High Resolution STEM Images of the Human Tooth Enamel Crystals

Total Page:16

File Type:pdf, Size:1020Kb

High Resolution STEM Images of the Human Tooth Enamel Crystals applied sciences Article High Resolution STEM Images of the Human Tooth Enamel Crystals José Reyes-Gasga 1,* and Etienne F. Brès 2 1 Instituto de Física, Universidad Nacional Autónoma de México, Circuito de la Investigación Científica s/n, Cd. Universitaria, Coyoacán, Ciudad de México 04510, Mexico 2 UMET, UMR 8207 CNRS, Bâtiment C6, Faculté des Sciences et Technologies, Université de Lille, 59650 Villeneuve d’Ascq, France; [email protected] * Correspondence: jreyes@fisica.unam.mx Abstract: High-resolution scanning transmission electron microscopy (STEM) images of human tooth enamel crystals, mainly in the high-angle annular dark-field (STEM-HAADF) mode, are presented in this work along the [1000], [10-11]. and [1-210] directions. These images allow knowing some structural details at the nanometric level of the human tooth enamel crystals and of the central dark line (CDL) observed at their centers. The transmission electron microscopy (TEM) and high- resolution TEM (HRTEM) images of the CDL showed the Fresnel contrast. In the STEM bright-field (STEM-BF) and annular-dark-field (STEM-ADF) images, the CDL was observed as an unstrain hydroxyapatite (HAP)-like zone but surrounded by a strained zone. In the STEM-HAADF images, the CDL appeared with a weak contrast, and its contrasts’ thickness was registered between 3 and 8 Å. The arrangement obtained in the STEM-HAADF images by identifying the bright points with the Ca atoms produced the superposition of the HAP atomic sites, mainly along the [0001] direction. The findings provide further information on the structure details at the center of enamel crystals, which favors the anisotropic carious dissolution at the CDL. Citation: Reyes-Gasga, J.; Brès, E.F. Keywords: human teeth; human tooth enamel; carious tooth enamel dissolution; central dark line; High Resolution STEM Images of the electron transmission and scanning microscopy; annular dark field images Human Tooth Enamel Crystals. Appl. Sci. 2021, 11, 7477. https://doi.org/ 10.3390/app11167477 1. Introduction Academic Editor: Gianrico Spagnuolo 1.1. Human Tooth Structure The human tooth is made up of dentin, which is a connective tissue that gives shape Received: 8 July 2021 and stiffness. In the crown, dentin is covered by enamel, the most wear-resistant tissue in Accepted: 12 August 2021 Published: 14 August 2021 the human body. Enamel is responsible for protecting teeth from wear and tear caused by chewing as well as corrosion from acids produced from food debris. The dentin–enamel Publisher’s Note: MDPI stays neutral junction zone is where dentin meets enamel. with regard to jurisdictional claims in Dentin is made up of a 70% inorganic material, a 20% organic material, and 10% published maps and institutional affil- water. Enamel is composed of a 90% inorganic material, a 5% organic material, and 3% iations. water [1]. The inorganic component is calcium phosphate named hydroxyapatite (HAP, Ca10(PO4)6(OH)2). The organic part is collagen. The EDS analyses of enamel and dentin indicate the existence of substitute elements, such as Mg, Na, and Cl, and residual organic elements, such as C and N, in addition to the HAP elements Ca, P, and O [2,3]. At the micrometric level, enamel is made up of elongated structures arranged in rows Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. with sinuous trajectories from the dentin–enamel junction to the enamel surface named This article is an open access article rods or prisms. This prismatic structure has a keyhole-type shape. At the nanometer level, distributed under the terms and the enamel prisms are made up of ribbon-shaped crystals which are approximately 70 to conditions of the Creative Commons 170 nm long, aligned with the length of the rods. When cross-sectioned, the crystallites Attribution (CC BY) license (https:// appear as semi-polygons with a 20-to-50 nm thickness range [1]. In the center of the enamel 2+ + creativecommons.org/licenses/by/ crystals, small concentrations of Mg and Na have been reported [3], which indicates 4.0/). modifications in the elements of the HAP unit cell at this region. Understanding the Appl. Sci. 2021, 11, 7477. https://doi.org/10.3390/app11167477 https://www.mdpi.com/journal/applsci Appl. Sci. 2021, 11, x FOR PEER REVIEW 2 of 14 Appl. Sci. 2021, 11, 7477 2 of 13 been reported [3], which indicates modifications in the elements of the HAP unit cell at this region. Understanding the structure and chemistry of enamel at the nanoscale is es- structuresential for and elucidating chemistry the of enamel enamel at dissolution the nanoscale process is essential and for for developing elucidating thenew enamel dental dissolutiontreatments. process and for developing new dental treatments. 