Electrostatic Control of Spontaneous Vesicle Aggregation

Total Page:16

File Type:pdf, Size:1020Kb

Electrostatic Control of Spontaneous Vesicle Aggregation 5076 Langmuir 1997, 13, 5076-5081 Electrostatic Control of Spontaneous Vesicle Aggregation Scott A. Walker† and Joseph A. Zasadzinski* Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106-5080 Received January 29, 1997. In Final Form: July 11, 1997X Aqueous mixtures of cationic cetyltrimethylammonium p-toluenesulfonate (CTAT) and anionic sodium dodecylbenzenesulfonate (SDBS) spontaneously form equilibrium “catanionic” vesicles whose charge depends on the relative amounts of each surfactant. Aggregation of these vesicles was induced by incorporating a small concentration of biotin-lipid in the bilayer, followed by addition of streptavidin as a cross-linking receptor. Freeze-fracture transmission electron microscopy shows that almost no aggregation occurred in solutions with no added electrolyte, in which the Debye length was much larger than the dimensions of the streptavidin biotin linkage, about 2.5 nm. Much higher levels of aggregation (multivesicle aggregates) were observed for solutions with 0.1 M NaCl, in which the Debye length was smaller than the linkage dimensions. At an electrolyte concentration of 0.025 M, in which the Debye length is comparable to the linkage dimensions, significant aggregation, which depended on vesicle concentration, occurred. The short-range nature of the specific recognition interaction makes controlling aggregation via electrostatics possible. These results also suggest that electrostatic interactions are at least somewhat responsible for the stability of the spontaneous vesicles against aggregation. As these catanionic vesicles do not flatten upon aggregation, they can maintain an applied osmotic stress across their bilayer much like phospholipid vesicles. Introduction plications, it would be useful to be able to control the vesicle 1 aggregation to make clusters of a given size. One way to Biotin binds with a very high affinity ( 30 kBT/bond ) in an aqueous solution to one of four streptavidin∼ binding do this is to slow the aggregation kinetics; it might be sites; the pairs of binding sites lie on opposite faces of possible to grow aggregates irreversibly at a slower rate streptavidin, allowing for the cross-linking of biotin- but still get compact, highly stable aggregates. labeled surfaces.2,3 What renders this system so versatile One way to slow the aggregation rate is to use charged is that biotin can be conjugated to the headgroup of a vesicles. Charged bilayers provide an added barrier to phospholipid while (1) the biotin maintains its ability to vesicle “contact”. The specific recognition reaction is bind to streptavidin and (2) the phospholipid maintains retarded by electrostatic “double-layer” repulsions that its ability to be incorporated into bilayers.4,5 Hence, reduce the number of collisions between vesicles.8,9 The vesicles labeled with biotin lipids can be subsequently double-layer repulsion creates an energy barrier to aggregated by adding streptavidin.6 Uncharged, biotin aggregation, somewhat analogous to the existence of an labeled phosphatidylcholine vesicles aggregate quickly and activation energy barrier for chemical reactions. Classical at specific contact points upon addition of streptavidin to theory shows that the rate of colloidal aggregation is form multimicron, multivesicle clusters that sediment governed by the maximum of the total interaction energy under gravity. This aggregation is complete within between the aggregating colloids, that is, the height of minutes and irreversible due to the strong binding between the energy barrier along the line of approach.8 When biotin and streptavidin. The vesicles are undamaged by electrolyte is added to a system of charged catanionic this aggregation process and retain their contents.6 vesicles, the maximum of the interaction potential can be However, mainly due to steric effects, lipid-conjugated decreased10 and hence the rate of specific aggregation can biotin (15-16 kT/bond) has a lower binding energy with be increased; aggregation increases with decreasing streptavidin7 than does free biotin and vesicle aggregation electrostatic repulsion. The range of the electrostatic 6 can be reversed. Added soluble-free biotin competes for interaction is also decreased with increasing electrolyte the binding sites on the streptavidin and causes the concentration as given by the Debye length (see