Pressure Ulcer Staging Guide

Total Page:16

File Type:pdf, Size:1020Kb

Pressure Ulcer Staging Guide Pressure Ulcer Staging Guide Pressure Ulcer Staging Guide STAGE I STAGE IV Intact skin with non-blanchable Full thickness tissue loss with exposed redness of a localized area usually Reddened area bone, tendon, or muscle. Slough or eschar may be present on some parts Epidermis over a bony prominence. Darkly Epidermis pigmented skin may not have of the wound bed. Often includes undermining and tunneling. The depth visible blanching; its color may Dermis of a stage IV pressure ulcer varies by Dermis differ from the surrounding area. anatomical location. The bridge of the This area may be painful, firm, soft, nose, ear, occiput, and malleolus do not warmer, or cooler as compared to have subcutaneous tissue and these adjacent tissue. Stage I may be Adipose tissue ulcers can be shallow. Stage IV ulcers Adipose tissue difficult to detect in individuals with can extend into muscle and/or Muscle dark skin tones. May indicate "at supporting structures (e.g., fascia, Muscle risk" persons (a heralding sign of Bone tendon, or joint capsule) making risk). osteomyelitis possible. Exposed bone/ Bone tendon is visible or directly palpable. STAGE II DEEP TISSUE INJURY Partial thickness loss of dermis Blister Purple or maroon localized area of Reddened area presenting as a shallow open ulcer discolored intact skin or blood-filled Epidermis with a red pink wound bed, without Epidermis blister due to damage of underlying soft slough. May also present as an tissue from pressure and/or shear. The intact or open/ruptured serum-filled Dermis area may be preceded by tissue that is Dermis blister. Presents as a shiny or dry painful, firm, mushy, boggy, warmer, or shallow ulcer without slough or cooler as compared to adjacent tissue. bruising (bruising indicates Deep tissue injury may be difficult to suspected deep tissue injury). This Adipose tissue detect in individuals with dark skin Adipose tissue stage should not be used to tones. Evolution may include a thin describe skin tears, tape burns, Muscle blister over a dark wound bed. The Muscle wound may further evolve and become perineal dermatitis, maceration, or Bone Bone excoriation. covered by thin eschar. Evolution may be rapid exposing additional layers of STAGE III tissue even with optimal treatment. Full thickness tissue loss. Eshcar and/or slough Subcutaneous fat may be visible but UNSTAGEABLE Epidermis bone, tendon, or muscle are not Full thickness tissue loss in which the Epidermis exposed. Slough may be present base of the ulcer is covered by slough (yellow, tan, gray, green or brown) and/ but does not obscure the depth of Dermis tissue loss. May include Dermis or eschar (tan, brown or black) in the undermining and tunneling. The wound bed. Until enough slough and/or depth of a stage III pressure ulcer eschar is removed to expose the base of the wound, the true depth, and varies by anatomical location. The therefore stage, cannot be determined. Adipose tissue bridge of the nose, ear, occiput, and Adipose tissue Stable (dry, adherent, intact without malleolus do not have subcutaneous Muscle erythema or fluctuance) eschar on the tissue and stage III ulcers can be Muscle heels serves as "the body's natural Bone shallow. In contrast, areas of Bone (biological) cover" and should not be significant adiposity can develop removed. extremely deep stage III pressure NPUAP images, Copyright 2008. All rights reserved. ulcers. Bone/tendon is not visible or This material was prepared by CFMC, the Medicare Quality Improvement Organization for Colorado, under contract directly palpable. with the Centers for Medicare & Medicaid Services (CMS), an agency of the U.S. Department of Health and Human Services. The contents presented do not necessarily reflect CMS policy. PM– 2200-127 CO 2008 .
