the Southwest Pacific kicked off in style with dinner at the Stamford Airport Hotel in Sydney, Australia. The following morning we were soon winging our way north and eastwards to the ancient Gondwanaland of New Caledonia. Upon arrival we then drove south along a road more reminiscent of Europe, passing through lush farmlands seemingly devoid of indigenous birds. Happily this was soon rectified; after settling into our Noumea hotel and a delicious luncheon, we set off to explore a small nature reserve established around an important patch of scrub and mangroves. Here we quickly cottoned on to our first endemic, the rather underwhelming Grey-eared Honeyeater, together with Nankeen Night Herons, a migrant Sacred Kingfisher, White-bellied Woodswallow, Fantailed Gerygone and the resident form of Rufous Whistler. As we were to discover throughout this tour, in areas of less than pristine habitat we encountered several Grey-eared Honeyeater by David Hoddinott introduced species including Common Waxbill. And so began a series of early starts which were to typify this tour, though today everyone was up with added alacrity as we were heading to the globally important Rivierre Bleu Reserve and the haunt of the incomparable Kagu. We drove 1.3 hours to the reserve, passing through a stark landscape before arriving at the appointed time to meet my friend Jean-Marc, the reserve’s ornithologist and senior ranger. -
Species Boundaries, Biogeography, and Intra-Archipelago Genetic Variation Within the Emoia Samoensis Species Group in the Vanuatu Archipelago and Oceania" (2008)
Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2008 Species boundaries, biogeography, and intra- archipelago genetic variation within the Emoia samoensis species group in the Vanuatu Archipelago and Oceania Alison Madeline Hamilton Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Hamilton, Alison Madeline, "Species boundaries, biogeography, and intra-archipelago genetic variation within the Emoia samoensis species group in the Vanuatu Archipelago and Oceania" (2008). LSU Doctoral Dissertations. 3940. https://digitalcommons.lsu.edu/gradschool_dissertations/3940 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. SPECIES BOUNDARIES, BIOGEOGRAPHY, AND INTRA-ARCHIPELAGO GENETIC VARIATION WITHIN THE EMOIA SAMOENSIS SPECIES GROUP IN THE VANUATU ARCHIPELAGO AND OCEANIA A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Alison M. Hamilton B.A., Simon’s Rock College of Bard, 1993 M.S., University of Florida, 2000 December 2008 ACKNOWLEDGMENTS I thank my graduate advisor, Dr. Christopher C. Austin, for sharing his enthusiasm for reptile diversity in Oceania with me, and for encouraging me to pursue research in Vanuatu. His knowledge of the logistics of conducting research in the Pacific has been invaluable to me during this process. -
Pacific ENSO Update: 2Nd Quarter 2015
2nd Quarter, 2015 Vol. 21, No. 2 ISSUED: May 29h, 2015 Providing Information on Climate Variability in the U.S.-Affiliated Pacific Islands for the Past 20 Years. http://www.prh.noaa.gov/peac CURRENT CONDITIONS The weather and climate of the central and western and travelled westward toward the Philippines. When tropical Pacific through April 2015 was extraordinary, with another typhoon formed in early February, a whole new forecast noteworthy extremes of rainfall, typhoons and oceanic response scenario opened: El Niño might strengthen and persist through to strong atmospheric forcing. The most damaging climatic 2015. The same suite of climate indicators that had predicted El extreme was the occurrence of a super typhoon (Maysak) that Niño in the first few months of 2014 was once again present in swept across Micronesia leaving a trail of destruction from even greater force in early 2015. This includes heavy rainfall in Chuuk State westward through Yap State, with Ulithi the RMI, early season typhoons, westerly wind bursts on the experiencing a devastating direct strike. A selection of equator, and falling sea level. During early March, a major additional weather and climate highlights includes: westerly wind burst occurred that led to the formation of the (1) Republic of Marshals Islands (RMI) -- record- tropical cyclone twins Bavi and Pam (Fig. 3). This westerly setting heavy daily and monthly rainfall on some atolls; wind burst (WWB) and associated tropical cyclone outbreak (2) Western North Pacific -- abundant early season shown in Figure 3 registered as the highest value of the Madden- tropical cyclones (5 in 4 months); Julian Oscillation (MJO) ever recorded (Fig. -
