The State of Matter in Simulations of Core-Collapse Supernovae—Reflections and Recent Developments

Total Page:16

File Type:pdf, Size:1020Kb

The State of Matter in Simulations of Core-Collapse Supernovae—Reflections and Recent Developments Publications of the Astronomical Society of Australia (PASA), Vol. 34, e067, 19 pages (2017). © Astronomical Society of Australia 2017; published by Cambridge University Press. doi:10.1017/pasa.2017.63 The State of Matter in Simulations of Core-Collapse supernovae—Reflections and Recent Developments Tobias Fischer1,10, Niels-Uwe Bastian1, David Blaschke1,2,3, Mateusz Cierniak1, Matthias Hempel4, Thomas Klähn5, Gabriel Martínez-Pinedo6,7, William G. Newton8, Gerd Röpke3,9 and Stefan Typel7,6 1Institute of Theoretical Physics, University of Wroclaw, Pl. M. Borna 9, 50-204 Wroclaw, Poland 2Bogoliubov Laboratory for Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia 3National Research Nuclear University (MEPhI), Kashirskoe shosse 31, 115409 Moscow, Russia 4Department of Physics, University of Basel, Klingelbergstrasse 82, 4058 Basel, Switzerland 5Department of Physics and Astronomy, California State University Long Beach, 250 Bellflower Boulevard, Long Beach, California 90840-9505, USA 6GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, 64291 Darmstadt, Germany 7Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 9, 64289 Darmstadt, Germany 8Department of Physics and Astronomy, Texas A&M University-Commerce, Commerce, TX 75429, USA 9Institut für Physik, Universität Rostock, Albert-Einstein Straße 23–24, 18059 Rostock, Germany 10Email: fi[email protected] (RECEIVED July 28, 2017; ACCEPTED November 22, 2017) Abstract In this review article, we discuss selected developments regarding the role of the equation of state in simulations of core- collapse supernovae. There are no first-principle calculations of the state of matter under supernova conditions since a wide range of conditions is covered, in terms of density, temperature, and isospin asymmetry. Instead, model equation of state are commonly employed in supernova studies. These can be divided into regimes with intrinsically different degrees of freedom: heavy nuclei at low temperatures, inhomogeneous nuclear matter where light and heavy nuclei coexist together with unbound nucleons, and the transition to homogeneous matter at high densities and temperatures. In this article, we discuss each of these phases with particular view on their role in supernova simulations. Keywords: supernovae: general – equation of state – neutrinos 1 INTRODUCTION heavy nuclei together with unbound nucleons, and homo- geneous matter at high temperatures and densities. In this The state of matter at the interior of core-collapse super- article, we reflect on the role of the EOS in core-collapse novae as well as in the core of proto-neutron stars (PNS) supernovae explored in spherically symmetric simulations. can reach extreme conditions, in terms of temperatures up To this end, accurate three-flavour Boltzmann neutrino trans- to several 1011 K(1.16 × 1010K 1 MeV), densities in port, developed by Mezzacappa & Bruenn (1993b, 1993a, excess of normal nuclear matter density and large isospin 1993c), is employed in the fully self-consistent general rel- asymmetry. The associated supernova phase diagram, i.e. the ativistic radiation-hydrodynamics framework of Liebendör- thermodynamic conditions obtained during a core-collapse fer et al. (2004). In general, accurate neutrino transport is supernova, is shown in Figure 1(a) for a selected exam- essential for the prediction of the neutrino signal for core- ple simulation. Central densities and maximum tempera- collapse supernova events, as was observed from SN1987A tures may vary on the order of 10–20% depending on the (cf. Bionta et al. 1987; Hirata et al. 1988) which marked a stellar progenitor. The EOS for supernova simulations must benchmark for current supernova modelling. The latter al- cover such an extended three-dimensional domain illustrated ready confirmed that neutrinos from the next galactic event in Figure 1(a), where presently first-principle EOS are not will be the potentially observable signal, from which we will available. Instead, model EOS are being developed for su- learn not only details about the stellar explosion but also about pernova studies. These combine several domains with differ- the state of matter at the supernova interior which is hidden ent degrees of freedom, e.g., heavy nuclei at low tempera- otherwise, e.g., for electromagnetic radiation by the stellar tures, inhomogeneous nuclear matter composed of light and mantle. 1 Downloaded from https://www.cambridge.org/core. IP address: 170.106.35.76, on 26 Sep 2021 at 12:27:55, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/pasa.2017.63 2 Fischer et al. Figure 1. Supernova phase diagram (colour coding is due to the electron fraction Ye) in graph (a) and space-time diagram of the supernova evolution (colour coding is due to the entropy per baryon) in graph (b), both obtained from the spherically symmetric core-collapse supernova simulation of the massive progenitor star of 18 M published in Fischer (2016a). (a) Temperature-density domain of a supernova evolution. (b) Space-time diagram of the supernova evolution. 