Recommended publications
  • A Brief History of Pressure Ulcer Measurement in England: the Last 20 Years
    EDITORIAL A brief history of pressure ulcer measurement in England: the last 20 years ressure ulcers (PU) have long been Measuring pressure ulcers: recognised as a challenge to healthcare, are prevalence and incidence a cause of significant pain and distress for During this time, the most reported forms of Ppatients and are costly for healthcare providers measurement have been prevalence and incidence. in term of finances and use of human resource Prevalence is the proportion of a population (Guest et al, 2020). who have a specific characteristic in a given This paper, the first in a series of three, describes time period. Therefore, the prevalence of PUs is the predominant methods that have been used to the proportion of a defined patient population JACQUI FLETCHER OBE capture the prevalence of PUs in England over the with pressure damage during a specified time Clinical Lead Pressure Ulcer last 20 years. The second paper will describe the period. Incidence is the number of specified new Workstream National Wound proposed system for national PU measurement events, during a specified period in a specified Care Strategy Clinical Editor, Wounds UK in England and the third paper will outline population. Therefore, the incidence of pressure proposals for implementing this system to drive damage is the number of people in a defined quality improvement. patient population who develop a new PU during a specified time period. BACKGROUND Prevalence of pressure damage is a good Measurement of the occurrence of PUs (also indicator of the overall burden and clinical known as pressure sores, decubitus ulcers, workload related to pressure damage but does pressure injury and bed sores) has been a part of not identify when and where the PU occurred, nursing activity for many years.
    [Show full text]
  • The Pressure Sore Case: a Medical Perspective
    Marquette Elder's Advisor Volume 2 Article 7 Issue 2 Fall The rP essure Sore Case: A Medical Perspective Jeffrey M. Levine Follow this and additional works at: http://scholarship.law.marquette.edu/elders Part of the Elder Law Commons Repository Citation Levine, Jeffrey M. (2000) "The rP essure Sore Case: A Medical Perspective," Marquette Elder's Advisor: Vol. 2: Iss. 2, Article 7. Available at: http://scholarship.law.marquette.edu/elders/vol2/iss2/7 This Featured Article is brought to you for free and open access by the Journals at Marquette Law Scholarly Commons. It has been accepted for inclusion in Marquette Elder's Advisor by an authorized administrator of Marquette Law Scholarly Commons. For more information, please contact [email protected]. The Pressure Sore Case: A Medical Perspective Although bedsores sometimes result dents.7 As a result, malpractice litigation related to pressure sores exploded in the 1990s.1 from inadequate care, not all cases Clinical Practice Guidelines involving pressure ulcers merit a law- Define Pressure Sores suit. This article adopts a medical per- Clinical practice guidelines define a pressure ulcer as "[a]ny skin lesion, usually over a bony promi- spective in its consideration of the pres- nence, caused by unrelieved pressure resulting in damage of underlying tissue." 9 The incidence of sure sore case, particularlywhen evalu- pressure ulcers in nursing homes is 0.20 to 0.56 per 1,000 resident-days, which may increase to 14 per ating deviation from the standard of 1,000 resident-days among those at high risk.' ° Commonly affected sites, comprising approximate- care.
    [Show full text]
  • Nerve Block of Lateral Femoral Cutaneous Nerve of the Thigh
    18VTLLAA 1 Nerve block of lateral femoral cutaneous nerve of the thigh. Dr. Robert M Raw (MD) . MBChB, MFGP, MPraxMed, DA, FCA. Professor of Anesthesia retired Editor of Regional-Anesthesia.Com INDEX. 1. Introduction 2. Anatomy 3. Choice of local anesthetic 4. General indications 5. Complications and side effects 6. Conclusion ------------------------------------------------------------------------------------ 1. INTRODUCTION The lateral femoral cutaneous nerve of the thigh (LFCN) is the single human nerve most subject to anatomic variations. Figure #1shows the dermatome of LFCN. The nerve is small and mostly invisible under ultrasound scanning. For nerve block success, drug must be injected into four fascial compartments, each of which a variant nerve type may pass through in different individuals. 2. ANATOMY The lateral femoral cutaneous nerve is a sensory nerve supplying the skin on the lateral aspect of the thigh. That sensory area nearly reaches the thigh posterior midline and the thigh anterior midline. Its superior limit passes over the greater trochanter and its inferior limit nearly reaches the height of the patella. The typical LCNT, in 60% of patients, is a branch of the lumbar plexus deriving from the dorsal divisions of nerve roots L2 and L3. The LFCN forms within the psoas muscle, and exits the pelvis medial to the anterior superior iliac spine (ASIS) and under the inguinal ligament. It then passes over the sartorius muscle, under fascia lata, before branching into its final Figure 1. Classic dermatomal distribution of the divisions. In forty percent of patients the LFCN lateral femoral cutaneous nerve (LFCN), derived has completely different anatomy, but from Sobotta. fortunately the nerve always passes in proximity to the proximal sartorius muscle.
