Commonwealth Marine Environment Report Card
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fronts in the World Ocean's Large Marine Ecosystems. ICES CM 2007
- 1 - This paper can be freely cited without prior reference to the authors International Council ICES CM 2007/D:21 for the Exploration Theme Session D: Comparative Marine Ecosystem of the Sea (ICES) Structure and Function: Descriptors and Characteristics Fronts in the World Ocean’s Large Marine Ecosystems Igor M. Belkin and Peter C. Cornillon Abstract. Oceanic fronts shape marine ecosystems; therefore front mapping and characterization is one of the most important aspects of physical oceanography. Here we report on the first effort to map and describe all major fronts in the World Ocean’s Large Marine Ecosystems (LMEs). Apart from a geographical review, these fronts are classified according to their origin and physical mechanisms that maintain them. This first-ever zero-order pattern of the LME fronts is based on a unique global frontal data base assembled at the University of Rhode Island. Thermal fronts were automatically derived from 12 years (1985-1996) of twice-daily satellite 9-km resolution global AVHRR SST fields with the Cayula-Cornillon front detection algorithm. These frontal maps serve as guidance in using hydrographic data to explore subsurface thermohaline fronts, whose surface thermal signatures have been mapped from space. Our most recent study of chlorophyll fronts in the Northwest Atlantic from high-resolution 1-km data (Belkin and O’Reilly, 2007) revealed a close spatial association between chlorophyll fronts and SST fronts, suggesting causative links between these two types of fronts. Keywords: Fronts; Large Marine Ecosystems; World Ocean; sea surface temperature. Igor M. Belkin: Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA [tel.: +1 401 874 6533, fax: +1 874 6728, email: [email protected]]. -
High Seas Bottom Trawl Fisheries and Their Impacts on the Biodiversity Of
High Seas Bottom Trawl Fisheries and their Impacts on the Biodiversity of Vulnerable Deep-Sea Ecosystems: Options for International Action Matthew Gianni Cover Photography The author wishes to thank the following contributors for use of their photography. Clockwise from top right: A rare anglerfish or sea toad (Chaunacidae: Bathychaunax coloratus), measuring 20.5 cm in total length, on the Davidson Seamount (2461 meters). Small, globular, reddish, cirri or hairy protrusions cover the body. The lure on the forehead is used to attract prey. Credit: NOAA/MBARI 2002 Industrial fisheries of Orange roughy. Emptying a mesh full of Orange roughy into a trawler. © WWF / AFMA, Credit: Australian Fisheries Management Authority White mushroom sponge (Caulophecus sp). on the Davidson Seamount (1949 meters). Credit: NOAA/MBARI 2002 Bubblegum coral (Paragorgia sp.) and stylasterid coral (Stylaster sp.) at 150 meters depth off Adak Island, Alaska. Credit: Alberto Lindner/NOAA Cover design: James Oliver, IUCN Global Marine Programme Printing of this publication was made possible through the generous support of HIGH SEAS BOTTOM TRAWL FISHERIES AND THEIR IMPACTS ON THE BIODIVERSITY OF VULNERABLE DEEP-SEA ECOSYSTEMS: OPTIONS FOR INTERNATIONAL ACTION Matthew Gianni IUCN – The World Conservation Union 2004 Report prepared for IUCN - The World Conservation Union Natural Resources Defense Council WWF International Conservation International The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN, WWF, Conservation International or Natural Resources Defense Council concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
Variability in Ocean Currents Around Australia