1.1. Supernova phenomenology Marek 2015;Lentzetal.2015; Roberts et al. 2016). However, in the framework of multi-dimensional simulations, accurate PNS are the central object of core-collapse supernovae. The Boltzmann neutrino transport cannot be employed due to the latter are being triggered from the initial implosion of the stel- current computational limitations. Instead, approximate neu- lar core of stars more massive than about 8 M. The core col- trino transport schemes are commonly used, whose range of lapse proceeds until normal nuclear matter density is reached, applicability is currently being debated (cf. Sumiyoshi et al. when nuclei dissolve into homogeneous matter. The highly 2015). Another issue of multi-dimensional supernova simu- repulsive nature of the short-range nuclear force balances lations with approximate neutrino transport may be related to gravity such that the core bounces back with the formation of the rather sparse neutrino phase-space resolution used, again, a hydrodynamics shock wave which propagates quickly out due to the current computational limitations. of the stellar core, as illustrated in Figure 1(b) (thick solid Besides the aforementioned three scenarios for the onset green line). The shock stalls at around 100–200 km due to of the supernova explosion, another mechanism was discov- the continuous photodisintegration of infalling heavy nuclei ered by Sagert et al. (2009) due to the phase transition at high from above and the launch of the νe-burst associated with the densities from ordinary nuclear matter to the quark gluon shock propagation across the neutrinosphere of last scattering plasma. The latter was being treated within the simple but (see thick dashed green line in Figure 1(b)). Consequently, powerful thermodynamic bag model. During the phase tran- the shock turns into an accretion front. sition, a large amount of latent heat is released in a highly The supernova explosion, i.e., the revival of the shock wave dynamical fashion, which in turn triggers the onset of the and the subsequent ejection of the stellar mantle that sur- supernova explosion even in spherically symmetric simula- rounds the PNS, is due to the liberation of energy from the tions (for details, see also Fischer et al. 2011). Moreover, it PNS interior to a thin layer of accumulated material at the leaves an observable millisecond burst in the neutrino sig- PNS surface (for recent reviews, cf. Janka et al. 2007; Janka nal (for details, see Dasgupta et al. 2010). These milestones 2012). Several scenarios have been explored. Besides the demonstrate the sensitivity of EOS uncertainties related to magneto-rotational mechanism of LeBlanc & Wilson (1970) our understanding of core-collapse supernovae and suffice (for recent works, cf. Takiwaki, Kotake, & Sato 2009;Win- the need of a more elaborate understanding of the EOS at teler et al. 2012; Mösta et al. 2014, 2015) and the dumping high densities including better constraints in particular. of sound waves developed by Burrows et al. (2006)—yet Once the supernova explosion proceeds, mass accretion not confirmed by other groups—the neutrino-heating mech- ceases at the PNS surface and the nascent PNS deleptonises anism of Bethe & Wilson (1985) has been demonstrated to via the emission of neutrinos of all flavors on a timescale on lead to supernova explosions for a variety of massive pro- the order of 10–30 s. This phase of the supernova evolution genitor stars (cf. Müller, Janka, & Marek 2012; Takiwaki, is mildly independent from details of the explosion mech- Kotake, & Suwa 2012; Bruenn et al. 2013; Melson, Janka, & anism. This has been explored in Fischer et al. (2010) and PASA, 34, e067 (2017) doi:10.1017/pasa.2017.63 Downloaded from https://www.cambridge.org/core. IP address: 170.106.35.76, on 26 Sep 2021 at 12:27:55, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/pasa.2017.63 The State of Matter in Simulations of Core-Collapse Supernovae – Reflections and Recent Developments 3 Hüdepohl et al. (2010) within the first self-consistent dynam- ables: temperature T, rest-mass density ρ (or baryon number 2 ical simulations based on accurate three-flavour Boltzmann density, nB ), and electron fraction Ye. With increasing den- neutrino transport in spherical symmetry. These aforemen- sity, these nuclei become heavier while their abundance de- tioned studies confirmed that the PNS settles into a quasi- creases simultaneously. At normal nuclear matter density, ρ0 14 −3 −3 static state (Pons et al. 1999) with a wind outflow devel- ࣃ 2.5 × 10 gcm (n0 ࣃ 0.15 fm ), as well as above tem- oping from the PNS surface. This happens once the accre- peratures of about 5–10 MeV, nuclei dissolve at the liquid– tion funnels are quenched during the explosion phase and gas phase transition into homogeneous nuclear matter com- convection/SASI in the gain region cease. posed of quasi-free nucleons (for details, cf.