eqn 2).9,10 vesicles to redisperse. While rapid, complete aggregation, The short-range nature of the specific recognition interac- or total redispersion is easily achieved, for certain ap- tion11 means that biotin-streptavidin binding can only occur when the two come into close contact. * To whom correspondence should be sent. E-mail: gorilla@ engineering.ucsb.edu. Telephone: 805-893-4769. Fax: 805-893- In this study, we have used equilibrium, charged vesicles 47831. formed from mixtures of anionic and cationic single-tailed † Current address: Imation Corporation, Advanced Technology surfactants. Equilibrium unilamellar vesicles (ULVs) Center, 3M Center Building 201-3S-01, St. Paul, Minnesota 55144- form spontaneously in dilute aqueous mixtures of these 1000. mixed surfactants12-14 and other mixed surfactants in- X Abstract published in Advance ACS Abstracts, September 1, 1997. (1) Green, N. M. Meth. Enzymol. 1990, 184, 51. (8) Hunter, R. J. Foundations of Colloid Science; Cambridge Press: (2) Green, N. M. Adv. Protein Chem. 1975, 29, 85. Oxford, U.K., 1986; Vol. 1. (3) Blankenburg, R.; Meller, P.; Ringsdorf, H.; Salesse, C. Biochem- (9) Israelachvili, J. N. Intermolecular and Surface Forces; Academic istry 1989, 28, 8214. Press: London, 1992. (4) Bayer, E. A.; Rivnay, B.; Skutelsky, E. Biochim. Biophys. Acta (10) Chiruvolu, S.; Israelachvili, J. N.; Naranjo, E.; Xu, Z.; Zasadz- 1979, 550, 464. inski, J. A.; Kaler, E. W.; Herrington, K. L. Langmuir 1995, 11, 4256. (5) Plant, A. L.; Brizgys, M. V.; Locasio-Brown, L.; Durst, R. A. Anal. (11) Leckband, D. E.; Schmitt, F.-J.; Israelachvili, J. N.; Knoll, W. Biochem. 1989, 176, 420. Biochemistry 1994, 33, 4611. (6) Chiruvolu, S.; Walker, S.; Israelachvili, J. N.; Schmitt, F.-J.; (12) Kaler, E. W.; Herrington, K. L.; Zasadzinski, J. A. Structure and Leckband, D.; Zasadzinski, J. A. Science 1994, 264, 1753. Dynamics of Strongly Interacting Colloids and Supermolecular Ag- (7) Powers, D. D.; Willard, B. L.; Carbonell, R. G.; Kilpatrick, P. K. gregates in Solution; Chen, S. H., Huang, J. S., Tartaglia, P., Eds.; Biotechnol. Prog. 1992, 8, 436. Kluwer Academic Publishers: Dordrecht, The Netherlands, 1992. S0743-7463(97)00094-2 CCC: $14.00 © 1997 American Chemical Society Control of Spontaneous Vesicle Aggregation Langmuir, Vol. 13, No. 19, 1997 5077 cluding double-tailed gangliosides,15 single-chain amino energy, E, per unit area, A, for bilayers with monolayers acid surfactants,16 and surfactant-alcohol cosurfactant of differing spontaneous curvatures:20,24 mixtures.17,18 Equilibrium vesicles are formed from mixtures of cetyltrimethylammonium p-toluenesulfonate E 1 ) K[(c + c )2 + (c - c )2] (1) (CTAT), a single-tailed, cationic surfactant, and sodium A 2 o i dodecylbenzenesulfonate (SDBS), a single-tailed, anionic surfactant, hence, the shortened term “catanionic” vesicle. where K is the bilayer bending modulus, c the vesicle The vesicles form by adding dry surfactants to water or curvature (the reciprocal of the vesicle radius, c ) 1/R), mixing micellar solutions of the two surfactants.12-14 c the outer monolayer spontaneous curvature, and c the CTAT-rich vesicles (overall positive charge) have a o i inner monolayer spontaneous curvature. For single- diameter, D, ranging from 10 to 250 nm with a mean size component bilayers, c necessarily equals c and the of D 70 nm.14 SDBS-rich vesicles (overall negative i o minimum energy occurs when c ) 0; the spontaneous charge)≈ are somewhat smaller, with fewer larger (>200 curvatures of the opposing monolayers are in competition, nm) vesicles, and have a mean size of D 60 nm.14 and the net result is a “flat” or zero spontaneous curvature Single-equilibrium phases of spontaneous≈ vesicles have bilayer. Nonideal mixing of surfactants in two or more only been observed in mixtures of surfactants or surfac- component bilayers can lead to monolayers with equal tant-cosurfactant mixtures. Pure CTAT forms rod mi- and opposite spontaneous curvatures, i.e., c )-c)c,in celles, while pure SDBS forms spherical micelles in dilute i o which a vesicle of radius 1/c is the minimum-energy aqueous solution. On mixing, however, the critical structure.20,24 aggregation concentration (cac) of CTAT/SDBS (cac However, nonideal mixing cannot account for the 0.000 17 wt %) measured by changes in surface tension≈ observed stability against aggregation of CTAT/SDBS or with concentration12 is about 100 times lower than the other spontaneous vesicles, except in the limit of a very critical micelle concentration (cmc) of CTAT (cmc 0.01 large bending modulus, K. Interactions between the wt %) and 1000 times lower than that of SDBS (cmc≈ 0.1 bilayers must play an important role in the transition wt %). Because of the surprising drop in the cac in≈ the from unilamellar vesicles to multilamellar phases. Sur- mixed system, it is believed14,16 that the oppositely charged face force apparatus (SFA) measurements of adsorbed surfactants form a neutral dimer complex that resembles bilayers of CTAT and SDBS10 show that electrostatic a zwitterionic double-tailed surfactant that is able to form double-layer forces dominate all other interactions