State and Trends of Australia’s Oceans Report 1.4 Variability in ocean currents around Australia Charitha B. Pattiaratchi1,2 and Prescilla Siji1,2 1 Oceans Graduate School, The University of Western Australia, Perth, WA, Australia 2 UWA Oceans Institute, The University of Western Australia, Perth, WA, Australia Summary Ocean currents also have a strong influence on marine ecosystems, through the transport of heat, nutrients, phytoplankton, zooplankton and larvae of most marine animals. We used geostrophic currents derived satellite altimetry measurements between 1993 and 2019 to examine the Kinetic Energy (KE, measure of current intensity) and Eddy Kinetic Energy (EKE, variability of the currents relative to a mean) around Australia. The East Australian (EAC) and Leeuwin (LC) current systems along the east and west coasts demonstrated strong seasonal and inter-annual variability linked to El Niño and La Niña events. The variability in the LC system was larger than for the EAC. All major boundary currents around Australia were enhanced during the 2011 La Niña event. Key Data Streams State and Trends of Australia’s Ocean Report www.imosoceanreport.org.au Satellite Remote Time-Series published Sensing 10 January 2020 doi: 10.26198/5e16a2ae49e76 1.4 I Cuirrent variability during winter (Wijeratne et al., 2018), with decadal ENSO Rationale variations affecting the EAC transport variability (Holbrook, Ocean currents play a key role in determining the distribution Goodwin, McGregor, Molina, & Power, 2011). Variability of heat across the planet, not only regulating and stabilising associated with ENSO along east coast of Australia appears climate, but also contributing to climate variability. Ocean to be weaker than along the west coast. -
Searching for Humpback Whales in a Historical Whaling Hotspot of the Coral Sea, South Pacific
Vol. 42: 67–82, 2020 ENDANGERED SPECIES RESEARCH Published June 4 https://doi.org/10.3354/esr01038 Endang Species Res OPENPEN ACCESSCCESS Searching for humpback whales in a historical whaling hotspot of the Coral Sea, South Pacific Claire Garrigue1,2,*, Solène Derville1,2, Claire Bonneville2, C. Scott Baker3, Ted Cheeseman4, Laurent Millet1, Dave Paton5, Debbie Steel3 1UMR ENTROPIE (IRD, Université de La Réunion, CNRS, Laboratoire d’excellence-CORAIL, Université de la Nouvelle-Calédonie, IFREMER),98848 Nouméa Cedex, Nouvelle-Calédonie, France 2Opération Cétacés, Nouméa, 98802 Nouvelle-Calédonie, France 3Marine Mammal Institute, Department of Fisheries and Wildlife, Oregon State University, Newport, OR 97365, USA 4Southern Cross University, Lismore, NSW 2480, Australia 5Blue Planet Marine, Kingston, ACT 2604, Australia ABSTRACT: Humpback whales Megaptera novaeangliae were severely depleted by commercial whaling. Understanding key factors in their recovery is a crucial step for their conservation world- wide. In Oceania, the Chesterfield-Bellona archipelago was a primary whaling site in the 19th cen- tury, yet has been left almost unaffected by anthropogenic activities since. We present the results of the first multidisciplinary dedicated surveys in the archipelago assessing humpback whale pop- ulations 2 centuries post-whaling. We encountered 57 groups during 24 survey days (2016−2017), among which 35 whales were identified using photographs of natural markings (photo-ID), 38 using genotyping and 22 using both. Humpback whales were sparsely distributed (0.041 whales km−1): most sightings concentrated in shallow inner-reef waters and neighbouring offshore shal- low banks. The recently created marine protected area covers most of the areas of high predicted habitat suitability and high residence time from satellite-tracked whales. -
Chapter 51. Biological Communities on Seamounts and Other Submarine Features Potentially Threatened by Disturbance
Chapter 51. Biological Communities on Seamounts and Other Submarine Features Potentially Threatened by Disturbance Contributors: J. Anthony Koslow, Peter Auster, Odd Aksel Bergstad, J. Murray Roberts, Alex Rogers, Michael Vecchione, Peter Harris, Jake Rice, Patricio Bernal (Co-Lead members) 1. Physical, chemical, and ecological characteristics 1.1 Seamounts Seamounts are predominantly submerged volcanoes, mostly extinct, rising hundreds to thousands of metres above the surrounding seafloor. Some also arise through tectonic uplift. The conventional geological definition includes only features greater than 1000 m in height, with the term “knoll” often used to refer to features 100 – 1000 m in height (Yesson et al., 2011). However, seamounts and knolls do not appear to differ much ecologically, and human activity, such as