Genetic Level Investigations Into the Species Diversity, Biogeography and Trophic Traits of Antarctic Polychaetes

Total Page:16

File Type:pdf, Size:1020Kb

Genetic Level Investigations Into the Species Diversity, Biogeography and Trophic Traits of Antarctic Polychaetes Genetic level investigations into the species diversity, biogeography and trophic traits of Antarctic Polychaetes A thesis submitted for the degree of Doctor of Philosophy Madeleine Julie Brasier University of Liverpool School of Environmental Science December 2017 Supervised by: Dr Rachel Jeffreys Dr Adrian Glover Examined by: Dr Henry Ruhl Dr Leonie Robinson Professor George Wolff Professor A. Lousie Allcock Declaration This thesis is an account of my research undertaken within the Life Science Department, Natural History Museum, London, UK, and the School of Environmental Sciences, Liverpool, UK, between December 2013 and December 2017. Unless acknowledged the material presented in this thesis is, to the best of my knowledge, original and has not been previously submitted. Madeleine Brasier December 2017 i Abstract The diversity and biogeography of the Antarctic benthos has been shaped by its unique history through glacial cycles, the influence of circumpolar current regimes and seasonal food inputs. There is currently a large international research effort to define levels of species diversity, biogeography, functional traits and their sensitivity to changing environmental conditions. These data are vital in setting ecological baselines to monitor the effects of climate change and manage the impacts of human activities in the Southern Ocean. The findings from genetic level analyses into species diversity, biogeography and the trophic traits of two groups of benthic Antarctic polychaetes, an abundant taxa within macrofaunal communities are presented here. The first group contained free-living polychaetes collected from the Scotia, Amundsen and Weddell Seas, whilst the second group consisted of symbiotic polynoids taken from coral host species in the South Orkney Islands Southern Shelf Marine Protected Area. The application of DNA barcoding to a subset of 15 morphologically identified polychaete species (morphospecies) from the free-living polychaetes, uncovered 10 additional cryptic species (these individuals are morphologically identical but genetically distinct) and 10 previously overlooked morphospecies. These findings suggest that the levels of Antarctic benthic diversity may be largely underestimated. The difficulty in determining true ‘species’ from genetic analysis for which there are no genetic cut offs or rules is discussed, as well as the causes of misidentification of soft bodied species within large sample sets. The distribution of cryptic species are often more restricted that that of their original morphospecies. This is potentially related to geographic or reproductive isolation of populations during the speciation process. In this study, the cryptic species previously considered to be circum-Antarctic remained widespread. This demonstrates the importance of considering dispersal mechanisms, including developmental mode and larval biology and subsequently transport via cicrum-Antarctic currents. The determination of trophic traits using both bulk and compound specific stable isotope analysis, revealed high levels of variability within and between species with the same categorical trophic traits. These data suggest a high degree of omnivory coupled with variation at the base of the food web i.e. in d15N of phytoplankton/phytodetritus. The use of genetic and ii biochemical analyses to describe the symbiotic relationship between polynoid symbionts and their host corals identified polymorphisms with significantly different trophic signatures. The relevance and significance of the findings are discussed with regard to environmental change in the Southern Ocean and the future of Antarctic marine management and scientific research. Antarctica represents one of the most rapidly changing and vulnerable ecosystems on our planet. Any means to mitigate the effects of climate change or to sustainably manage Antarctic marine resources requires international and multidisciplinary research collaborations. Future research should focus on understanding the interacting and changing relationships between the biological, chemical, physical and geological environments. iii I have lots of heroes: anyone and everyone who does whatever they can to leave the natural world better