Onetouch 4.0 Scanned Documents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Birds (Aves) of Oromia, Ethiopia – an Annotated Checklist
European Journal of Taxonomy 306: 1–69 ISSN 2118-9773 https://doi.org/10.5852/ejt.2017.306 www.europeanjournaloftaxonomy.eu 2017 · Gedeon K. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:A32EAE51-9051-458A-81DD-8EA921901CDC The birds (Aves) of Oromia, Ethiopia – an annotated checklist Kai GEDEON 1,*, Chemere ZEWDIE 2 & Till TÖPFER 3 1 Saxon Ornithologists’ Society, P.O. Box 1129, 09331 Hohenstein-Ernstthal, Germany. 2 Oromia Forest and Wildlife Enterprise, P.O. Box 1075, Debre Zeit, Ethiopia. 3 Zoological Research Museum Alexander Koenig, Centre for Taxonomy and Evolutionary Research, Adenauerallee 160, 53113 Bonn, Germany. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:F46B3F50-41E2-4629-9951-778F69A5BBA2 2 urn:lsid:zoobank.org:author:F59FEDB3-627A-4D52-A6CB-4F26846C0FC5 3 urn:lsid:zoobank.org:author:A87BE9B4-8FC6-4E11-8DB4-BDBB3CFBBEAA Abstract. Oromia is the largest National Regional State of Ethiopia. Here we present the first comprehensive checklist of its birds. A total of 804 bird species has been recorded, 601 of them confirmed (443) or assumed (158) to be breeding birds. At least 561 are all-year residents (and 31 more potentially so), at least 73 are Afrotropical migrants and visitors (and 44 more potentially so), and 184 are Palaearctic migrants and visitors (and eight more potentially so). Three species are endemic to Oromia, 18 to Ethiopia and 43 to the Horn of Africa. 170 Oromia bird species are biome restricted: 57 to the Afrotropical Highlands biome, 95 to the Somali-Masai biome, and 18 to the Sudan-Guinea Savanna biome. -
Onetouch 4.0 Scanned Documents
/ Chapter 2 THE FOSSIL RECORD OF BIRDS Storrs L. Olson Department of Vertebrate Zoology National Museum of Natural History Smithsonian Institution Washington, DC. I. Introduction 80 II. Archaeopteryx 85 III. Early Cretaceous Birds 87 IV. Hesperornithiformes 89 V. Ichthyornithiformes 91 VI. Other Mesozojc Birds 92 VII. Paleognathous Birds 96 A. The Problem of the Origins of Paleognathous Birds 96 B. The Fossil Record of Paleognathous Birds 104 VIII. The "Basal" Land Bird Assemblage 107 A. Opisthocomidae 109 B. Musophagidae 109 C. Cuculidae HO D. Falconidae HI E. Sagittariidae 112 F. Accipitridae 112 G. Pandionidae 114 H. Galliformes 114 1. Family Incertae Sedis Turnicidae 119 J. Columbiformes 119 K. Psittaciforines 120 L. Family Incertae Sedis Zygodactylidae 121 IX. The "Higher" Land Bird Assemblage 122 A. Coliiformes 124 B. Coraciiformes (Including Trogonidae and Galbulae) 124 C. Strigiformes 129 D. Caprimulgiformes 132 E. Apodiformes 134 F. Family Incertae Sedis Trochilidae 135 G. Order Incertae Sedis Bucerotiformes (Including Upupae) 136 H. Piciformes 138 I. Passeriformes 139 X. The Water Bird Assemblage 141 A. Gruiformes 142 B. Family Incertae Sedis Ardeidae 165 79 Avian Biology, Vol. Vlll ISBN 0-12-249408-3 80 STORES L. OLSON C. Family Incertae Sedis Podicipedidae 168 D. Charadriiformes 169 E. Anseriformes 186 F. Ciconiiformes 188 G. Pelecaniformes 192 H. Procellariiformes 208 I. Gaviiformes 212 J. Sphenisciformes 217 XI. Conclusion 217 References 218 I. Introduction Avian paleontology has long been a poor stepsister to its mammalian counterpart, a fact that may be attributed in some measure to an insufRcien- cy of qualified workers and to the absence in birds of heterodont teeth, on which the greater proportion of the fossil record of mammals is founded. -