Recommended publications
  • Astromaterial Science and Nuclear Pasta
    Astromaterial Science and Nuclear Pasta M. E. Caplan∗ and C. J. Horowitzy Center for Exploration of Energy and Matter and Department of Physics, Indiana University, Bloomington, IN 47405, USA (Dated: June 28, 2017) We define `astromaterial science' as the study of materials in astronomical objects that are qualitatively denser than materials on earth. Astromaterials can have unique prop- erties related to their large density, though they may be organized in ways similar to more conventional materials. By analogy to terrestrial materials, we divide our study of astromaterials into hard and soft and discuss one example of each. The hard as- tromaterial discussed here is a crystalline lattice, such as the Coulomb crystals in the interior of cold white dwarfs and in the crust of neutron stars, while the soft astro- material is nuclear pasta found in the inner crusts of neutron stars. In particular, we discuss how molecular dynamics simulations have been used to calculate the properties of astromaterials to interpret observations of white dwarfs and neutron stars. Coulomb crystals are studied to understand how compact stars freeze. Their incredible strength may make crust \mountains" on rotating neutron stars a source for gravitational waves that the Laser Interferometer Gravitational-Wave Observatory (LIGO) may detect. Nu- clear pasta is expected near the base of the neutron star crust at densities of 1014 g/cm3. Competition between nuclear attraction and Coulomb repulsion rearranges neutrons and protons into complex non-spherical shapes such as sheets (lasagna) or tubes (spaghetti). Semi-classical molecular dynamics simulations of nuclear pasta have been used to study these phases and calculate their transport properties such as neutrino opacity, thermal conductivity, and electrical conductivity.
    [Show full text]
  • Phase Transitions and the Casimir Effect in Neutron Stars
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2017 Phase Transitions and the Casimir Effect in Neutron Stars William Patrick Moffitt University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Other Physics Commons Recommended Citation Moffitt, William Patrick, "Phase Transitions and the Casimir Effect in Neutron Stars. " Master's Thesis, University of Tennessee, 2017. https://trace.tennessee.edu/utk_gradthes/4956 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by William Patrick Moffitt entitled "Phaser T ansitions and the Casimir Effect in Neutron Stars." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Physics. Andrew W. Steiner, Major Professor We have read this thesis and recommend its acceptance: Marianne Breinig, Steve Johnston Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Phase Transitions and the Casimir Effect in Neutron Stars A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville William Patrick Moffitt December 2017 Abstract What lies at the core of a neutron star is still a highly debated topic, with both the composition and the physical interactions in question.
    [Show full text]
  • Arxiv:1707.04966V3 [Astro-Ph.HE] 17 Dec 2017
    From hadrons to quarks in neutron stars: a review Gordon Baym,1, 2, 3 Tetsuo Hatsuda,2, 4, 5 Toru Kojo,6, 1 Philip D. Powell,1, 7 Yifan Song,1 and Tatsuyuki Takatsuka5, 8 1Department of Physics, University of Illinois at Urbana-Champaign, 1110 W. Green Street, Urbana, Illinois 61801, USA 2iTHES Research Group, RIKEN, Wako, Saitama 351-0198, Japan 3The Niels Bohr International Academy, The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark 4iTHEMS Program, RIKEN, Wako, Saitama 351-0198, Japan 5Theoretical Research Division, Nishina Center, RIKEN, Wako 351-0198, Japan 6Key Laboratory of Quark and Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079, China 7Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 8Iwate University, Morioka 020-8550, Japan (Dated: December 19, 2017) In recent years our understanding of neutron stars has advanced remarkably, thanks to research converging from many directions. The importance of understanding neutron star behavior and structure has been underlined by the recent direct detection of gravitational radiation from merging neutron stars. The clean identification of several heavy neutron stars, of order two solar masses, challenges our current understanding of how dense matter can be sufficiently stiff to support such a mass against gravitational collapse. Programs underway to determine simultaneously the mass and radius of neutron stars will continue to constrain and inform theories of neutron star interiors. At the same time, an emerging understanding in quantum chromodynamics (QCD) of how nuclear matter can evolve into deconfined quark matter at high baryon densities is leading to advances in understanding the equation of state of the matter under the extreme conditions in neutron star interiors.