    [Show full text]
  • Diverse Repertoire of Human Adipocyte Subtypes Develops from Transcriptionally Distinct Mesenchymal Progenitor Cells
    Diverse repertoire of human adipocyte subtypes develops from transcriptionally distinct mesenchymal progenitor cells So Yun Mina,b, Anand Desaia, Zinger Yanga,b, Agastya Sharmaa, Tiffany DeSouzaa, Ryan M. J. Gengaa,b,c, Alper Kucukurald, Lawrence M. Lifshitza, Søren Nielsene,f, Camilla Scheelee,f,g, René Maehra,c, Manuel Garbera,d, and Silvia Corveraa,1 aProgram in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655; bGraduate School of Biomedical Sciences, University of Massachusetts Medical School, Worcester, MA 01655; cDepartment of Medicine, Diabetes Center of Excellence, University of Massachusetts Medical School, Worcester, MA 01655; dProgram in Bioinformatics, University of Massachusetts Medical School, Worcester, MA 01655; eCentre of Inflammation and Metabolism, Rigshospitalet, University of Copenhagen, 1165 Copenhagen Denmark; fCentre for Physical Activity Research, Rigshospitalet, University of Copenhagen, 1165 Copenhagen Denmark; and gNovo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Science, University of Copenhagen, 1165 Copenhagen, Denmark Edited by Rana K. Gupta, University of Texas Southwestern Medical Center, Dallas, TX, and accepted by Editorial Board Member David J. Mangelsdorf July12, 2019 (received for review April 16, 2019) Single-cell sequencing technologies have revealed an unexpectedly UCP1 in response to stimulation. Lineage-tracing and gene- broad repertoire of cells required to mediate complex functions in expression studies point to distinct developmental origins for multicellular organisms. Despite the multiple roles of adipose tissue these adipocyte subtypes (5, 6). In adult humans, no specific depot + in maintaining systemic metabolic homeostasis, adipocytes are is solely composed of UCP1-containing adipocytes, but UCP-1 thought to be largely homogenous with only 2 major subtypes cells can be found interspersed within supraclavicular, para- recognized in humans so far.
    [Show full text]
  • Wound Classification
    Wound Classification Presented by Dr. Karen Zulkowski, D.N.S., RN Montana State University Welcome! Thank you for joining this webinar about how to assess and measure a wound. 2 A Little About Myself… • Associate professor at Montana State University • Executive editor of the Journal of the World Council of Enterstomal Therapists (JWCET) and WCET International Ostomy Guidelines (2014) • Editorial board member of Ostomy Wound Management and Advances in Skin and Wound Care • Legal consultant • Former NPUAP board member 3 Today We Will Talk About • How to assess a wound • How to measure a wound Please make a note of your questions. Your Quality Improvement (QI) Specialists will follow up with you after this webinar to address them. 4 Assessing and Measuring Wounds • You completed a skin assessment and found a wound. • Now you need to determine what type of wound you found. • If it is a pressure ulcer, you need to determine the stage. 5 Assessing and Measuring Wounds This is important because— • Each type of wound has a different etiology. • Treatment may be very different. However— • Not all wounds are clear cut. • The cause may be multifactoral. 6 Types of Wounds • Vascular (arterial, venous, and mixed) • Neuropathic (diabetic) • Moisture-associated dermatitis • Skin tear • Pressure ulcer 7 Mixed Etiologies Many wounds have mixed etiologies. • There may be both venous and arterial insufficiency. • There may be diabetes and pressure characteristics. 8 Moisture-Associated Skin Damage • Also called perineal dermatitis, diaper rash, incontinence-associated dermatitis (often confused with pressure ulcers) • An inflammation of the skin in the perineal area, on and between the buttocks, into the skin folds, and down the inner thighs • Scaling of the skin with papule and vesicle formation: – These may open, with “weeping” of the skin, which exacerbates skin damage.