1.2.1.2. TheThe CentralCentral DarkDark LineLine AtAt thethe centralcentral regionregion ofof thethe humanhuman toothtooth enamelenamel crystals,crystals, aa defectdefect namednamed asas “the“the centralcentral darkdark line” line” (CDL) (CDL) was was observed. observed. In In transmission transmission electron electron microscopy microscopy (TEM) (TEM) images, im- theages, CDL the showedCDL show a contrasted a contrast similar similar to the to “Fresnel the “Fresnel contrast” contrast of” edge-on of edge- defects;on defects; that that is, itis, appeared it appeared as aas dark a dark line line with with a widtha width of of ~1 ~1 nm nm out-of-focus out-of-focus in in both both cross-sectional cross-sectional andand transversetransverse sectionsection samples,samples, butbut itit waswas whitewhite inin over-focusover-focusand anddisappeared disappearedin-focus in-focus (the(the GaussianGaussian focus)focus) [[33––55].]. Figure1 1 shows shows a a bright-field bright-field TEM TEM image image of of human human tooth tooth enamelenamel crystals,crystals, wherewhere thethe arrowsarrows indicateindicate thethe positionspositions ofof thethe CDL.CDL. TheThe insetinset showsshows aa high-resolutionhigh-resolution TEMTEM (HRTEM)(HRTEM)image imageof of the the CDL CDL in in one one of of these these crystals. crystals. FigureFigure 1.1.TEM TEM imageimage ofof humanhuman toothtooth enamel.enamel. TheThe InsetInset showsshows thethe high-resolutionhigh-resolution TEMTEM (HRTEM)(HRTEM) image of one of these crystals. The arrows indicate the central dark line (CDL) positions. image of one of these crystals. The arrows indicate the central dark line (CDL) positions. BecauseBecause enamelenamel crystalscrystals beginbegin toto dissolvedissolve fromfrom thethe centercenter duringduring acidicacidic attacksattacks suchsuch asas cariescaries [ 6[6],], the the CDL CDL is is of of particular particular interest. interest. Figure Figure2a 2 showsa shows the the graphic graphic representation representation of theof the dissolution dissolution of the of humanthe human tooth tooth enamel enamel by acid by attack, acid andattack Figure, and2 bFigure shows 2 itsb sho HRTEMws its imageHRTEM as theyimage began as they to dissolve began afterto dissolve treated withafter orthophosphoric treated with orthophosphoric acid for simulating acid acid for attacks:simulating the acid acid attacks attack: always the acid started attack atalways the center started of at the the crystals. center of Taking the crystals. as a basis Taking the hexagonalas a basis the unit hexagonal cell of HAP, unit during cell of caries, HAP, the during human caries tooth, the enamel human crystals tooth wereenamel destroyed crystals systematically:were destroyed first, systematically: a central lesion first, elongated a central alonglesion theelongated [11–20] along direction the appeared[11–20] direction on the basalappear (0001)ed on planes; the basal and (0001) secondly, planes; the and lesion secondly, developed the lesion anisotropically developed along anisotropically the [0001] directionalong the across [0001] the direction crystals across [7]. the crystals [7]. TheThe TEMTEM observationsobservations ofof thethe enamelenamel crystalscrystals indicatedindicated thatthat thethe CDLCDL waswas inin factfact aa planarplanar defect.defect. SeveralSeveral hypotheseshypotheses havehave beenbeen proposedproposed inin itsits possiblepossible origin.origin. OneOne ofof themthem isis thatthat thethe CDLCDL isis aa transformation-mismatchedtransformation-mismatched layerlayer fromfrom octacalciumoctacalcium phosphatephosphate (OCP)(OCP) toto HAP.HAP. However, However, the the HAP–OCP HAP–OCP interface interface model model generated generated doesdoes notnot fullyfully reproducereproduce thethe TEMTEM datadata [ 8[8].]