Literature Cited in Lizards Natural History Database
Literature Cited in Lizards Natural History database Abdala, C. S., A. S. Quinteros, and R. E. Espinoza. 2008. Two new species of Liolaemus (Iguania: Liolaemidae) from the puna of northwestern Argentina. Herpetologica 64:458-471. Abdala, C. S., D. Baldo, R. A. Juárez, and R. E. Espinoza. 2016. The first parthenogenetic pleurodont Iguanian: a new all-female Liolaemus (Squamata: Liolaemidae) from western Argentina. Copeia 104:487-497. Abdala, C. S., J. C. Acosta, M. R. Cabrera, H. J. Villaviciencio, and J. Marinero. 2009. A new Andean Liolaemus of the L. montanus series (Squamata: Iguania: Liolaemidae) from western Argentina. South American Journal of Herpetology 4:91-102. Abdala, C. S., J. L. Acosta, J. C. Acosta, B. B. Alvarez, F. Arias, L. J. Avila, . S. M. Zalba. 2012. Categorización del estado de conservación de las lagartijas y anfisbenas de la República Argentina. Cuadernos de Herpetologia 26 (Suppl. 1):215-248. Abell, A. J. 1999. Male-female spacing patterns in the lizard, Sceloporus virgatus. Amphibia-Reptilia 20:185-194. Abts, M. L. 1987. Environment and variation in life history traits of the Chuckwalla, Sauromalus obesus. Ecological Monographs 57:215-232. Achaval, F., and A. Olmos. 2003. Anfibios y reptiles del Uruguay. Montevideo, Uruguay: Facultad de Ciencias. Achaval, F., and A. Olmos. 2007. Anfibio y reptiles del Uruguay, 3rd edn. Montevideo, Uruguay: Serie Fauna 1. Ackermann, T. 2006. Schreibers Glatkopfleguan Leiocephalus schreibersii. Munich, Germany: Natur und Tier. Ackley, J. W., P. J. Muelleman, R. E. Carter, R. W. Henderson, and R. Powell. 2009. A rapid assessment of herpetofaunal diversity in variously altered habitats on Dominica. -
Perry & Buden 1999
Micronesica 31(2):263-273. 1999 Ecology, behavior and color variation of the green tree skink, Lamprolepis smaragdina (Lacertilia: Scincidae), in Micronesia GAD PERRY Brown Tree Snake Project, P.O. Box 8255, MOU-3, Dededo, Guam 96912, USA and Department of Zoology, Ohio State University, 1735 Neil Ave., Columbus, OH 43210, USA. [email protected]. DONALD W. BUDEN College of Micronesia, Division of Mathematics and Science, P.O. Box 159, Palikir, Pohnpei, Federated States of Micronesia 96941 Abstract—We studied populations of the green tree skink, Lamprolepis smaragdina, at three main sites in Micronesia: Pohnpei (Federated States of Micronesia, FSM) and Saipan and Tinian (Commonwealth of the Northern Mariana Islands, CNMI). We also surveyed Rota (CNMI), where the skink has not been recorded in previous surveys, to verify its absence. Our main goal was to describe some basic biology traits at these sites. Observations were carried out between 1993 and 1998. We used focal animal observations and visual surveys to describe the relative abundance, elevational distribution, behavior (perch choice, foraging behavior, activity time), and coloration of the species at each of the three sites. This information was then used to compare these populations in order to assess the origin of the CNMI populations. As expected, we found no green tree skink on Rota. We found few differences among the three populations we did locate, Pohnpei, Tinian, and Saipan. Perch diameters and body orientations were similar between the three sites, as were population densities and foraging behaviors. However, Tinian’s lizards perched lower than those of Pohnpei or Saipan, probably due to the smaller trees available to them. -
The Comparative Biogeography of Philippine Geckos Challenges Predictions from a Paradigm of Climate-Driven Vicariant Diversification Across an Island Archipelago