    [Show full text]
  • Spider Silk for Tissue Engineering Applications
    molecules Review Spider Silk for Tissue Engineering Applications Sahar Salehi 1, Kim Koeck 1 and Thomas Scheibel 1,2,3,4,5,* 1 Department for Biomaterials, University of Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, 95447 Bayreuth, Germany; [email protected] (S.S.); [email protected] (K.K.) 2 The Bayreuth Center for Colloids and Interfaces (BZKG), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany 3 The Bayreuth Center for Molecular Biosciences (BZMB), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany 4 The Bayreuth Materials Center (BayMAT), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany 5 Bavarian Polymer Institute (BPI), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany * Correspondence: [email protected]; Tel.: +49-0-921-55-6700 Received: 15 January 2020; Accepted: 6 February 2020; Published: 8 February 2020 Abstract: Due to its properties, such as biodegradability, low density, excellent biocompatibility and unique mechanics, spider silk has been used as a natural biomaterial for a myriad of applications. First clinical applications of spider silk as suture material go back to the 18th century. Nowadays, since natural production using spiders is limited due to problems with farming spiders, recombinant production of spider silk proteins seems to be the best way to produce material in sufficient quantities. The availability of recombinantly produced spider silk proteins, as well as their good processability has opened the path towards modern biomedical applications. Here, we highlight the research on spider silk-based materials in the field of tissue engineering and summarize various two-dimensional (2D) and three-dimensional (3D) scaffolds made of spider silk.
    [Show full text]
  • The Whale Tendon Ligature
    The Whale Tendon Ligature. By T. Ishiguko, M. D. Chief Surgeon of the- Imperial Japanese Army. The ligatures formerly in use iu tying vessels of the human body, were of different kinds to those of the present day. Silk and hemp ligatures were at one time applied by surgeons to such purpose, but as both had the defect of act- ing as foreign bodies in the animal oponomy, they were superseded by ligatures made of thin strips of leather. In support of the use of the leather, it was thought that ligatures of that materia would be decomposed by the heat aud moisture of the body, and that they would finally become absorbed; but numerous trials convinced those favorable to the use of leather ligatures that the idea was a fallacy : for leather, it was found, was far from being easily dissolved, and besides, it was very apt to break off at the time of its application. Dr. Lister’s ligature (cat-gut), though of comparatively recent origin, is held in such high estimation, that it is now almost exclusively used for tying vessels, or applying the suture to the viscera. It was in the year 1874 that I first saw its practical application in the operating theatre of the College, by Dr. Schultz, Instructor of Surgery to the Imperial Medical College, Tokio, which was possibly the first introduction and utilization of Lister’s ligature in Japan. My whale tendon ligature was invented a few years after. I first conceived the idea upon seeing, in the country, a whale tendon bow-string used in whip- ping cotton.