. Another Another possibility possibility is that is that the CDLthe CDL is a Ca-rich is a Ca region-rich withinregion enamelwithin crystalsenamel andcrystals therefore and therefore cannot be cannot the residual be the ofresidual the OCP–HAP of the OCP mismatch–HAP mismatch [8,9]. [8,9]. The contrast of the CDL, when observed with a scanning transmission electron mi- croscope (STEM) using an annular detector, gave additional clues on the CDL’s structure. Modern STEM microscopes were equipped with aberration correction systems, and the low- and high-angle scattered electron annular detectors provided bright-field (BF), low-angle annular dark-field (ADF), and high-angle annular dark-field (HAADF) images with sub- Appl. Sci. 2021, 11, 7477 3 of 13 angstrom resolution [10]. STEM-BF images include the transmitted beam and small-angle scattered beams produced by Rutherford elastic scattering, plasmons, and phonons [11]. When human tooth enamel crystals were observed by an STEM, the BF image showed a contrast
Recommended publications
  • Dental Health and Lung Disease
    American Thoracic Society PATIENT EDUCATION | INFORMATION SERIES Dental Health and Lung Disease How healthy your teeth and gums are can play a role at times in how well your lung disease is controlled. Cavities and gum disease are due in part to bacterial infection. This infection can spread bacteria to the lungs. Also, some lung disease medicines can have a negative effect on teeth or gums, like increasing risk of infection and staining or loss of tooth enamel. This fact sheet with review why good oral/dental health is important in people with lung disease. How can dental problems affect lung diseases? saliva products such as Biotene™. Oxygen or PAP therapy Cavities and gingivitis (gum infections) are caused by germs that is not humidified can also cause a dry mouth. Using a (bacteria). Teeth and gums are reservoirs for germs that can humidifier to add moisture to oxygen and CPAP or biPAP travel down to the lungs and harm them. Bacteria live in dental devices can be helpful. plaque, a film that forms on teeth. The bacteria will continue to Thrush (oral candidiasis) is a fungal (yeast) infection in the grow and multiply. You can stop this by removing plaque with mouth that can be caused by inhaled medications such as thorough daily tooth brushing and flossing. Some bacteria can corticosteroids. We all have various microbes that live in our be inhaled into the lungs on tiny droplets of saliva. Healthy mouth (normal flora). Candidia yeast can normally live in the lungs have protective defenses to deal with those “invasions.” mouth, but other mouth flora and a healthy immune system Disease-damaged lungs are not as able to defend themselves, keep it under control.
    [Show full text]
  • Tooth Enamel and Its Dynamic Protein Matrix
    International Journal of Molecular Sciences Review Tooth Enamel and Its Dynamic Protein Matrix Ana Gil-Bona 1,2,* and Felicitas B. Bidlack 1,2,* 1 The Forsyth Institute, Cambridge, MA 02142, USA 2 Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA 02115, USA * Correspondence: [email protected] (A.G.-B.); [email protected] (F.B.B.) Received: 26 May 2020; Accepted: 20 June 2020; Published: 23 June 2020 Abstract: Tooth enamel is the outer covering of tooth crowns, the hardest material in the mammalian body, yet fracture resistant. The extremely high content of 95 wt% calcium phosphate in healthy adult teeth is achieved through mineralization of a proteinaceous matrix that changes in abundance and composition. Enamel-specific proteins and proteases are known to be critical for proper enamel formation. Recent proteomics analyses revealed many other proteins with their roles in enamel formation yet to be unraveled. Although the exact protein composition of healthy tooth enamel is still unknown, it is apparent that compromised enamel deviates in amount and composition of its organic material. Why these differences affect both the mineralization process before tooth eruption and the properties of erupted teeth will become apparent as proteomics protocols are adjusted to the variability between species, tooth size, sample size and ephemeral organic content of forming teeth. This review summarizes the current knowledge and published proteomics data of healthy and diseased tooth enamel, including advancements in forensic applications and disease models in animals. A summary and discussion of the status quo highlights how recent proteomics findings advance our understating of the complexity and temporal changes of extracellular matrix composition during tooth enamel formation.