than they found it. - Sylvia Earle Acknowledgments My love of marine ecosystems evolved from many happy days face first in a rock pool in Cornwall whilst visiting my grandparents. I hope they’d both be proud of this thesis and all the adventures my PhD brought with it. My interest in Antarctic biology came apparent during my undergraduate studies at the University of Southampton. I would like to thank Professor Paul Tyler for introducing me to the wonders of deep-sea life and all Antarctic science had to offer. My passion for polychaetes was perhaps an unexpected one. Shortly after graduating I was welcomed into Dr Adrian Glover’s lab at the Natural History Museum, London. I soon realised there was a lot of polychaete related fun to be had. I feel very lucky to have been a part of Adrian’s research group and am grateful for all friendships and fieldwork opportunities that came with it. My PhD maintained connections with the Natural History Museum but the University of Liverpool soon became my new home. Whilst in Liverpool, my supervisor Dr Rachel Jeffreys became not only a great source of support and guidance through this PhD but also my ‘academic mum’. Thank you Rachel for your kindness through the rough times and the laughs along the way. Thanks are also due to Professor George Wolff for keeping me on the straight and narrow to get this thesis finished. I would also like to thank Lenka Neal and Dr’s Helen Wiklund and Anu Petal for their incredible patience with me in the lab and help in the collection of taxonomic, genetic and isotope data, and, Drs Henry Ruhl and James Harle for their collaborative work in the publication of my second chapter. Over the last four years my fellow PhD students and postdocs helped me in many ways from PhD and academic advice, proof reading, post conference travelling, endless tea breaks, hugs, shared ranting and encouragement. To name a few; Maggie Georgiva, Olivia Hicks, Hannah Whitby, Alice Trevail, Nealy Carr, Callum Preece, James Pobert, Arthur Gourian, Hannah iv Griffiths, Robyn Tuerena, Clare Davis and Peter Davis - I am most thankful for your friendship and support. During my PhD I had the opportunity to work with British Antarctic Survey in the Southern Ocean on the State of the Antarctic Ecosystem project. Thanks are due to Dr’s Huw Griffiths and Susie Grant for this opportunity and the 3 month internship in Cambridge following the expedition. Whilst there I was able to collaborate further with both Dr’s Katrin Linse and Phil Trathan who were most helpful in the production of the SOAntEco report for CCAMLR. Another expedition I shall never forget was the month I spent at Palmer Station. My time there was full of scientific excitement and incredible memories with my B301 course mates. I thank Professor Deneb Karentz for making such an amazing, once in a lifetime, experience possible. I dedicate this thesis to my overwhelmingly supportive family, they saw it all from start to finish; the excitements, the disappointments, the frustrations and the breakthroughs. So to my loving bungles; Julie, Alan, Jenna and Sam, here some words about worms. Thank you for always encouraging me to take on the world one Antarctic animal at a time. v Glossary and Acronyms 1M – 1 month 1W – 1 week 1Y – 1 year 6M – 6 months 3’ prime end – the end of a single-stranded nucleic acid molecule which terminates in a hydroxyl group. 5’ prime end - the end of a single-stranded nucleic acid molecule which terminates in a phosphate group. δ15N – denotes the isotopic ratio of 15N:14N AA – Amino Acid AIC – Akaike Information Criterion ACC – Antarctic Circumpolar Current Ala – Alanine (amino acid) ANDEEP - ANtarctic DEEP-sea benthic biodiversity Asp – Aspartic acid (amino acid) BAS – British Antarctic Survey BIC – Bayesian Information Criterion BIOPEARL - BIOdiversity dynamics: Phylogeography, Evolution, And Radiation of Life BLAST - Basic Local Alignment Search Tool BOLD – Barcode of Life Database bp – base pair vi CAML – Census of Antarctic Marine Life CCAMLR – Commission of the Conservation of Antarctic Marine Living Resources COI – Cytochrome c oxidase subunit 1 CSIA – Compound specific stable isotope analysis DNA Barcode – short sequence of DNA used to identify species EA/IRMS – Elemental Analyser Isotope Ratio Mass Spectrometry E – Ethanol FOODBANCS - FOOD for Benthos on the ANtarctic Continental Shelf F – Formalin Fr – Frozen GC – Gas Chromatography GC/C/IRMS – Gas Chromatography Combustion Isotope Ratio Mass Spectrometry