    [Show full text]
  • The Nuclear Physics of Neutron Stars
    The Nuclear Physics of Neutron Stars Exotic Beam Summer School 2015 Florida State University Tallahassee, FL - August 2015 J. Piekarewicz (FSU) Neutron Stars EBSS 2015 1 / 21 My FSU Collaborators My Outside Collaborators Genaro Toledo-Sanchez B. Agrawal (Saha Inst.) Karim Hasnaoui M. Centelles (U. Barcelona) Bonnie Todd-Rutel G. Colò (U. Milano) Brad Futch C.J. Horowitz (Indiana U.) Jutri Taruna W. Nazarewicz (MSU) Farrukh Fattoyev N. Paar (U. Zagreb) Wei-Chia Chen M.A. Pérez-Garcia (U. Raditya Utama Salamanca) P.G.- Reinhard (U. Erlangen-Nürnberg) X. Roca-Maza (U. Milano) D. Vretenar (U. Zagreb) J. Piekarewicz (FSU) Neutron Stars EBSS 2015 2 / 21 S. Chandrasekhar and X-Ray Chandra White dwarfs resist gravitational collapse through electron degeneracy pressure rather than thermal pressure (Dirac and R.H. Fowler 1926) During his travel to graduate school at Cambridge under Fowler, Chandra works out the physics of the relativistic degenerate electron gas in white dwarf stars (at the age of 19!) For masses in excess of M =1:4 M electrons becomes relativistic and the degeneracy pressure is insufficient to balance the star’s gravitational attraction (P n5=3 n4=3) ∼ ! “For a star of small mass the white-dwarf stage is an initial step towards complete extinction. A star of large mass cannot pass into the white-dwarf stage and one is left speculating on other possibilities” (S. Chandrasekhar 1931) Arthur Eddington (1919 bending of light) publicly ridiculed Chandra’s on his discovery Awarded the Nobel Prize in Physics (in 1983 with W.A. Fowler) In 1999, NASA lunches “Chandra” the premier USA X-ray observatory J.
    [Show full text]
  • Beyond Nuclear Pasta: Phase Transitions and Neutrino Opacity of Non-Traditional Pasta
    Beyond Nuclear Pasta: Phase Transitions and Neutrino Opacity of Non-Traditional Pasta P. N. Alcain, P. A. Gim´enezMolinelli and C. O. Dorso Departamento de F´ısica, FCEyN, UBA and IFIBA, Conicet, Pabell´on1, Ciudad Universitaria, 1428 Buenos Aires, Argentina and IFIBA-CONICET (Dated: October 8, 2018) In this work, we focus on different length scales within the dynamics of nucleons in conditions according to the neutron star crust, with a semiclassical molecular dynamics model, studying isospin symmetric matter at subsaturation densities. While varying the temperature, we find that a solid- liquid phase transition exists, that can be also characterized with a morphology transition. For higher temperatures, above this phase transition, we study the neutrino opacity, and find that in the liquid phase, the scattering of low momenta neutrinos remain high, even though the morphology of the structures differ significatively from those of the traditional nuclear pasta. PACS numbers: PACS 24.10.Lx, 02.70.Ns, 26.60.Gj, 21.30.Fe I. INTRODUCTION static structure factor of nuclear pasta [5]: dσ dσ A neutron star has a radius of approximately 10 km = × S(q): dΩ dΩ uniform and a mass of a few solar masses. According to current models [1], the structure neutron star can be roughly de- And since neutron stars cooling is associated with neu- scribed as composed in two parts: the crust, of 1.5 km trino emission from the core, the interaction between the thick and a density of up to half the normal nuclear den- neutrinos and the particular structure of the crust would dramatically affect the thermal history of young neutron sity ρ0, with the structures known as nuclear pasta [2]; and the core, where the structure is still unknown and stars.