    [Show full text]
  • Structural Changes in the Oral Microbiome of the Adolescent
    www.nature.com/scientificreports OPEN Structural changes in the oral microbiome of the adolescent patients with moderate or severe dental fuorosis Qian Wang1,2, Xuelan Chen1,4, Huan Hu2, Xiaoyuan Wei3, Xiaofan Wang3, Zehui Peng4, Rui Ma4, Qian Zhao4, Jiangchao Zhao3*, Jianguo Liu1* & Feilong Deng1,2,3* Dental fuorosis is a very prevalent endemic disease. Although oral microbiome has been reported to correlate with diferent oral diseases, there appears to be an absence of research recognizing any relationship between the severity of dental fuorosis and the oral microbiome. To this end, we investigated the changes in oral microbial community structure and identifed bacterial species associated with moderate and severe dental fuorosis. Salivary samples of 42 individuals, assigned into Healthy (N = 9), Mild (N = 14) and Moderate/Severe (M&S, N = 19), were investigated using the V4 region of 16S rRNA gene. The oral microbial community structure based on Bray Curtis and Weighted Unifrac were signifcantly changed in the M&S group compared with both of Healthy and Mild. As the predominant phyla, Firmicutes and Bacteroidetes showed variation in the relative abundance among groups. The Firmicutes/Bacteroidetes (F/B) ratio was signifcantly higher in the M&S group. LEfSe analysis was used to identify diferentially represented taxa at the species level. Several genera such as Streptococcus mitis, Gemella parahaemolysans, Lactococcus lactis, and Fusobacterium nucleatum, were signifcantly more abundant in patients with moderate/severe dental fuorosis, while Prevotella melaninogenica and Schaalia odontolytica were enriched in the Healthy group. In conclusion, our study indicates oral microbiome shift in patients with moderate/severe dental fuorosis.
    [Show full text]
  • Tooth Decay Information
    ToothMasters Information on Tooth Decay Definition: Tooth decay is the destruction of the enamel (outer surface) of a tooth. Tooth decay is also known as dental cavities or dental caries. Decay is caused by bacteria that collect on tooth enamel. The bacteria live in a sticky, white film called plaque (pronounced PLAK). Bacteria obtain their food from sugar and starch in a person's diet. When they eat those foods, the bacteria create an acid that attacks tooth enamel and causes decay. Tooth decay is the second most common health problem after the common cold (see common cold entry). By some estimates, more than 90 percent of people in the United States have at least one cavity; about 75 percent of people get their first cavity by the age of five. Description: Anyone can get tooth decay. However, children and the elderly are the two groups at highest risk. Other high-risk groups include people who eat a lot of starch and sugary foods; people who live in areas without fluoridated water (water with fluoride added to it); and people who already have other tooth problems. Tooth decay is also often a problem in young babies. If a baby is given a bottle containing a sweet liquid before going to bed, or if parents soak the baby's pacifier in sugar, honey, or another sweet substance, bacteria may grow on the baby's teeth and cause tooth decay. Causes: Tooth decay occurs when three factors are present: bacteria, sugar, and a weak tooth surface. The sugar often comes from sweet foods such as sugar or honey.
    [Show full text]
  • Aging White-Tailed Deer in NY
    Aging White-tailed Deer Fawn • Body about as long as tall (square) • Short neck and compact nose • Buck fawns’ heads may have visible antler nubs or “buttons” These bucks from Washington County, New York demonstrate typical differences in body and antler size between yearlings and 2.5 and 3.5 year old bucks. Photos courtesy of QDMA. Yearling Buck Older Buck Body Size similar to adult doe larger than adult doe Legs appear long and skinny thicker chest makes leg appear stocky Muscles often not clearly defined well defined in shoulders and thighs Adult Doe Body Shape slender, belly tucks up belly flat or even sagging • Body longer than tall (rectangle) • Long neck and elongated nose Antlers thin, spread narrower than ear tips spread as wide or wider than ear tips Tooth & Jaw Anatomy 3-cusped milk premolar Tongue 3 Molars 3 Premolars Tongue 2-cusped adult premolar 1 2 6 3 Incisors, 3 4 5 1 Canine Adult Lower Jaw Definitions: Enamel Lingual Secondary crest crest • Cusps – The points or projections on the surface of a tooth. Dentine • Dentine – The soft dark brown inner core of the tooth. • Enamel – The hard, white, outer coating of the tooth. • Lingual Crests – The tooth ridges adjacent to the tongue. • Secondary Crests – Crests in the interior of the tooth. • Milk Teeth – Deciduous, primary teeth; will be replaced by adult teeth. Fawn Fawns have a noticeably shorter jaw than adults and do not have a full set of teeth. 1 2 3 4 5 Fawns have less than 6 teeth along the side of their jaw (premolars and molars).