GenBank – Online genetic database within the National Center for Biotechnology Information Glu – Glutamic acid (amino acid) Gly – Glycine (amino acid) GTR + I + G – General time reversible + invariable sites + gamma Iso – Isoleucine (amino acid) ITS – Internal transcribed spacer JR144 – BIOPEARL I expedition led by British Antarctic Survey on the RRS James Clarke Ross to sample the benthic communities of the Scotia Arc. JR179 – BIOPERAL II expedition led by British Antarctic Survey on the RRS James Clarke Ross to sample the benthic communities of the Amundsen Sea. vii JR275 – British Antarctic Survey expedition on the RRS James Clarke Ross to sample benthic communities of the eastern Weddell Sea. JR15005 – SOAntEco expedition led by British Antarctic Survey on the RRS James Clarke Ross to sample the benthic communities of
Recommended publications
  • Petition to List the Black Teatfish, Holothuria Nobilis, Under the U.S. Endangered Species Act
    Before the Secretary of Commerce Petition to List the Black Teatfish, Holothuria nobilis, under the U.S. Endangered Species Act Photo Credit: © Philippe Bourjon (with permission) Center for Biological Diversity 14 May 2020 Notice of Petition Wilbur Ross, Secretary of Commerce U.S. Department of Commerce 1401 Constitution Ave. NW Washington, D.C. 20230 Email: [email protected], [email protected] Dr. Neil Jacobs, Acting Under Secretary of Commerce for Oceans and Atmosphere U.S. Department of Commerce 1401 Constitution Ave. NW Washington, D.C. 20230 Email: [email protected] Petitioner: Kristin Carden, Oceans Program Scientist Sarah Uhlemann, Senior Att’y & Int’l Program Director Center for Biological Diversity Center for Biological Diversity 1212 Broadway #800 2400 NW 80th Street, #146 Oakland, CA 94612 Seattle,WA98117 Phone: (510) 844‐7100 x327 Phone: (206) 324‐2344 Email: [email protected] Email: [email protected] The Center for Biological Diversity (Center, Petitioner) submits to the Secretary of Commerce and the National Oceanographic and Atmospheric Administration (NOAA) through the National Marine Fisheries Service (NMFS) a petition to list the black teatfish, Holothuria nobilis, as threatened or endangered under the U.S. Endangered Species Act (ESA), 16 U.S.C. § 1531 et seq. Alternatively, the Service should list the black teatfish as threatened or endangered throughout a significant portion of its range. This species is found exclusively in foreign waters, thus 30‐days’ notice to affected U.S. states and/or territories was not required. The Center is a non‐profit, public interest environmental organization dedicated to the protection of native species and their habitats.
    [Show full text]
  • Has Its Charm
    VOL. XXXV NO.1 JANUARY. 1987 NEW SERIES 325 TREE SNAILERS! IT'S TIME TO UNITE Has Its Charm ByRON KNIGHT LORENGAU, MANUS ISLAND, PAPUA NEW By TWILA BRATCHER GUINEA - We amateur specialists in terrestrial Unspoiled Rowley Shoals lies in the easternmost molluscs are subject to some special handicaps. Not Indian Ocean, about 180 miles west of Broome, only are we scattered around the world and fre- Western Australia. The occasionalcharter boats that visit the area have been doing so only recently, and quently isolated in the much larger body of marine foreign fishing fleets are not permitted there. shell enthusiasts, but we suffer from a seeming shor- The only important scientific work on Rowley tage of literature. Many of us have nowhere to turn Shoalswas done by groups from the Western Aus- tralian Museum in Perth. for advice, assistance and comparative material. I was a participant in a recent privately organized Professionals interested in the pulmonates have trip to the Rowley Shoals. Lynn Funkhouser, the easier access to literature, of course, but they face group leader, is an accomplished professional a more subtle handicap. That is their wide separa- underwater photographer and president of the tion from the enthusiasts in the field who tradi- Chicago Shell Club. Others were JeanetteRidley, underwater photographer from Seattle; Philip and tionally supply the scientists with the specimens, Heidrun Faulconer, underwaterphotographers from data and puzzlers that are the feed stock of the San Diego, John and Mary Poble, underwater technical literature. All of us - scientists and photographersfrom Nebraska, my sister Billee Dil- amateurs, professionals and beginners - are the worth Brown, a docent at Scripps Aquarium in La McNally's Trophies Photo: Schoenberg Jolla, and myself.