Bontebok Birds
Birds recorded in the Bontebok National Park 8 Little Grebe 446 European Roller 55 White-breasted Cormorant 451 African Hoopoe 58 Reed Cormorant 465 Acacia Pied Barbet 60 African Darter 469 Red-fronted Tinkerbird * 62 Grey Heron 474 Greater Honeyguide 63 Black-headed Heron 476 Lesser Honeyguide 65 Purple Heron 480 Ground Woodpecker 66 Great Egret 486 Cardinal Woodpecker 68 Yellow-billed Egret 488 Olive Woodpecker 71 Cattle Egret 494 Rufous-naped Lark * 81 Hamerkop 495 Cape Clapper Lark 83 White Stork n/a Agulhas Longbilled Lark 84 Black Stork 502 Karoo Lark 91 African Sacred Ibis 504 Red Lark * 94 Hadeda Ibis 506 Spike-heeled Lark 95 African Spoonbill 507 Red-capped Lark 102 Egyptian Goose 512 Thick-billed Lark 103 South African Shelduck 518 Barn Swallow 104 Yellow-billed Duck 520 White-throated Swallow 105 African Black Duck 523 Pearl-breasted Swallow 106 Cape Teal 526 Greater Striped Swallow 108 Red-billed Teal 529 Rock Martin 112 Cape Shoveler 530 Common House-Martin 113 Southern Pochard 533 Brown-throated Martin 116 Spur-winged Goose 534 Banded Martin 118 Secretarybird 536 Black Sawwing 122 Cape Vulture 541 Fork-tailed Drongo 126 Black (Yellow-billed) Kite 547 Cape Crow 127 Black-shouldered Kite 548 Pied Crow 131 Verreauxs' Eagle 550 White-necked Raven 136 Booted Eagle 551 Grey Tit 140 Martial Eagle 557 Cape Penduline-Tit 148 African Fish-Eagle 566 Cape Bulbul 149 Steppe Buzzard 572 Sombre Greenbul 152 Jackal Buzzard 577 Olive Thrush 155 Rufous-chested Sparrowhawk 582 Sentinel Rock-Thrush 158 Black Sparrowhawk 587 Capped Wheatear -
The Hamerkop Colorado Tropics 2
November/December 2009 Volume 6 Issue 2 a i k e n a u d u b o n s o c i e t y Bird Profiles: I n s I d e t h I s I s s u e Coming Program 2 The Hamerkop Colorado Tropics 2 n case you’re wondering, this is a Hamerkop (also known Field Trips & Events 3 zmann Ias a Hammerhead, Anvil Bird, or Umber Bird, among L other aliases). I found him at the Denver Zoo, where he was Lesser Prairie-Chickens 4 e ho making quite the racket. Apparently this is somewhat unusual li as they are typically pretty quiet. Don’t Feed the Bears 4 These are really strange birds. According to Wikipedia, my photo: Les Are You a Beak Geek? 5 favorite source of potentially correct information, “One unusual feature is that up to ten birds join in ‘ceremonies’ in Subscription Form 5 which they run circles around each other, all calling loudly, raising their crests, [and] fluttering their wings.” Reminds Wesley the Owl back me of my high school football team. If that isn’t weird enough, consider their nesting habits. It would seem that Hamerkops are really into nest building. Using c o m I ng programs perhaps 10,000 sticks, they construct a huge edifice more than four feet across. The sticks, cemented together with mud, are November 19 formed into walls and covered with a domed roof. This bird “Birds of Bolivia” mansion is accessed by a tunnel, also mortared with mud, presented by John Drummond and decorated with the latest in colorful objets d’ art. -
Birds (DNA'dna Hybridization/Mtdna Sequences/Phylogeny/Systematics)