Recommended publications
  • Electrical Double Layer Interactions with Surface Charge Heterogeneities
    Electrical double layer interactions with surface charge heterogeneities by Christian Pick A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland October 2015 © 2015 Christian Pick All rights reserved Abstract Particle deposition at solid-liquid interfaces is a critical process in a diverse number of technological systems. The surface forces governing particle deposition are typically treated within the framework of the well-known DLVO (Derjaguin-Landau- Verwey-Overbeek) theory. DLVO theory assumes of a uniform surface charge density but real surfaces often contain chemical heterogeneities that can introduce variations in surface charge density. While numerous studies have revealed a great deal on the role of charge heterogeneities in particle deposition, direct force measurement of heterogeneously charged surfaces has remained a largely unexplored area of research. Force measurements would allow for systematic investigation into the effects of charge heterogeneities on surface forces. A significant challenge with employing force measurements of heterogeneously charged surfaces is the size of the interaction area, referred to in literature as the electrostatic zone of influence. For microparticles, the size of the zone of influence is, at most, a few hundred nanometers across. Creating a surface with well-defined patterned heterogeneities within this area is out of reach of most conventional photolithographic techniques. Here, we present a means of simultaneously scaling up the electrostatic zone of influence and performing direct force measurements with micropatterned heterogeneously charged surfaces by employing the surface forces apparatus (SFA). A technique is developed here based on the vapor deposition of an aminosilane (3- aminopropyltriethoxysilane, APTES) through elastomeric membranes to create surfaces for force measurement experiments.
    [Show full text]
  • Nonlinear Electrostatics. the Poisson-Boltzmann Equation
    Nonlinear Electrostatics. The Poisson-Boltzmann Equation C. G. Gray* and P. J. Stiles# *Department of Physics, University of Guelph, Guelph, ON N1G2W1, Canada ([email protected]) #Department of Molecular Sciences, Macquarie University, NSW 2109, Australia ([email protected]) The description of a conducting medium in thermal equilibrium, such as an electrolyte solution or a plasma, involves nonlinear electrostatics, a subject rarely discussed in the standard electricity and magnetism textbooks. We consider in detail the case of the electrostatic double layer formed by an electrolyte solution near a uniformly charged wall, and we use mean-field or Poisson-Boltzmann (PB) theory to calculate the mean electrostatic potential and the mean ion concentrations, as functions of distance from the wall. PB theory is developed from the Gibbs variational principle for thermal equilibrium of minimizing the system free energy. We clarify the key issue of which free energy (Helmholtz, Gibbs, grand, …) should be used in the Gibbs principle; this turns out to depend not only on the specified conditions in the bulk electrolyte solution (e.g., fixed volume or fixed pressure), but also on the specified surface conditions, such as fixed surface charge or fixed surface potential. Despite its nonlinearity the PB equation for the mean electrostatic potential can be solved analytically for planar or wall geometry, and we present analytic solutions for both a full electrolyte, and for an ionic solution which contains only counterions, i.e. ions of sign opposite to that of the wall charge. This latter case has some novel features. We also use the free energy to discuss the inter-wall forces which arise when the two parallel charged walls are sufficiently close to permit their double layers to overlap.