bioRxiv preprint doi: https://doi.org/10.1101/395434; this version posted April 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Running head: Comparative biogeography of Philippine geckos The comparative biogeography of Philippine geckos challenges predictions from a paradigm of climate-driven vicariant diversification across an island archipelago Jamie R. Oaks ∗1, Cameron D. Siler2, and Rafe M. Brown3 1Department of Biological Sciences & Museum of Natural History, Auburn University, Auburn, Alabama 36849, USA 2Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, Norman, Oklahoma 73072-7029 3Biodiversity Institute and Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas 66045, USA April 16, 2019 Abstract A primary goal of biogeography is to understand how large-scale environmental pro- cesses, like climate change, affect diversification. One often-invoked but seldom tested process is the “species-pump” model, in which repeated bouts of co-speciation are driven by oscillating climate-induced habitat connectivity cycles. For example, over the past three million years, the landscape of the Philippine Islands has repeatedly coalesced and fragmented due to sea-level changes associated with glacial cycles. This repeated climate-driven vicariance has been proposed as a model of speciation across evolu- tionary lineages codistributed throughout the islands. This model predicts speciation times that are temporally clustered around the times when interglacial rises in sea level fragmented the islands. -
Edward Harrison Taylor: the Teacher by A
HERP QL 31 .T37 E37 EDWARD H. TAYLOR: RECOLLECTIONS OF AN HERPETOLOGIST NOTE: The map depicting part of the Philip- pine region, reproduced on the cover, was used by Edward H. Taylor in the course of field work in 1912-1913. Edward H. Taylor EDWARD H. TAYLOR: RECOLLECTIONS OF AN HERPETOLOGIST EDWARD H. TAYLOR Professor and Curator Emeritus Department of Systematics and Ecology and Museum of Natural History The University of Kansas Lawrence, Kansas 66045 A. BYRON LEONARD Professor Emeritus Department of Systematics and Ecology The University of Kansas Lawrence, Kansas 66045 HOBART M. SMITH Professor Department of Environmental, Population, and Organismic Biology University of Colorado Boulder, Colorado 80302 GEORGE R. PISANI Visiting Instructor Department of Biology The University of Kansas Lawrence, Kansas 66045 Monograph of THE Museum of Natural History, The University of Kansas Number 4 1975 University of Kansas Publications, Museum of Natural History Editor: Richard F. Johnston Monograph Series, Publication No. 4 pp. 1-160; 6 figures; 1 plate Published December 15, 1975 WW 1 6 1999 Museum of Natural History The University of Kansas Lawrence, Kansas 66045 U.S.A. Copyright 1975, Museum of Natural History The University of Kansas Printed by University of Kansas Printing Service Lawrence, Kansas PREFACE The charge to anyone doing a volume like this is complex and best met by artists, not scientists. Professor E. H. Taylor is now 86 years old and has been busy for all that time. How, short of a full biography, can we recreate in our minds the sense of and feeling for this energetic, creative, sometimes irascible man who has had an extraordinary career as naturalist, explorer, teacher, friend (especially of children), scientist, spy, consort of royalty and "father" of modern herpetology? This book senses the man only fractionally and certainly less than we expect for average his full persons. -
Ecography E5383
Ecography E5383 Hamilton, A. M., Hartman, J. H. and Austin, C. C. 2009. Island area and species diversity in the southwest Pacific Ocean: is the lizard fauna of Vanuatu depauperate? – Ecography 32: 247– 258. Supplementary material Appendix 1. Species lists of lizards for island groups included in this analysis. Hemidactylus frenatus, H. garnotii, and Lepidodactylus lugubris are considered introduced to all island groups included in this comparison and therefore are not included below. This list represents a conservative estimate of the true native reptile diversity within each island group as we did not include currently undescribed taxa, and considered a species introduced if a previous worker indicated the distribution was likely the result of an introduction and provided supporting data. Endemic species have a distribution restricted to a single archipelago. We used published literature (published prior to 1 August 2008), personal field observations, and unpublished molecular data to develop this list; the primary source(s) for each record is included with the record and references are provided below the table. Solomon Fiji Archipelago Vanuatu Samoan Tongan New Caledonia Loyalty Islands Taxon Islands Archipelago Islands Archipelago AGAMIDAE Hypsilurus godeffroyi Native (1) DIPLODACTYLIDAE Bavayia crassicollis Native (18) Native (18) Bavayia cyclura Native (18) Native (18) Bavayia exsuccida Endemic (18) Bavayia geitaina Endemic (18) Bavayia goroensis Endemic (2) Bavayia madjo Endemic (18) Bavayia montana Endemic (18) Bavayia ornata Endemic