    [Show full text]
  • Annelida, Hesionidae), Described As New Based on Morphometry
    Contributions to Zoology, 86 (2) 181-211 (2017) Another brick in the wall: population dynamics of a symbiotic species of Oxydromus (Annelida, Hesionidae), described as new based on morphometry Daniel Martin1,*, Miguel A. Meca1, João Gil1, Pilar Drake2 & Arne Nygren3 1 Centre d’Estudis Avançats de Blanes (CEAB-CSIC) – Carrer d’Accés a la Cala Sant Francesc 14. 17300 Blanes, Girona, Catalunya, Spain 2 Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avenida República Saharaui 2, Puerto Real 11519, Cádiz, Spain 3 Sjöfartsmuseet Akvariet, Karl Johansgatan 1-3, 41459, Göteborg, Sweden 1 E-mail: [email protected] Key words: Bivalvia, Cádiz Bay, Hesionidae, Iberian Peninsula, NE Atlantic Oxydromus, symbiosis, Tellinidae urn:lsid:zoobank.org:pub: D97B28C0-4BE9-4C1E-93F8-BD78F994A8D1 Abstract Results ............................................................................................. 186 Oxydromus humesi is an annelid polychaete living as a strict bi- Morphometry ........................................................................... 186 valve endosymbiont (likely parasitic) of Tellina nymphalis in Population size-structure ..................................................... 190 Congolese mangrove swamps and of Scrobicularia plana and Infestation characteristics .................................................... 190 Macomopsis pellucida in Iberian saltmarshes. The Congolese Discussion ....................................................................................... 193 and Iberian polychaete populations were previously
    [Show full text]
  • The 17Th International Colloquium on Amphipoda
    Biodiversity Journal, 2017, 8 (2): 391–394 MONOGRAPH The 17th International Colloquium on Amphipoda Sabrina Lo Brutto1,2,*, Eugenia Schimmenti1 & Davide Iaciofano1 1Dept. STEBICEF, Section of Animal Biology, via Archirafi 18, Palermo, University of Palermo, Italy 2Museum of Zoology “Doderlein”, SIMUA, via Archirafi 16, University of Palermo, Italy *Corresponding author, email: [email protected] th th ABSTRACT The 17 International Colloquium on Amphipoda (17 ICA) has been organized by the University of Palermo (Sicily, Italy), and took place in Trapani, 4-7 September 2017. All the contributions have been published in the present monograph and include a wide range of topics. KEY WORDS International Colloquium on Amphipoda; ICA; Amphipoda. Received 30.04.2017; accepted 31.05.2017; printed 30.06.2017 Proceedings of the 17th International Colloquium on Amphipoda (17th ICA), September 4th-7th 2017, Trapani (Italy) The first International Colloquium on Amphi- Poland, Turkey, Norway, Brazil and Canada within poda was held in Verona in 1969, as a simple meet- the Scientific Committee: ing of specialists interested in the Systematics of Sabrina Lo Brutto (Coordinator) - University of Gammarus and Niphargus. Palermo, Italy Now, after 48 years, the Colloquium reached the Elvira De Matthaeis - University La Sapienza, 17th edition, held at the “Polo Territoriale della Italy Provincia di Trapani”, a site of the University of Felicita Scapini - University of Firenze, Italy Palermo, in Italy; and for the second time in Sicily Alberto Ugolini - University of Firenze, Italy (Lo Brutto et al., 2013). Maria Beatrice Scipione - Stazione Zoologica The Organizing and Scientific Committees were Anton Dohrn, Italy composed by people from different countries.
    [Show full text]
  • Echinodermata: Holothuroidea: Apodida: Chiridotidae), with Special Reference to the Ultrastructure of Sigmoid Bodies
    Species Diversity 17: 15–20 25 May 2012 Redescription of Scoliorhapis lindbergi comb. nov. (Echinodermata: Holothuroidea: Apodida: Chiridotidae), with Special Reference to the Ultrastructure of Sigmoid Bodies Junko Inoue1,2 and Hiroshi Kajihara3 1 Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan 2 National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba 305-0005, Japan E-mail: [email protected] 3 Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan E-mail: [email protected] (Received 1 March 2011; Accepted 4 October 2011) We reclassify and redescribe the apodid holothurian Scoliodotella uchidai Oguro, 1961 as Scoliorhapis lindbergi (D’yakonov in D’yakonov et al., 1958) comb. nov., based on newly collected topotypes of the former from Akkeshi Bay, Ja- pan. We conrm the previously proposed, but not widely recognized, synonymy between these two nominal species. Scan- ning electron microscopy of 968 sigmoid bodies from 17 specimens of S. lindbergi from Akkeshi Bay revealed that 12.0% of them possessed spinelets, which varied in size, number, and arrangement, and that 0.8% were anchor-shaped, resembling ossicles characteristic of Synaptidae. Key Words: Apodida, Scoliorhapis, spinelets, sigmoid bodies, Synaptina, anchor ossicles. lindbergi (Utinomi 1965; Levin 1982). Because Utinomi’s Introduction (1965) and Levin’s (1982) works were published in the Japa- nese and Russian languages, respectively, these have not Apodida, one of the six orders generally recognized in the been cited in the English literature (e.g., overlooked by Kerr class Holothuroidea, with about 270 species known world- 2001; O’Loughlin and VandenSpiegel 2010; Paulay 2010).