    [Show full text]
  • FORCES and INTERACTIONS BETWEEN NANOPARTICLES for CONTROLLED STRUCTURES by PAUL R. MARK a Dissertation Submitted to the Graduate
    FORCES AND INTERACTIONS BETWEEN NANOPARTICLES FOR CONTROLLED STRUCTURES by PAUL R. MARK A dissertation submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Materials Science and Engineering Written under the direction of Dr. Laura Fabris And approved by ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ ____________________________________________ New Brunswick, New Jersey January, 2013 ABSTRACT OF THE DISSERTATION Forces and Interactions Between Nanoparticles for Controlled Structures PAUL R MARK Dissertation Director: Dr. Laura Fabris In recent years, structured nanomaterials have started to demonstrate their full potential in breakthrough technologies. However, in order to fulfill the expectations held for the field, it is necessary to carefully design these structures depending upon the targeted application. This tailoring process suggests that a feedback between theory and experiment could potentially allow us to obtain a structure as near optimum as possible. This thesis seeks to describe the theory and experiment needed to understand and control the interactions among nanoparticles to build a functional device for the efficient conversion of sunlight into energy. This thesis will discuss a simulation built from the existing theories explaining nanoparticle interactions
    [Show full text]
  • Arxiv:1706.04027V2
    Interactions between Silica Particles in the Presence of Multivalent Coions Biljana Uzelac, Valentina Valmacco,∗ and Gregor Trefalt† Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland (Dated: July 25, 2017) Forces between charged silica particles in solutions of multivalent coions are measured with col- loidal probe technique based on atomic force microscopy. The concentration of 1:z electrolytes is systematically varied to understand the behavior of electrostatic interactions and double-layer prop- erties in these systems. Although the coions are multivalent the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory perfectly describes the measured force profiles. The diffuse-layer potentials and regulation properties are extracted from the forces profiles by using the DLVO theory. The de- pendencies of the diffuse-layer potential and regulation parameter shift to lower concentration with increasing coion valence when plotted as a function of concentration of 1:z salt. Interestingly, these profiles collapse to a master curve if plotted as a function of monovalent counterion concentration. I. INTRODUCTION in the case of multivalent coion systems. Force pro- files across solutions containing multivalent counterions Interactions between charged objects in electrolyte so- are usually exponential, which is typical for double-layer lutions are important for many biological systems [1], and forces. Interestingly, their coion counterparts invoke non- in processes such as paper making [2], waste water treat- exponential and soft long-ranged forces, which can be ment [3], ceramic processing [4], ink-jet printing [5], par- well described with the PB theory [21, 27]. Extreme case ticle design [6], and concrete hardening [7].
    [Show full text]
  • Heteroaggregation and Homoaggregation of Latex Particles in the Presence of Alkyl Sulfate Surfactants
    colloids and interfaces Article Heteroaggregation and Homoaggregation of Latex Particles in the Presence of Alkyl Sulfate Surfactants Tianchi Cao 1,2, Michal Borkovec 1 and Gregor Trefalt 1,* 1 Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland; [email protected] (T.C.); [email protected] (M.B.) 2 Department of Chemical and Environmental Engineering, Yale University, New Haven, CT 06520, USA * Correspondence: [email protected] Received: 19 October 2020; Accepted: 6 November 2020; Published: 13 November 2020 Abstract: Heteroaggregation and homoaggregation is investigated with time-resolved multi-angle dynamic light scattering. The aggregation rates are measured in aqueous suspensions of amidine latex (AL) and sulfate latex (SL) particles in the presence of sodium octyl sulfate (SOS) and sodium dodecyl sulfate (SDS). As revealed by electrophoresis, the surfactants adsorb to both types of particles. For the AL particles, the adsorption of surfactants induces a charge reversal and triggers fast aggregation close to the isoelectric point (IEP). The negatively charged SL particles remain negatively charged and stable in the whole concentration range investigated. The heteroaggregation rates for AL and SL particles are fast at low surfactant concentrations, where the particles are oppositely charged. At higher concentrations, the heteroaggregation slows down above the IEP of the AL particles, where the particles become like-charged. The SDS has higher affinity to the surface compared to the SOS, which induces a shift of the IEP and of the fast aggregation regime to lower surfactant concentrations. Keywords: colloidal stability; heteroaggregation; DLVO 1. Introduction Aggregation of particles in suspensions is important in many practical applications, such as ceramic processing, paint fabrication, or drug formulation [1–4].