    [Show full text]
  • Pressure Ulcer Staging Cards and Skin Inspection Opportunities.Indd
    Pressure Ulcer Staging Pressure Ulcer Staging Suspected Deep Tissue Injury (sDTI): Purple or maroon localized area of discolored Suspected Deep Tissue Injury (sDTI): Purple or maroon localized area of discolored intact skin or blood-fi lled blister due to damage of underlying soft tissue from pressure intact skin or blood-fi lled blister due to damage of underlying soft tissue from pressure and/or shear. The area may be preceded by tissue that is painful, fi rm, mushy, boggy, and/or shear. The area may be preceded by tissue that is painful, fi rm, mushy, boggy, warmer or cooler as compared to adjacent tissue. warmer or cooler as compared to adjacent tissue. Stage 1: Intact skin with non- Stage 1: Intact skin with non- blanchable redness of a localized blanchable redness of a localized area usually over a bony prominence. area usually over a bony prominence. Darkly pigmented skin may not have Darkly pigmented skin may not have visible blanching; its color may differ visible blanching; its color may differ from surrounding area. from surrounding area. Stage 2: Partial thickness loss of Stage 2: Partial thickness loss of dermis presenting as a shallow open dermis presenting as a shallow open ulcer with a red pink wound bed, ulcer with a red pink wound bed, without slough. May also present as without slough. May also present as an intact or open/ruptured serum- an intact or open/ruptured serum- fi lled blister. fi lled blister. Stage 3: Full thickness tissue loss. Stage 3: Full thickness tissue loss. Subcutaneous fat may be visible but Subcutaneous fat may be visible but bone, tendon or muscle are not exposed.
    [Show full text]
  • Health Hazard Evaluation Report 1978-0095-0596
    l U.S. DEPARTMENT OF HEALTH, EDUCA,TION, AND WELFARE I .. CENTER FOR DISEASE CONTROL . l NATIONAL INSTITUTE FOR OCCUPATIONAL SAFETY. AND HEAI,.TH · , i- < ' ·: CINCINNATI, OHIO 45226 \ ,.~ .\ ·( t\~}~\''- . HEALTH HAz~ EVALUATION DETERMINATION ';~ '\\.;"'. ,;} REPORT NO. 78-95-596 JONAS BROTHERS TAXIDERMY CO. DENVER, COLORADO MAY 1979 I I. TQXICITY DETERMINATION I It has been determined on the basis of intertiews of employees and environmental breathing zone air samples taken on July 5-7, 1978, medical evaluations and biological tests performed August 1-4, 1978, and biological tests performed November 5-7, 1978, that the workers at Jonas Brothers Taxidermy Co., Denv·er, Colorado , have been exposed to a potential health hazard. This was determined in that on Augus.t I 1-4, 1978, sixty-seven percent of the.w.orkers had elevated hair · . ars~nic levels as compared to ·a ·maximum of only one control with a questionable, borderline hair arsenic level. \ Depending on the normal level used, urinacy ·phenol levels w~re elevat.ed. Using the· NIOSR normal value, 45% of the worker · group had an elevated I urinary phenol as compared to 13% of the control group. There was no statistically significant difference between .the groups by the Student t-test. These hair arsenic tests indicate. an increased exposure \ to arsenic. The urinary tests indicate ele~ated exposures to phenol and show the need for improvement of environment exposure and work \ practices. Workers were exposed to the carcinogens asbestos and arsenic and also I to a suspect carcinogen tetrachloroethylene (perchloroethylene). Long term health effects although not evident at this time cannot be completely discounted .