    [Show full text]
  • Biodiversity and Trophic Ecology of Hydrothermal Vent Fauna Associated with Tubeworm Assemblages on the Juan De Fuca Ridge
    Biogeosciences, 15, 2629–2647, 2018 https://doi.org/10.5194/bg-15-2629-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Biodiversity and trophic ecology of hydrothermal vent fauna associated with tubeworm assemblages on the Juan de Fuca Ridge Yann Lelièvre1,2, Jozée Sarrazin1, Julien Marticorena1, Gauthier Schaal3, Thomas Day1, Pierre Legendre2, Stéphane Hourdez4,5, and Marjolaine Matabos1 1Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, 29280 Plouzané, France 2Département de sciences biologiques, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal, Québec, H3C 3J7, Canada 3Laboratoire des Sciences de l’Environnement Marin (LEMAR), UMR 6539 9 CNRS/UBO/IRD/Ifremer, BP 70, 29280, Plouzané, France 4Sorbonne Université, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France 5CNRS, UMR7144, Station Biologique de Roscoff, 29680 Roscoff, France Correspondence: Yann Lelièvre ([email protected]) Received: 3 October 2017 – Discussion started: 12 October 2017 Revised: 29 March 2018 – Accepted: 7 April 2018 – Published: 4 May 2018 Abstract. Hydrothermal vent sites along the Juan de Fuca community structuring. Vent food webs did not appear to be Ridge in the north-east Pacific host dense populations of organised through predator–prey relationships. For example, Ridgeia piscesae tubeworms that promote habitat hetero- although trophic structure complexity increased with ecolog- geneity and local diversity. A detailed description of the ical successional stages, showing a higher number of preda- biodiversity and community structure is needed to help un- tors in the last stages, the food web structure itself did not derstand the ecological processes that underlie the distribu- change across assemblages.
    [Show full text]
  • Deep-Sea Fauna of the European Seas: an Annotated Species Check-List Of
    Invertebrate Zoology, 2014, 11(1): 134–155 © INVERTEBRATE ZOOLOGY, 2014 Deep-sea fauna of European seas: An annotated species check-list of benthic invertebrates living deeper than 2000 m in the seas bordering Europe. Gastropoda Alexander V. Sysoev Zoological Museum, Moscow State University, Bol’shaya Nikitskaya ul., 6, Moscow, 125009, Russia. E-mail: [email protected] ABSTRACT: An annotated check-list is given of Gastropoda species occurring deeper than 2000 m in the seas bordering Europe. The check-list is based on published data. The check- list includes 221 species. For each species data on localities in European seas and general species distribution are provided. Station data are presented separately in the present thematic issue. How to cite this article: Sysoev A.V. 2014. Deep-sea fauna of European seas: An annotated species check-list of benthic invertebrates living deeper than 2000 m in the seas bordering Europe. Gastropoda // Invert. Zool. Vol.11. No.1. P.134–155. KEY WORDS: deep-sea fauna, European seas, Gastropoda. Глубоководная фауна европейских морей: аннотированный список видов донных беспозвоночных, обитающих глубже 2000 м в морях, окружающих Европу. Gastropoda А.В. Сысоев Зоологический музей МГУ им. М.В. Ломоносова, ул. Большая Никитская, 6, Москва 125009, Россия. E-mail: [email protected] РЕЗЮМЕ: Приводится аннотированный список видов Gastropoda, обитающих глуб- же 2000 м в морях, окружающих Европу. Список основан на опубликованных данных. Список насчитывает 221 вид. Для каждого вида приведены данные о нахождениях в европейских морях и сведения о распространении. Данные о станци- ях приводятся в отдельном разделе настоящего тематического выпуска. Как цитировать эту статью: Sysoev A.V.