    [Show full text]
  • Nuclear Pasta with a Touch of Quantum Towards Fully Antisymmetrised Dynamics for Bulk Fermion Systems
    Nuclear Pasta with a touch of Quantum Towards fully antisymmetrised dynamics for bulk fermion systems Klaas Vantournhout Proefschrift ingediend tot het behalen van de academische graad van Doctor in de Wetenschappen: Fysica Academiejaar 2009-2010 Promotor: Prof. Dr. Jan Ryckebusch Promotor: Prof. Dr. Natalie Jachowicz THIS PAGE INTENTIONALLY LEFT BLANK voor mijn ouders Philosophy is written in this grand book – I mean the universe – which stands continually open to our gaze, but it cannot be understood unless one first learns to comprehend the language and interpret the characters in which it is written. It is written in the language of mathematics, and its characters are triangles, circles, and other geometrical figures, without which it is humanly impossible to understand a single word of it; without these, one is wandering around in a dark labyrinth. Galileo Galilei, Il Saggiatore (The Assayer, 1623) THIS PAGE INTENTIONALLY LEFT BLANK DANKWOORD Mijn proefschrift, 160 bladzijden! Een pad doorheen de werelden van fysica, wiskunde en sterrenkunde; geplaveid met continue, binaire en kwantummechanische tegels. Een zes jaar durende queeste naar vergelijkingen. Bloed, zweet en tranen heeft het gekost. Lezen, schrijven, herschrijven, beschrijven, verschrijven, verwijderen, vergis- sen, verfrommelen, ontfrommelen, ontrafelen, ontwarren, verwarren, vertalen, her- talen en ook een beetje euforie . de eerste print. Een eindwerk schrijf je niet alleen. Velen hebben bijgedragen aan dit proces. Veel dank ben ik verschuldigd aan mijn beide promotoren, professoren Jan Ryckebusch en Natalie Jachowicz. De wetenschappelijke vrijheid die ik kreeg, jullie steun, vertrouwen en inzicht waren voor deze scriptie heel belangrijk. I especially would like to express my gratitude to Professor Hans Feldmeier and Doctor Thomas Neff.
    [Show full text]
  • Defects in Nuclear Pasta David Reagan David
    Defects in Nuclear Pasta David Reagan David C. J. Horowitz, Indiana University! Computational Challenges … , Stockholm, Sep. 2014 Nuclear Pasta • Nuclear matter, at somewhat below !0, forms complex shapes because of competition between short range nuclear attraction and long range Coulomb repulsion —> “Coulomb frustration”.! • Gravitational collapse during SN increases density: nuclei -> nuclear pasta -> uniform nuclear matter -> neutron star. ! • Nuclear pasta expected in neutron stars at base of crust about 1 km below surface at ~1/3ρ0.! • During NS merger tidal excitation decreases density: uniform nuclear matter -> nuclear pasta -> nuclei + n -> r-process.! • Quantum density functional calculations. [Sergey Postnikov, Irina Sagert]! • Semiclassical molecular dynamics model: -r2/" -r2/2" -r/# v(r)=a e + bij e + eiej e /r Parameters of short range interaction fit to binding E and density of nuclear matter. [Andre Schneider] NS#Born#in#Core#Collapse#Supernovae# Core#of#massive# star#collapses#to# Envelope form#proto5 neutron#star.######νs# form#neutron#star# energizes#shock# ν" that#ejects#outer# 90%#of#star.# July 5, 1054 Shock Crab nebula Neutrino Crab#Pulsar# Sphere Proto-neutron star: hot, e rich Hubble#ST# Audio: Jordal Bank Neutron stars • Mass ~1.4 Msun, Radius ~10 km • Solid crust ~ 1km thick over liquid (outer) core of neutron rich matter. • Possible exotic phase in center: de-confined quark matter, strange matter, meson condensates, color superconductor... • Structure determined by Equation of State (pressure vs density) of
