Remote Sens. 2014, 6, 5614-5632; doi:10.3390/rs6065614 OPEN ACCESS remote sensing ISSN 2072-4292 www.mdpi.com/journal/remotesensing Article Estimation of Mass Balance of the Grosser Aletschgletscher, Swiss Alps, from ICESat Laser Altimetry Data and Digital Elevation Models Jan Kropáček 1,2,*, Niklas Neckel 2 and Andreas Bauder 3 1 Institute for Cartography, TU-Dresden, Helmholzstr. 10., 01062 Dresden, Germany 2 Institute of Geography, University of Tuebingen, Rümelinstr. 19–23, 72070 Tübingen, Germany; E-Mail:
[email protected] 3 Laboratory of Hydraulics, Hydrology and Glaciology, ETH Zurich, Wolfgang-Pauli-Str. 27, 8093 Zürich, Switzerland; E-Mail:
[email protected] * Author to whom correspondence should be addressed; E-Mail:
[email protected]; Tel.: +49-351-463-36223; Fax: + 49-351-463-37028. Received: 19 November 2013; in revised form: 30 May 2014 / Accepted: 30 May 2014 / Published: 17 June 2014 Abstract: Traditional glaciological mass balance measurements of mountain glaciers are a demanding and cost intensive task. In this study, we combine data from the Ice Cloud and Elevation Satellite (ICESat) acquired between 2003 and 2009 with air and space borne Digital Elevation Models (DEMs) in order to derive surface elevation changes of the Grosser Aletschgletscher in the Swiss Alps. Three different areas of the glacier are covered by one nominal ICESat track, allowing us to investigate the performance of the approach under different conditions in terms of ICESat data coverage, and surface characteristics. In order to test the sensitivity of the derived trend in surface lowering, several variables were tested. Employing correction for perennial snow accumulation, footprint selection and adequate reference DEM, we estimated a mean mass balance of −0.92 ± 0.18 m w.e.