    [Show full text]
  • Microscopic Enamel Defects in a Contemporary Population: Biological and Social Implications
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-1998 Microscopic Enamel Defects in a Contemporary Population: Biological and Social Implications Lise Marie Mifsud University of Tennessee, Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Anthropology Commons Recommended Citation Mifsud, Lise Marie, "Microscopic Enamel Defects in a Contemporary Population: Biological and Social Implications. " Master's Thesis, University of Tennessee, 1998. https://trace.tennessee.edu/utk_gradthes/4222 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Lise Marie Mifsud entitled "Microscopic Enamel Defects in a Contemporary Population: Biological and Social Implications." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Arts, with a major in Anthropology. Murray K. Marks, Major Professor We have read this thesis and recommend its acceptance: Walter E. Klippel, Lyle Konigsberg, Mike Elam Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Lise Marie Mifsud entitled "Microscopic Enamel Defects in a Contemporary Population: Biological and Social Implications".
    [Show full text]
  • Study of Root Canal Anatomy in Human Permanent Teeth
    Brazilian Dental Journal (2015) 26(5): 530-536 ISSN 0103-6440 http://dx.doi.org/10.1590/0103-6440201302448 1Department of Stomatologic Study of Root Canal Anatomy in Human Sciences, UFG - Federal University of Goiás, Goiânia, GO, Brazil Permanent Teeth in A Subpopulation 2Department of Radiology, School of Dentistry, UNIC - University of Brazil’s Center Region Using Cone- of Cuiabá, Cuiabá, MT, Brazil 3Department of Restorative Dentistry, School of Dentistry of Ribeirão Beam Computed Tomography - Part 1 Preto, USP - University of São Paulo, Ribeirão Preto, SP, Brazil Carlos Estrela1, Mike R. Bueno2, Gabriela S. Couto1, Luiz Eduardo G Rabelo1, Correspondence: Prof. Dr. Carlos 1 3 3 Estrela, Praça Universitária s/n, Setor Ana Helena G. Alencar , Ricardo Gariba Silva ,Jesus Djalma Pécora ,Manoel Universitário, 74605-220 Goiânia, 3 Damião Sousa-Neto GO, Brasil. Tel.: +55-62-3209-6254. e-mail: [email protected] The aim of this study was to evaluate the frequency of roots, root canals and apical foramina in human permanent teeth using cone beam computed tomography (CBCT). CBCT images of 1,400 teeth from database previously evaluated were used to determine the frequency of number of roots, root canals and apical foramina. All teeth were evaluated by preview of the planes sagittal, axial, and coronal. Navigation in axial slices of 0.1 mm/0.1 mm followed the coronal to apical direction, as well as the apical to coronal direction. Two examiners assessed all CBCT images. Statistical data were analyzed including frequency distribution and cross-tabulation. The highest frequency of four root canals and four apical foramina was found in maxillary first molars (76%, 33%, respectively), followed by maxillary second molars (41%, 25%, respectively).
    [Show full text]
  • Hypomineralisation Or Hypoplasia?