fishing, focuses on both. We therefore include here all such features with heights > 100 m. Only 6.5 per cent of the deep seafloor has been mapped, so the global number of seamounts must be estimated, usually from a combination of satellite altimetry and multibeam data as well as extrapolation based on size-frequency relationships of seamounts for smaller features. Estimates have varied widely as a result of differences in methodologies as well as changes in the resolution of data. Yesson et al. (2011) identified 33,452 seamount and guyot features > 1000 m in height and 138,412 knolls (100 – 1000 m), whereas Harris et al. (2014) identified 10,234 seamount and guyot features, based on a stricter definition that restricted seamounts to conical forms. Estimates of total abundance range to >100,000 seamounts and to 25 million for features > 100 m in height (Smith 1991; Wessel et al., 2010). -
User Guide to Identifying Candidate Areas for a Regional
Australia’s South-east Marine Region: A User’s Guide to Identifying Candidate Areas for a Regional Representative System of Marine Protected Areas August 2003 http://www.ea.gov.au/coasts/mpa/ © Commonwealth of Australia 2003 Information contained in this publication may be copied or reproduced for study, research, information or educational purposes, subject to inclusion of an acknowledgment of the source and provided no commercial usage or sale of the material occurs. Reproduction for purposes other than those given above requires written permission from Environment Australia. Requests for permission should be addressed to: Assistant Secretary Parks Australia South Environment Australia GPO Box 787 CANBERRA ACT 2601 Disclaimer: This paper was prepared by Environment Australia, CSIRO Marine Research and the National Oceans Office to assist with the process of identifying marine areas for inclusion within a representative system of marine protected areas as part of the South-east Regional Marine Plan. The views and opinions expressed in this publication are not necessarily those of the Commonwealth. The Commonwealth does not accept responsibility for the contents of this report, and shall not be liable for any loss or damage that may be occasioned directly or indirectly through the use of, or reliance on, the contents of this publication. ISBN: 0 642 54950 8 Contents About this user’s guide iii Your input to the process iv PART A 1 Section 1 Introduction 1 1.1 Policy context 1 1.2 Future representative marine protected area proposals in -
Upwelling As a Source of Nutrients for the Great Barrier Reef Ecosystems: a Solution to Darwin's Question?
Vol. 8: 257-269, 1982 MARINE ECOLOGY - PROGRESS SERIES Published May 28 Mar. Ecol. Prog. Ser. / I Upwelling as a Source of Nutrients for the Great Barrier Reef Ecosystems: A Solution to Darwin's Question? John C. Andrews and Patrick Gentien Australian Institute of Marine Science, Townsville 4810, Queensland, Australia ABSTRACT: The Great Barrier Reef shelf ecosystem is examined for nutrient enrichment from within the seasonal thermocline of the adjacent Coral Sea using moored current and temperature recorders and chemical data from a year of hydrology cruises at 3 to 5 wk intervals. The East Australian Current is found to pulsate in strength over the continental slope with a period near 90 d and to pump cold, saline, nutrient rich water up the slope to the shelf break. The nutrients are then pumped inshore in a bottom Ekman layer forced by periodic reversals in the longshore wind component. The period of this cycle is 12 to 25 d in summer (30 d year round average) and the bottom surges have an alternating onshore- offshore speed up to 10 cm S-'. Upwelling intrusions tend to be confined near the bottom and phytoplankton development quickly takes place inshore of the shelf break. There are return surface flows which preserve the mass budget and carry silicate rich Lagoon water offshore while nitrogen rich shelf break water is carried onshore. Upwelling intrusions penetrate across the entire zone of reefs, but rarely into the Lagoon. Nutrition is del~veredout of the shelf thermocline to the living coral of reefs by localised upwelling induced by the reefs. -