    [Show full text]
  • The Crust of Merging Neutron Stars
    The Crust of Merging Neutron Stars 208Pb • C. J. Horowitz, Indiana University • INT, July 2014 1 The crust of merging neutron stars • PREX uses parity violating electron scattering to accurately measure the neutron radius of 208Pb. • Merger nucleosynthesys and nuclear pasta. • MD simulations of nuclear pasta. • MD simulations of ions and 208Pb strength of neutron star (outer) Brian Alder crust. 2 Parity Violation Isolates Neutrons • In Standard Model Z0 boson • Apv from interference of photon couples to the weak charge. and Z0 exchange. In Born approximation • Proton weak charge is small: G Q2 F (Q2) p − 2Θ ≈ ! F √ W ! QW =1 4sin W 0.05 Apv = 2 2πα 2 Fch(Q ) • Neutron weak charge is big: ! ! sin(Qr) ! Qn = −1 F (Q2)= d3r ρ (r) W W ! Qr W • Weak interactions, at low Q2, ! probe neutrons. • Model independently map out distribution of weak charge in a • Parity violating asymmetry Apv is nucleus. cross section difference for positive and negative helicity • Electroweak reaction free electrons from most strong dσ/dΩ+ − dσ/dΩ− interaction uncertainties. Apv = ! dσ/dΩ dσ/dΩ− + + – Donnelly, Dubach, Sick first suggested PV to measure neutrons. 3 208 Pb PREX Spokespersons K. Kumar R. Michaels K. Paschke P. Souder G. Urciuoli PREX measures how much neutrons stick out past protons (neutron skin). • 4 PREX in Hall A at JLab Spectometers Lead Foil Target Pol. Source Hall A CEBAF R. Michaels 5 MSU Seminar, Nov 2008 First PREX result and future plans •At Jefferson Laboratory, 1.05 GeV electrons elastically scattered from thick 208Pb foil. PRL 108, 112502, PRC 85, 032501 • A PV=0.66 ±0.06(stat) ±0.014(sym) ppm •Neutron skin thickness: +0.16 Rn-Rp=0.33 -0.18 fm •Experiment achieved systematic error goals.
    [Show full text]
  • Unified Equation of State for Neutron Stars on a Microscopic Basis
    A&A 584, A103 (2015) Astronomy DOI: 10.1051/0004-6361/201526642 & c ESO 2015 Astrophysics Unified equation of state for neutron stars on a microscopic basis B. K. Sharma1,2, M. Centelles1,X.Viñas1,M.Baldo3, and G. F. Burgio3 1 Departament d’Estructura i Constituents de la Matèria and Institut de Ciències del Cosmos (ICC), Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain 2 Department of Sciences, Amrita Vishwa Vidyapeetham Ettimadai, 641112 Coimbatore, India 3 INFN Sezione di Catania, via Santa Sofia 64, 95123 Catania, Italy e-mail: [email protected] Received 30 May 2015 / Accepted 11 September 2015 ABSTRACT We derive a new equation of state (EoS) for neutron stars (NS) from the outer crust to the core based on modern microscopic calculations using the Argonne v18 potential plus three-body forces computed with the Urbana model. To deal with the inhomogeneous structures of matter in the NS crust, we use a recent nuclear energy density functional that is directly based on the same microscopic calculations, and which is able to reproduce the ground-state properties of nuclei along the periodic table. The EoS of the outer crust requires the masses of neutron-rich nuclei, which are obtained through Hartree-Fock-Bogoliubov calculations with the new functional when they are unknown experimentally. To compute the inner crust, Thomas-Fermi calculations in Wigner-Seitz cells are performed with the same functional. Existence of nuclear pasta is predicted in a range of average baryon densities between 0.067 fm−3 and 0.0825 fm−3, where the transition to the core takes place.