    [Show full text]
  • Preparatory: 1 Venous Access and Medication Administration: 4
    Preparatory: 1 Venous Access and Medication Administration: 4 W4444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444444 UNIT TERMINAL OBJECTIVE 1-4 At the completion of this unit, the EMT-Critical Care Technician student will be able to safely and precisely access the venous circulation and administer medications. COGNITIVE OBJECTIVES At the completion of this unit, the EMT-Critical Care Technician student will be able to: 1-4.1 Review the specific anatomy and physiology pertinent to medication administration. (C-1) 1-4.2 Review mathematical principles. (C-1) 1-4.3 Review mathematical equivalents. (C-1) 1-4.4 Differentiate temperature readings between the Centigrade and Fahrenheit scales. (C-3) 1-4.5 Discuss formulas as a basis for performing drug calculations. (C-1) 1-4.6 Calculate oral and parenteral drug dosages for all emergency medications administered to adults, infants and children. (C-2) 1-4.7 Calculate intravenous infusion rates for adults, infants, and children. (C-2) 1-4.8 Discuss legal aspects affecting medication administration. (C-1) 1-4.9 Discuss the "six rights" of drug administration and correlate these with the principles of medication administration. (C-1) 1-4.10 Discuss medical asepsis and the differences between clean and sterile techniques. (C-1) 1-4.11 Describe use of antiseptics and disinfectants. (C-1) 1-4.12 Describe the use of universal precautions and body substance isolation (BSI) procedures when administering a medication. (C-1) 1-4.13 Describe the indications, equipment needed, techniques utilized, precautions, and general principles of peripheral venous cannulation (Including saline locks). (C-1) 1-4.14 Describe the indications, equipment needed, techniques utilized, precautions, and general principles of intraosseous needle placement and infusion.
    [Show full text]
  • The Distribution of Sweat Glands Over the Human Body Has So Far Been In
    NOTES ON THE VERTICAL DISTRIBUTION OF THE HUMAN SWEAT GLANDS SHUNZO TAKAGI AND KO TOBARU* Institute of Physiology, School of Medicine, University of Nagoya•õ The distribution of sweat glands over the human body has so far been in- vestigated in the dimension of area, and we have no general idea how deep they are distributed in the skin. In 1943, Kuno and his collaborators (3) expressed the opinion that chloride would be accumulated in the skin during the activity of sweat glands. The truth of this assumption has been confirmed with more certainty by Yoshimura and Chihaya (unpublished), who measured the chloride content in the skin tissue by means of Ag-AgCl electrodes. The chloride may presumably be accumulated in the immediate neighbourhood of the glomeruli of sweat glands, or more diffusely in the layers of skin tissues where the glomeruli are situated. For consideration of the amount of the accumulated chloride, the total volume of these skin layers, which can be estimated by the vertical distribution of the sweat-gland glomeruli, seems to be useful. The fol- lowing investigation was therefore performed. MATERIALS AND METHOD Skin samples of 33 regions of the body, as specified in table 1, were taken from the corpse of a Japanese male of 30 years old, who died an accidental death. The samples were fixed in 10 per cent formalin, embedded in celloidin and cut into sections 15 micra thick. The sections were stained with Delafield's hematoxylin and eosin. Observations of sweat glands were made with 2-3 pieces of the skin about 100 sq.
    [Show full text]
  • A Visual Guide to Identifying Cats
    A Visual Guide to Identifying Cats When cats have similar colors and patterns, like two gray tabbies, it can seem impossible to tell them apart! That is, until you take note of even the smallest details in their appearance. Knowledge is power, whether you’re an animal control officer or animal Coat Length shelter employee who needs to identify cats regularly, or you want to identify your own cat. This guide covers cats’ traits from their overall looks, like coat pattern, to their tiniest features, like whisker color. Let’s use our office cats as examples: • Oliver (left): neutered male, shorthair, solid black, pale green eyes, black Hairless whiskers, a black nose, and black Hairless cats have no fur. paw pads. • Charles (right): neutered male, shorthair, brown mackerel tabby with spots toward his rear, yellow-green eyes, white whiskers with some black at the roots, a pink-brown nose, and black paw pads. Shorthair Shorthair cats have short fur across As you go through this guide, remember that certain patterns and markings the entire body. originated with specific breeds. However, these traits now appear in many cats because of random mating. This guide covers the following features: Coat Length ...............................................................................................3 Medium hair Coat Color ...................................................................................................4 Medium hair cats have longer fur around the mane, tail, and/or rear. Coat Patterns ..............................................................................................6
    [Show full text]