    Hypomineralisation or hypoplasia? IN BRIEF Provides general dental practitioners with an overview of the background and aetiology of enamel hypomineralisation and hypoplasia Outlines the different characteristics and clinical variabilities between hypomineralisation and hypoplasia Provides an understanding of how to diagnose hypomineralisation and hypoplasia and guide management ABSTRACT Enamel hypomineralisation is a qualitative defect, with reduced mineralisation resulting in discoloured enamel in a tooth of normal shape and size. Because the enamel is weaker, teeth can undergo post eruptive breakdown, resulting in missing enamel. Enamel hypoplasia is a quantitative defect of the enamel presenting as pits, grooves, missing enamel or smaller teeth. It can sometimes be difficult to differentiate between the two. In this review paper, we aim to explain the importance of differentiating between the two conditions, and how to manage patients presenting with enamel defects. HOW DOES ENAMEL FORM? Enamel is produced by specialised end-differentiated cells known as ameloblasts.1 The formation of enamel can be separated into initial stages which involve secretion of matrix proteins such as amelogenin, ameloblastin and enamelin, and later stages of mineralization and maturation.1 Tooth enamel is unique due to its high mineral content. It is composed of highly organised, tightly packed hydroxyapatite crystallites that comprise 87% of its volume and 95% of its weight, with the remainder comprising of organic matrix and water.1 This pattern of organisation and mineralisation gives enamel its significant physical properties, making it the hardest tissue in the body.1 Developmental defects of enamel are not uncommon, both in the primary and permanent dentitions.1 Environmental and/or genetic factors that interfere with tooth formation are thought to be responsible for both hypomineralisation and hypoplasia.1,2 If a disturbance occurs during the secretion phase, the enamel defect is called hypoplasia.
    [Show full text]
  • Sensitive Teeth Sensitive Teeth Can Be Treated
    FOR THE DENTAL PATIENT ... TREATMENT Sensitive teeth Sensitive teeth can be treated. Depending on the cause, your dentist may suggest that you try Causes and treatment desensitizing toothpaste, which contains com- pounds that help block sensation traveling from the tooth surface to the nerve. Desensitizing f a taste of ice cream or a sip of coffee is toothpaste usually requires several applications sometimes painful or if brushing or flossing before the sensitivity is reduced. When choosing makes you wince occasionally, you may toothpaste or any other dental care products, look have a common problem called “sensitive for those that display the American Dental Asso- teeth.” Some of the causes include tooth ciation’s Seal of Acceptance—your assurance that Idecay, a cracked tooth, worn tooth enamel, worn products have met ADA criteria for safety and fillings and tooth roots that are exposed as a effectiveness. result of aggressive tooth brushing, gum recession If the desensitizing toothpaste does not ease and periodontal (gum) disease. your discomfort, your dentist may suggest in- office treatments. A fluoride gel or special desen- SYMPTOMS OF SENSITIVE TEETH sitizing agents may be applied to the sensitive A layer of enamel, the strongest substance in the areas of the affected teeth. When these measures body, protects the crowns of healthy teeth. A layer do not correct the problem, your dentist may rec- called cementum protects the tooth root under the ommend other treatments, such as a filling, a gum line. Underneath the enamel and the crown, an inlay or bonding to correct a flaw or cementum is dentin, a part of the tooth that is decay that results in sensitivity.
    [Show full text]
  • Cell Proliferation Study in Human Tooth Germs
    Cell proliferation study in human tooth germs Vanesa Pereira-Prado1, Gabriela Vigil-Bastitta2, Estefania Sicco3, Ronell Bologna-Molina4, Gabriel Tapia-Repetto5 DOI: 10.22592/ode2018n32a10 Abstract The aim of this study was to determine the expression of MCM4-5-6 in human tooth germs in the bell stage. Materials and methods: Histological samples were collected from four fetal maxillae placed in paraffin at the block archive of the Histology Department of the School of Dentistry, UdelaR. Sections were made for HE routine technique and for immunohistochemistry technique for MCM4-5-6. Results: Different regions of the enamel organ showed 100% positivity in the intermediate layer, a variation from 100% to 0% in the inner epithelium from the cervical loop to the incisal area, and 0% in the stellar reticulum as well as the outer epithelium. Conclusions: The results show and confirm the proliferative action of the different areas of the enamel organ. Keywords: MCM4, MCM5, MCM6, tooth germ, cell proliferation. 1 Molecular Pathology in Stomatology, School of Dentistry, Universidad de la República, Montevideo, Uruguay. ORCID: 0000-0001- 7747-671 2 Molecular Pathology in Stomatology, School of Dentistry, Universidad de la República, Montevideo, Uruguay. ORCID: 0000-0002- 0617-1279 3 Molecular Pathology in Stomatology, School of Dentistry, Universidad de la República, Montevideo, Uruguay. ORCID: 0000-0003- 1137-6866 4 Molecular Pathology in Stomatology, School of Dentistry, Universidad de la República, Montevideo, Uruguay. ORCID: 0000-0001- 9755-4779 5 Histology Department, School of Dentistry, Universidad de la República, Montevideo, Uruguay. ORCID: 0000-0003-4563-9142 78 Odontoestomatología. Vol. XX - Nº 32 - Diciembre 2018 Introduction that all the DNA is replicated (12), and prevents DNA from replicating more than once in the Tooth organogenesis is a process involving a same cell cycle (13).