    [Show full text]
  • Pasta-Phase Transitions in the Inner Crust of Neutron Stars∗
    Vol. 10 (2017) Acta Physica Polonica B Proceedings Supplement No 1 PASTA-PHASE TRANSITIONS IN THE INNER CRUST OF NEUTRON STARS∗ X. Viñasa, C. Gonzalez-Boqueraa, B.K. Sharmab, M. Centellesa aDepartament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB), Facultat de Física Universitat de Barcelona, Martí i Franqués 1, 08028 Barcelona, Spain bDepartment of Sciences, Amrita School of Engineering Amrita Vishwa Vidyapeetham, Amrita University, 641112 Coimbatore, India (Received January 10, 2017) We perform calculations of nuclear pasta phases in the inner crust of neutron stars with the Thomas–Fermi method and the Compressible Liquid Drop Model using the Barcelona–Catania–Paris–Madrid (BCPM) energy density functional and several Skyrme forces. We compare the crust–core transition density estimated from the crust side with the predictions ob- tained from the core by using the thermodynamical and dynamical meth- ods. Finally, the correlation between the crust–core transition density and the slope of the symmetry energy at saturation is briefly analyzed. DOI:10.5506/APhysPolBSupp.10.259 1. Introduction Neutron stars (NS) are among the most fascinating objects of the uni- verse. They are ultradense and compact remnants formed at the last stage of life of massive stars [1,2]. An NS is composed by neutrons, protons, leptons and eventually other exotic particles distributed in a solid crust encompass- ing a dense core in a liquid phase. The full NS is electrically neutral and the distribution of nucleons and leptons is such that the system is maintained locally in β-equilibrium. The structure of the crust consists of clusters of positive charge distributed in a solid lattice embedded in a bath of neu- trons and free electrons.
    [Show full text]
  • Neutron Stars from Crust to Core Within the Quark-Meson Coupling Model
    EPJ Web of Conferences 232, 03001 (2020) https://doi.org/10.1051/epjconf/202023203001 HIAS 2019 Neutron stars from crust to core within the Quark-meson coupling model S. Antic´1;∗, J. R. Stone2;3, and A. W. Thomas1 1CSSM, Department of Physics, University of Adelaide, SA 5005 Australia 2Department of Physics (Astro), University of Oxford, OX1 3RH United Kingdom 3Department of Physics and Astronomy, University of Tennessee, TN 37996 USA Abstract. Recent years continue to be an exciting time for the neutron star physics, providing many new observations and insights to these natural ‘laboratories’ of cold dense matter. To describe them, there are many models on the market but still none that would reproduce all observed and experimental data. The quark-meson coupling model stands out with its natural inclusion of hyperons as dense matter building blocks, and fewer parameters necessary to obtain the nuclear matter equation of state. The latest advances of the QMC model and its application to the neutron star physics will be presented, within which we build the neutron star’s outer crust from finite nuclei up to the neutron drip line. The appearance of different elements and their position in the crust of a neutron star is explored and compared to the predictions of various models, giving the same quality of the results for the QMC model as for the models when the nucleon structure is not taken into account. 1 Introduction an average NS with M ∼ 1:4M the nearly pure neu- tron matter with admixture of protons and electrons is all The neutron stars (NS) are in general very complex ob- there is in a NS core.
    [Show full text]
  • Relativistic Density Functional Theory for Finite Nuclei and Neutron Stars
    Relativistic density functional theory for finite nuclei and neutron stars1 J. Piekarewicz Department of Physics Florida State University Tallahassee, FL 32306 February 6, 2015 Abstract: The main goal of the present contribution is a pedagogical in- troduction to the fascinating world of neutron stars by relying on relativistic density functional theory. Density functional theory provides a powerful|and perhaps unique|framework for the calculation of both the properties of finite nuclei and neutron stars. Given the enormous densities that may be reached in the core of neutron stars, it is essential that such theoretical framework incorporates from the outset the basic principles of Lorentz covariance and special relativity. After a brief historical perspective, we present the necessary details required to compute the equation of state of dense, neutron-rich mat- ter. As the equation of state is all that is needed to compute the structure of neutron stars, we discuss how nuclear physics|particularly certain kind of laboratory experiments|can provide significant constrains on the behavior of neutron-rich matter. arXiv:1502.01559v1 [nucl-th] 5 Feb 2015 1 Contributing chapter to the book \Relativistic Density Functional for Nuclear Structure"; World Scientific Publishing Company (Sin- gapore); Editor Prof. Jie Meng. 1 I. INTRODUCTION The birth of a star is marked by the conversion of hydrogen into helium nuclei (α particles) in their hot dense cores. This thermonuclear reaction is the main source of energy generation during the main stage of stellar evolution and provides the pressure support against gravitational collapse. Once the hydrogen in the stellar core is exhausted, thermonuclear fusion stops and the star contracts.
    [Show full text]