    [Show full text]
  • Understanding Adhesion: a Means for Preventing Fouling
    ELSEVIER Understanding Adhesion: A Means for Preventing Fouling R. Oliveira • Adhesion of particulate materials is an important step in the formation Engenharia Biol6gica, of fouling. Because the size of such materials is generally less than 1 tzm, Unicersidade do Minho, the phenomenon can be described in terms of colloid chemistry. Accord- Braga, Portugal ingly, the net force of interaction between foulants and the surface has been described in terms of DLVO theory (van der Waals attraction and electrostatic double-layer repulsion). However, those forces are sometimes not sufficient to describe the formation of fouling. Recent works have made it possible to calculate the effect of hydrophobic interactions and steric forces, which can also be taken into account. In aqueous media, the various types of interactions can be strongly affected by the pH, the ionic strength, the type of ions, and the presence of polymeric molecules. The objective of this work is to give a general overview of the basic physicochemical factors playing a role in fouling and to outline some practical aspects related to the theoretical reasoning to help prevent or at leasl[ mitigate fouling. © Elsevier Science Inc., 1997 Keywords: adhesion, DLVO theory, surface free energy, hydrophobic interactions, steric forces, ionic strength, ion bridging INTRODUCTION tant roles. In bifouling, the adhesion of microorganisms can be strongly dependent on their external appendages. The accumulation of inorganic particles, microorganisms, The net effect is a balance between all possible interac- macromolecules, and corrosion products on heat ex- tions. A knowledge of the roles of the main variables changer surfaces gives rise to the so-called fouling phe- affecting the interactions outlined above is of great impor- nomenon.
    [Show full text]
  • A Multi-Modal Miniature Surface Forces Apparatus (Μsfa)
    A Multi-Modal Miniature Surface Forces Apparatus (µSFA) for Interfacial Science Measurements Kai Kristiansen‡,*,9, Stephen H. Donaldson Jr†,9, Zachariah J. Berkson‡,ֆ, Jeffrey Scott§, Rongxin Su┴, Xavier Banquy¶, Dong Woog Lee#, Hilton B. de Aguiar†, Joshua D. McGraw†,‖, George D. Degen‡, and Jacob N. Israelachvili‡. ‡Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA93106, United States †Département de Physique, Ecole Normale Supérieure/PSL,Research University, CNRS, 24 rue Lhomond, 75005 Paris, France §SurForce LLC, Goleta, CA, 93117, United States ┴State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China ¶Faculty of Pharmacy, Université de Montréal, Succursale Centre Ville, Montréal Quebec H3C 3J7, Canada #School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea ‖ Gulliver CNRS UMR 7083, PSL Research University, ESPCI Paris, 10 rue Vauquelin, 75005 Paris, France 9KK and SHD contributed equally to this work. 1 ABSTRACT Advances in the research of intermolecular and surface interactions result from the development of new and improved measurement techniques and combinations of existing techniques. Here, we present a new miniature version of the Surface Force Apparatus – the µSFA – that has been designed for ease of use and multi-modal capabilities with retention of the capabilities of other SFA models including accurate measurement of surface separation distance and physical characterization of dynamic and static physical forces (i.e., normal, shear, and friction) and interactions (e.g., van der Waals, electrostatic, hydrophobic, steric, bio-specific).