    [Show full text]
  • RECON: Reef Effect Structures in the North Sea, Islands Or Connections?
    RECON: Reef effect structures in the North Sea, islands or connections? Summary Report Authors: Coolen, J.W.P. & R.G. Jak (eds.). Wageningen University & Research Report C074/17A RECON: Reef effect structures in the North Sea, islands or connections? Summary Report Revised Author(s): Coolen, J.W.P. & R.G. Jak (eds.). With contributions from J.W.P. Coolen, B.E. van der Weide, J. Cuperus, P. Luttikhuizen, M. Schutter, M. Dorenbosch, F. Driessen, W. Lengkeek, M. Blomberg, G. van Moorsel, M.A. Faasse, O.G. Bos, I.M. Dias, M. Spierings, S.G. Glorius, L.E. Becking, T. Schol, R. Crooijmans, A.R. Boon, H. van Pelt, F. Kleissen, D. Gerla, R.G. Jak, S. Degraer, H.J. Lindeboom Publication date: January 2018 Wageningen Marine Research Den Helder, January 2018 Wageningen Marine Research report C074/17A Coolen, J.W.P. & R.G. Jak (eds.) 2017. RECON: Reef effect structures in the North Sea, islands or connections? Summary Report Wageningen, Wageningen Marine Research, Wageningen Marine Research report C074/17A. 33 pp. Client: INSITE joint industry project Attn.: Richard Heard 6th Floor East, Portland House, Bressenden Place London SW1E 5BH, United Kingdom This report can be downloaded for free from https://doi.org/10.18174/424244 Wageningen Marine Research provides no printed copies of reports Wageningen Marine Research is ISO 9001:2008 certified. Photo cover: Udo van Dongen. © 2017 Wageningen Marine Research Wageningen UR Wageningen Marine Research The Management of Wageningen Marine Research is not responsible for resulting institute of Stichting Wageningen damage, as well as for damage resulting from the application of results or Research is registered in the Dutch research obtained by Wageningen Marine Research, its clients or any claims traderecord nr.
    [Show full text]
  • To Down Load Appendix 1
    APPENDIX 1 Chapter 1 Pictures of dominant species ................................................................................................................................. 2 Species inventory of micro-invertebrate species found ....................................................................................... 16 Bathymetry Map of Pleasant Bay ........................................................................................................................ 18 Eelgrass Locations in Pleasant Bay ..................................................................................................................... 19 Sidescan Map of Pleasant Bay ............................................................................................................................. 20 Chapter 2 Species inventory of macro-invertebrate and fish species by gear type .............................................................. 21 Chapter 3 Prey otoliths and hard parts recovered during seal scat processing ..................................................................... 24 1 Pictures of dominant species Disclaimer: biological samples were treated with ethanol and Rose Bengal in the laboratory to preserve the samples. Rose Bengal is a stain commonly used in microscopy and stains cell tissue a bright pink. This is useful in the visual detection of microscopic animals in sediment samples. An overwhelming majority of micro invertebrate species do not have common names. The common names used here are listed in Pollock’s “A Practical Guide
    [Show full text]
  • Annelida, Amphinomidae) in the Mediterranean Sea with an Updated Revision of the Alien Mediterranean Amphinomids
    A peer-reviewed open-access journal ZooKeys 337: 19–33 (2013)On the occurrence of the firewormEurythoe complanata complex... 19 doi: 10.3897/zookeys.337.5811 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research On the occurrence of the fireworm Eurythoe complanata complex (Annelida, Amphinomidae) in the Mediterranean Sea with an updated revision of the alien Mediterranean amphinomids Andrés Arias1, Rômulo Barroso2,3, Nuria Anadón1, Paulo C. Paiva4 1 Departamento de Biología de Organismos y Sistemas (Zoología), Universidad de Oviedo, Oviedo 33071, Spain 2 Pontifícia Universidade Católica do Rio de Janeiro , Rio de Janeiro, Brazil 3 Museu de Zoologia da Unicamp, Campinas, SP, Brazil 4 Departamento de Zoologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ) , Rio de Janeiro, RJ, Brasil Corresponding author: Andrés Arias ([email protected]) Academic editor: C. Glasby | Received 17 June 2013 | Accepted 19 September 2013 | Published 30 September 2013 Citation: Arias A, Barroso R, Anadón N, Paiva PC (2013) On the occurrence of the fireworm Eurythoe complanata complex (Annelida, Amphinomidae) in the Mediterranean Sea with an updated revision of the alien Mediterranean amphinomids. ZooKeys 337: 19–33. doi: 10.3897/zookeys.337.5811 Abstract The presence of two species within the Eurythoe complanata complex in the Mediterranean Sea is reported, as well as their geographical distributions. One species, Eurythoe laevisetis, occurs in the eastern and cen- tral Mediterranean, likely constituting the first historical introduction to the Mediterranean Sea and the other, Eurythoe complanata, in both eastern and Levantine basins. Brief notes on their taxonomy are also provided and their potential pathways for introduction to the Mediterranean are discussed.