USGS Analysis of the Australian UNCLOS Submission
USGS Analysis of the Australian UNCLOS Submission By Deborah R. Hutchinson and Robert W. Rowland Open-File Report 2006-1073 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey P. Patrick Leahy, Acting Director U.S. Geological Survey, Reston, Virginia For Additional Information: See the United Nations web page on the United Nations Convention on the Law of the Sea at http://www.un.org/Depts/los/index.htm, and the Executive Summary of the Australian UNCLOS submission at http://www.un.org/Depts/los/clcs_new?submission_files/submission_aus.htm. Contact Deborah R. Hutchinson U.S. Geological Survey 384 Woods Hole Road Woods Hole, MA, 02543 [email protected] 508-457-2263 Robert W. Rowland U.S. Geological Survey, Retired 55825 River Shore Lane Elkhart, IN 46516 [email protected] For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Suggested citation Hutchinson, D.R., and Rowland, R.W., 2006, USGS Analysis of the Australian UNCLOS Submission: U.S. Geological Survey Open-File Report 2006-1073, 19 p., http://pubs.usgs.gov/of/2006/1073. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government, nor does the interpretation presented here reflect official U.S. -
Research and Monitoring in Australia's Coral Sea: a Review
Review of Research in Australia’s Coral Sea D. Ceccarelli DSEWPaC Final Report – 21 Jan 2011 _______________________________________________________________________ Research and Monitoring in Australia’s Coral Sea: A Review Report to the Department of Sustainability, Environment, Water, Population and Communities By Daniela Ceccarelli, Oceania Maritime Consultants January 21st, 2011 1 Review of Research in Australia’s Coral Sea D. Ceccarelli DSEWPaC Final Report – 21 Jan 2011 _______________________________________________________________________ Research and Monitoring in Australia’s Coral Sea: A Review By: Oceania Maritime Consultants Pty Ltd Author: Dr. Daniela M. Ceccarelli Internal Review: Libby Evans-Illidge Cover Photo: Image of the author installing a temperature logger in the Coringa-Herald National Nature Reserve, by Zoe Richards. Preferred Citation: Ceccarelli, D. M. (2010) Research and Monitoring in Australia’s Coral Sea: A Review. Report for DSEWPaC by Oceania Maritime Consultants Pty Ltd, Magnetic Island. Oceania Maritime Consultants Pty Ltd 3 Warboys Street, Nelly Bay, 4819 Magnetic Island, Queensland, Australia. Ph: 0407930412 [email protected] ABN 25 123 674 733 2 Review of Research in Australia’s Coral Sea D. Ceccarelli DSEWPaC Final Report – 21 Jan 2011 _______________________________________________________________________ EXECUTIVE SUMMARY The Coral Sea is an international body of water that lies between the east coast of Australia, the south coasts of Papua New Guinea and the Solomon Islands, extends to Vanuatu, New Caledonia and Norfolk Island to the east and is bounded by the Tasman Front to the south. The portion of the Coral Sea within Australian waters is the area of ocean between the seaward edge of the Great Barrier Reef Marine Park (GBRMP), the limit of Australia’s Exclusive Economic Zone (EEZ) to the east, the eastern boundary of the Torres Strait and the line between the Solitary Islands and Elizabeth and Middleton Reefs to the south. -
South-East Marine Region Profile
South-east marine region profile A description of the ecosystems, conservation values and uses of the South-east Marine Region June 2015 © Commonwealth of Australia 2015 South-east marine region profile: A description of the ecosystems, conservation values and uses of the South-east Marine Region is licensed by the Commonwealth of Australia for use under a Creative Commons Attribution 3.0 Australia licence with the exception of the Coat of Arms of the Commonwealth of Australia, the logo of the agency responsible for publishing the report, content supplied by third parties, and any images depicting people. For licence conditions see: http://creativecommons.org/licenses/by/3.0/au/ This report should be attributed as ‘South-east marine region profile: A description of the ecosystems, conservation