    [Show full text]
  • Heteroaggregation of Nanoparticles with Biocolloids and Geocolloids
    UC Santa Barbara UC Santa Barbara Previously Published Works Title Heteroaggregation of nanoparticles with biocolloids and geocolloids. Permalink https://escholarship.org/uc/item/98x882rd Journal Advances in colloid and interface science, 226(Pt A) ISSN 0001-8686 Authors Wang, Hongtao Adeleye, Adeyemi S Huang, Yuxiong et al. Publication Date 2015-12-01 DOI 10.1016/j.cis.2015.07.002 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Advances in Colloid and Interface Science 226 (2015) 24–36 Contents lists available at ScienceDirect Advances in Colloid and Interface Science journal homepage: www.elsevier.com/locate/cis Historical perspective Heteroaggregation of nanoparticles with biocolloids and geocolloids Hongtao Wang a,⁎, Adeyemi S. Adeleye b, Yuxiong Huang b,FengtingLia, Arturo A. Keller b,⁎⁎ a State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China b Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, 93106, USA article info abstract Available online 22 July 2015 The application of nanoparticles has raised concern over the safety of these materials to human health and the ecosystem. After release into an aquatic environment, nanoparticles are likely to experience heteroaggregation Keywords: with biocolloids, geocolloids, natural organic matter (NOM) and other types of nanoparticles. Heteroaggregation Heteroaggregation is of vital importance for determining the fate and transport of nanoparticles in aqueous phase and sediments. In Nanoparticles this article, we review the typical cases of heteroaggregation between nanoparticles and biocolloids and/or Biocolloid geocolloids, mechanisms, modeling, and important indicators used to determine heteroaggregation in aqueous Geocolloid phase.
    [Show full text]
  • Application of the Diffused Double Layer Theory to Nanobubbles
    Article Cite This: Langmuir 2019, 35, 12100−12112 pubs.acs.org/Langmuir Application of the Diffused Double Layer Theory to Nanobubbles Jay N. Meegoda,* Shaini Aluthgun Hewage, and Janitha H. Batagoda Department of Civil & Environmental Engineering, New Jersey Institute of Technology, 323 Dr M.L.K. Jr. Blvd., Newark, New Jersey 07102, United States *S Supporting Information ABSTRACT: Nanobubbles have electrically charged inter- faces; hence, the diffused double layer theory can be applied to explain the behavior of nanobubbles in different electrolytic solutions. In this research, oxygen nanobubbles were generated in NaCl solutions of different concentrations, and bubble size and ζ potentials were measured just after the generation and after 1 week. The measured data and diffused double layer theory were used to compute the surface charge density, the potential due to the surface charge, and the interaction energy between bubbles. With the increased NaCl concentration, bubble size, surface charge density, and the number of negative charges increased, while the magnitude of ζ potential/surface potential, double layer thickness, internal pressure, and the electrostatic repulsion force decreased. The same trend was observed after 1 week. The net total energy calculation for the 0.001 M NaCl solution showed that the bubble repulsion for an intermediate separation distance had a 6.99 × 10−20 J energy barrier, which prevented bubble coalescence. Hence, the 0.001 M NaCl solution produced stable nanobubbles. The calculation of internal pressure inside nanobubbles showed a reduction in the interfacial pressure difference with the increased NaCl concentration. The test results, as well as diffuse double layer and net total energy calculations, showed that the most stable bubbles were obtained with 0.001 M NaCl concentration and the least stability was recorded with the highest amount (0.1 M) of NaCl concentration.
    [Show full text]
  • Colloidal Particle Aggregation: Mechanism of Assembly Studied Via Constructal Theory Modeling
    Colloidal particle aggregation: mechanism of assembly studied via constructal theory modeling Scott C. Bukosky*, Sukrith Dev, Monica S. Allen and Jeffery W. Allen Full Research Paper Open Access Address: Beilstein J. Nanotechnol. 2021, 12, 413–423. Air Force Research Laboratory, Munitions Directorate, Eglin AFB, FL https://doi.org/10.3762/bjnano.12.33 32542, USA Received: 10 November 2020 Email: Accepted: 29 April 2021 Scott C. Bukosky* - [email protected] Published: 06 May 2021 * Corresponding author Associate Editor: P. Leiderer Keywords: © 2021 Bukosky et al.; licensee Beilstein-Institut. colloids; constructal law; DLVO theory; interparticle interactions; License and terms: see end of document. nanomaterials; self-assembly; tunable systems Abstract The assembly of colloidal particles into ordered structures is of great importance to a variety of nanoscale applications where the precise control and placement of particles is essential. A fundamental understanding of this assembly mechanism is necessary to not only predict, but also to tune the desired properties of a given system. Here, we use constructal theory to develop a theoretical model to explain this mechanism with respect to van der Waals and double layer interactions. Preliminary results show that the par- ticle aggregation behavior depends on the initial lattice configuration and solvent properties. Ultimately, our model provides the first constructal framework for predicting the self-assembly of particles and could be expanded upon to fit a range of colloidal systems. Introduction Constructal theory has been used to describe a number of natu- In concurrence with such constructal analyses, Bejan and rally evolving processes/phenomena that include, but are not Wagstaff showed that the natural coalescence of masses in limited to, turbulent flow, heat and mass transfer, dendritic for- space, with respect to attractive gravitational forces, will lead to mation, and biological growth [1-10].