    [Show full text]
  • SCAMIT Newsletter Vol. 1 No. 2 1982
    TAXONOMIC INTERCAL1BRAT10N NEWSLETTER May, 1932 Number 2 Next Scheduled Meeting: June lA, 1982 at 9:30 a.m. Place: Marine Biological Consultants 9^7 Newhal1 Street Costa Mesa, California 92627 Topic Taxonomic Group: Amphinomidae, Euphrosinidae, Phyllodocidae MINUTES FROM MAY 17, 1982 Name Fourteen different names with accompanying acronyms were suggested. Because there were so many, it was decided to vote for a name by ballot and talley the results at the June meeting. One ballot is enclosed in this Newsletter. Please bring it to the next meeting or mail it to Ann Martin by June 11. Make additional copies of the ballot for each member of your Company. Dues Unfortunately dues are going to be ch-arged. The dues will help defray costs incurred for storing the reference collection, paper, postage, and other unforeseen expenses. Dues will be $5.00 per year beginning June, 1982. This amount will be adjusted after six months if it is insufficient. Dues will be collected at the June meeting. For those unable to attend the meeting, dues can be mailed to.Ann Martin and a receipt will be mailed back. Specimen Exchange. Several points concerning the specimen exchange were brought out that will help. - Participants should be responsible for getting their specimens to the meeting, either in person or by mail. - Mark the specimens sequentially to prevent mixing of different groups. - Bring the voucher specimens to meeting to check them with ones from the specimen exchange. - When deciding what species to select for the specimen exchange, first call Tony Phillips, (213) 322-3131 extension 269, and tell him what you plan to bring in.
    [Show full text]
  • Download Full Article 2.4MB .Pdf File
    Memoirs of Museum Victoria 71: 217–236 (2014) Published December 2014 ISSN 1447-2546 (Print) 1447-2554 (On-line) http://museumvictoria.com.au/about/books-and-journals/journals/memoirs-of-museum-victoria/ Original specimens and type localities of early described polychaete species (Annelida) from Norway, with particular attention to species described by O.F. Müller and M. Sars EIVIND OUG1,* (http://zoobank.org/urn:lsid:zoobank.org:author:EF42540F-7A9E-486F-96B7-FCE9F94DC54A), TORKILD BAKKEN2 (http://zoobank.org/urn:lsid:zoobank.org:author:FA79392C-048E-4421-BFF8-71A7D58A54C7) AND JON ANDERS KONGSRUD3 (http://zoobank.org/urn:lsid:zoobank.org:author:4AF3F49E-9406-4387-B282-73FA5982029E) 1 Norwegian Institute for Water Research, Region South, Jon Lilletuns vei 3, NO-4879 Grimstad, Norway ([email protected]) 2 Norwegian University of Science and Technology, University Museum, NO-7491 Trondheim, Norway ([email protected]) 3 University Museum of Bergen, University of Bergen, PO Box 7800, NO-5020 Bergen, Norway ([email protected]) * To whom correspondence and reprint requests should be addressed. E-mail: [email protected] Abstract Oug, E., Bakken, T. and Kongsrud, J.A. 2014. Original specimens and type localities of early described polychaete species (Annelida) from Norway, with particular attention to species described by O.F. Müller and M. Sars. Memoirs of Museum Victoria 71: 217–236. Early descriptions of species from Norwegian waters are reviewed, with a focus on the basic requirements for re- assessing their characteristics, in particular, by clarifying the status of the original material and locating sampling sites. A large number of polychaete species from the North Atlantic were described in the early period of zoological studies in the 18th and 19th centuries.
    [Show full text]