    [Show full text]
  • Comparative Morphology of Incisor Enamel and Dentin in Humans and Fat Dormice (Glis Glis)
    Coll. Antropol. 27 (2003) 1: 373–380 UDC 572.72:616.314.11 Original scientific paper Comparative Morphology of Incisor Enamel and Dentin in Humans and Fat Dormice (Glis glis) Dean Konjevi}1, Tomislav Keros2, Hrvoje Brki}3, Alen Slavica1, Zdravko Janicki1 and Josip Margaleti}4 1 Chair for Game Biology, Pathology and Breeding, Veterinary Faculty, University of Zagreb, Zagreb, Croatia 2 Croatian Veterinary Institute, Zagreb, Croatia 3 Department for Dental Anthropology, School of Dental Medicine, University of Zagreb, Zagreb, Croatia 4 Department of Forest Protection and Wildlife Management, Faculty of Forestry, University of Zagreb, Zagreb, Croatia ABSTRACT The structure of teeth in all living beings is genetically predetermined, although it can change under external physiological and pathological factors. The author’s hypoth- esis was to indicate evolutional shifts resulting from genetic, functional and other dif- ferences. A comparative study about certain characteristics of incisors in humans and myomorpha, the fat dormouse (Glis glis) being their representative as well, comprised measurements of enamel and dentin thickness in individual incisor segments, evalua- tion of external enamel index, and also assessment of histological structure of enamel and dentin. The study results involving dormice showed the enamel to be thicker in lower than in the upper teeth, quite contrary to enamel thickness in humans. In the up- per incisors in dormice the enamel is the thickest in the medial layer of the crown, and in the cervical portion of the crown in the lower incisors. The thickness of dentin in dor- mice is greater in the oral than in the vestibular side. These findings significantly differ from those reported in reference literature, but they are based on the function of teeth in dormice.
    [Show full text]
  • Infectious Complications of Dental and Periodontal Diseases in the Elderly Population
    INVITED ARTICLE AGING AND INFECTIOUS DISEASES Thomas T. Yoshikawa, Section Editor Infectious Complications of Dental and Periodontal Diseases in the Elderly Population Kenneth Shay Geriatrics and Extended Care Service Line, Veterans Integrated Services Network 11, Geriatric Research Education and Clinical Center and Dental Service, Ann Arbor Downloaded from https://academic.oup.com/cid/article/34/9/1215/463157 by guest on 02 October 2021 Veterans Affairs Healthcare System, and University of Michigan School of Dentistry, Ann Arbor Retention of teeth into advanced age makes caries and periodontitis lifelong concerns. Dental caries occurs when acidic metabolites of oral streptococci dissolve enamel and dentin. Dissolution progresses to cavitation and, if untreated, to bacterial invasion of dental pulp, whereby oral bacteria access the bloodstream. Oral organisms have been linked to infections of the endocardium, meninges, mediastinum, vertebrae, hepatobiliary system, and prosthetic joints. Periodontitis is a pathogen- specific, lytic inflammatory reaction to dental plaque that degrades the tooth attachment. Periodontal disease is more severe and less readily controlled in people with diabetes; impaired glycemic control may exacerbate host response. Aspiration of oropharyngeal (including periodontal) pathogens is the dominant cause of nursing home–acquired pneumonia; factors reflecting poor oral health strongly correlate with increased risk of developing aspiration pneumonia. Bloodborne peri- odontopathic organisms may play a role in atherosclerosis. Daily oral hygiene practice and receipt of regular dental care are cost-effective means for minimizing morbidity of oral infections and their nonoral sequelae. More than 300 individual cultivable species of microbes have growing importance in the elderly population. In 1957, nearly been identified in the human mouth [1], with an estimated 1014 70% of the US population aged 175 years had no natural teeth.
    [Show full text]