    [Show full text]
  • Arxiv:1910.00465V2 [Cond-Mat.Soft] 29 Dec 2019 Xrsin 19.Rcnl,Hwvr Twssonthat Shown Was It However, Recently, Simple No [1–9]
    Experimental Evidence for Algebraic Double-Layer Forces Biljana Stojimirovi´c,1 Mark Vis,2, ∗ Remco Tuinier,2, 3 Albert P. Philipse,3 and Gregor Trefalt1, † 1Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30 Quai Ernest-Ansermet, 1205 Geneva, Switzerland 2Laboratory of Physical Chemistry, Faculty of Chemical Engineering and Chemistry & Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, Eindhoven 5600 MB, The Netherlands 3Van ’t Hoff Laboratory for Physical and Colloid Chemistry, Debye Institute for Nanomaterials Science, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands (Dated: January 1, 2020) According to conventional wisdom electric double-layer forces normally decay exponentially with separation distance. Here we present experimental evidence of algebraically decaying double-layer interactions. We show that algebraic interactions arise in both strongly overlapping as well as counterion-only regimes, albeit the evidence is less clear for the former regime. In both of these cases the disjoining pressure profile assumes an inverse square distance dependence. At small separation distances another algebraic regime is recovered. In this regime the pressure decays as the inverse of separation distance. I. INTRODUCTION the weak-potential Debye–H¨uckel (DH) limit for surfaces far apart, has a pendant limit in the form of a weak elec- The repulsion between two charged surfaces immersed tric field for surfaces in close proximity [10]. In the DH in electrolyte solution is usually evaluated under the as- case, ions diffuse in a weak but spatially varying poten- sumption that electrical double-layers only weakly over- tial, whereas in the pendant situation ions roam around lap [1–9].
    [Show full text]
  • Ion Specific Effects on the Stability of Layered Double Hydroxide Colloids
    Soft Matter View Article Online PAPER View Journal | View Issue Ion specific effects on the stability of layered double hydroxide colloids Cite this: Soft Matter, 2016, 12,4024 Marko Pavlovic,a Robin Huber,a Monika Adok-Sipiczki,a Corinne Nardinab and Istvan Szilagyi*a Positively charged layered double hydroxide particles composed of Mg2+ and Al3+ layer-forming cations À and NO3 charge compensating anions (MgAl–NO3-LDH) were synthesized and the colloidal stability of their aqueous suspensions was investigated in the presence of inorganic anions of different charges. The formation of the layered structure was confirmed by X-ray diffraction, while the charging and aggregation properties were explored by electrophoresis and light scattering. The monovalent anions adsorb on the oppositely charged surface to a different extent according to their hydration state leading to the ClÀ 4 À À À NO3 4 SCN 4 HCO3 order in surface charge densities. The ions on the right side of the series induce the aggregation of MgAl–NO3-LDH particles at lower concentrations, whereas in the presence of the left Creative Commons Attribution 3.0 Unported Licence. ones, the suspensions are stable even at higher salt levels. The adsorption of multivalent anions gave rise to charge neutralization and charge reversal at appropriate concentrations. For some di, tri and tetravalent ions, charge reversal resulted in restabilization of the suspensions in the intermediate salt concentration Received 14th December 2015, regime. Stable samples were also observed at low salt levels. Particle aggregation was fast near the charge Accepted 7th March 2016 neutralization point and at high concentrations.
    [Show full text]