values and uses of the South-east Marine Region, Commonwealth of Australia 2015’. The Commonwealth of Australia has made all reasonable efforts to identify content supplied by third parties using the following format ‘© Copyright, [name of third party] ’. Front cover: Seamount (CSIRO) Back cover: Royal penguin colony at Finch Creek, Macquarie Island (Melinda Brouwer) B / South-east marine region profile South-east marine region profile A description of the ecosystems, conservation values and uses of the South-east Marine Region Contents Figures iv Tables iv Executive Summary 1 The marine environment of the South-east Marine Region 1 Provincial bioregions of the South-east Marine Region 2 Conservation values of the South-east Marine Region 2 Key ecological features 2 Protected species 2 Protected places 2 Human activities and the marine environment 3 1. -
The Impacts of Deep-Sea Fisheries: Their Effects on the Megabenthos and Lessons for Sustainability
The impacts of deep-sea fisheries: their effects on the megabenthos and lessons for sustainability Malcolm Clark and Thomas Schlacher1, Alan Williams2, Ashley Rowden, Franzis Althaus2 and David Bowden 1: USC 2: CSIRO ICES Symposium: Effects of fishing on benthic fauna, habitat, and ecosystem function. Tromso, Norway. June 2014 Presentation Outline • Deep-sea fish and fisheries – Deep-sea species – Deep-sea fisheries • Deep-sea ecosystem – Habitats – Faunal communities • Fisheries Impacts – Nature and extent of impacts – Sensitivity of deep-sea habitats and communities – Recovery potential • Management implications A piece of the jigsaw puzzle • A variety of “keynote” talks – General biodiversity and EBM – Shelf ecosystems-mixed sediments – fishing gear impact, soft sediments – effects on soft sediment biota – Mitigation options • Deep-sea hard substrate – Focus on what (if anything) is different in the deep-sea Deep-sea commercial fisheries • Defined in various ways • Depth – >200m (northern hemisphere) – >500m (southern hemisphere) • Productivity – Low (FAO definition) • Habit – Demersal (few deep pelagics) • Species lists variable (<30 spp) Deep-sea fisheries • Trend in recent decades to fish deeper • History of boom & bust • Small on global-scale • Current catches globally – 100,000-150,000 t – similar over last 5 years • Still important locally • New Zealand Pitcher et al. 2010 – 25,400 t (about 5% of total finfish catch) – value US$90million (about 10% of total finfish $) Deep-sea fisheries footprint • Small on a global scale of -
The Coastal Molluscan Fauna of the Northern Kermadec Islands, Southwest Pacific Ocean
Journal of the Royal Society of New Zealand ISSN: 0303-6758 (Print) 1175-8899 (Online) Journal homepage: http://www.tandfonline.com/loi/tnzr20 The coastal molluscan fauna of the northern Kermadec Islands, Southwest Pacific Ocean F. J. Brook To cite this article: F. J. Brook (1998) The coastal molluscan fauna of the northern Kermadec Islands, Southwest Pacific Ocean, Journal of the Royal Society of New Zealand, 28:2, 185-233, DOI: 10.1080/03014223.1998.9517560 To link to this article: http://dx.doi.org/10.1080/03014223.1998.9517560 Published online: 30 Mar 2010. Submit your article to this journal Article views: 405 View related articles Citing articles: 14 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnzr20 Download by: [86.95.75.143] Date: 27 January 2017, At: 05:34 © Journal of The Royal Society of New Zealand, Volume 28, Number 2, June 1998, pp 185-233 The coastal molluscan fauna of the northern Kermadec Islands, Southwest Pacific Ocean F. J. Brook* A total of 358 species of molluscs (excluding pelagic species) is recorded here from coastal marine habitats around the northern Kermadec Islands. The fauna is dominated by species that are widely distributed in the tropical western and central Pacific Ocean. The majority of these are restricted to the tropics and subtropics, but some range south to temperate latitudes. Sixty-eight species, comprising 19% of the fauna, are thought to be endemic to the Kermadec Islands. That group includes several species that have an in situ fossil record extending back to the Pleistocene.