Proc. Natl. Acad. Sci. USA Vol. 91, pp. 9861-9865, October 1994 Evolution Molecules vs. morphology in avian evolution: The case of the "pelecaniform" birds (DNA'DNA hybridization/mtDNA sequences/phylogeny/systematics) S. BLAIR HEDGES* AND CHARLES G. SIBLEyt *Department of Biology and Institute of Molecular Evolutionary Genetics, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802; and t433 Woodley Place, Santa Rosa, CA 95409 Contributed by Charles G. Sibley, June 20, 1994 ABSTRACT The traditional avian Order Pelecaniformes the three front toes has evolved in groups with separate is composed of birds with all four toes connected by a web. This origins-e.g., ducks, gulls, flamingos, and albatrosses. Could "totipalmate" condition is found in ca. 66 living species: 8 the totipalmate condition, which occurs in fewer species, also pelicans (Pelecanus), 9 boobies and gannets (Sula, Papasula, have multiple origins? Sibley and Ahlquist (2) reviewed the Morus), ca. 37 cormorants (Phalacrocorax) , 4 anhingas or literature from 1758 to 1990. darters (Anhinga), 5 frigatebirds (Fregata), and 3 tropicbirds There have been many morphological studies of the pele (Phaethon). Several additional characters are shared by these caniforms; those of Lanham (3), Saiff(4), and Cracraft (5) are genera, and their monophyly has been assumed since the among the most recent. Lanham (3) recognized their diversity beginning of modern zoological nomenclature. Most ornithol but concluded that the totipalmate birds form a natural order. ogists classify these genera as an order, although tropicbirds He assigned Phaethon and Fregata to separate suborders, have been viewed as related to terns, and frigatebirds as the other genera to the suborder Pelecani, and suggested that relatives of the petrels and albatrosses. -
Family Friendly Activities All Our Activities Can Be Adapted for Children and Young People from Age 5 up to 18. It's Best To
Family Friendly Activities All our activities can be adapted for children and young people from age 5 up to 18. It’s best to book ahead so we can make sure we can cater for your group and learn more about your interests. Family groups or adults are also welcome to arrange special activity sessions too if you would like to explore more! Each activity session costs 10,000 Rwf in addition to the Umusambi Village entrance fee. Looking After Cranes Have you ever wondered how the cranes are looked after at Umusambi Village? Join one of our experienced wildlife veterinarians for a behind the scenes tour of the sanctuary. You will find out about the work of the vets and the equipment they use to examine and treat cranes, as well as getting up close to some of the cranes. You will learn about the different body parts and how cranes differ from people as well as what they need to be healthy. We will use binoculars to check on the cranes at Umusambi Village and learn how some of them came to be at the sanctuary. We have a wide variety of games and activities to suit different age groups. Day: Only available on Fridays. Duration: 1hour 30 Seeds, Plants and Trees Plants and trees are so important to our environment. Would you like to know more about special plants and trees in Rwanda and find out about some of the stories behind them? At Umusambi Village we have a tree nursery where we grow trees from tiny seeds to small trees. -
How Birds Combat Ectoparasites
The Open Ornithology Journal, 2010, 3, 41-71 41 Open Access How Birds Combat Ectoparasites Dale H. Clayton*,1, Jennifer A. H. Koop1, Christopher W. Harbison1,2, Brett R. Moyer1,3 and Sarah E. Bush1,4 1Department of Biology, University of Utah, Salt Lake City, UT 84112, USA; 2Current address: Biology Department, Siena College, Loudonville, NY, 12211, USA; 3Current address: Providence Day School, Charlotte, NC, 28270, USA; 4Natural History Museum and Biodiversity Research Center, University of Kansas, Lawrence, Kansas 66045, USA Abstract: Birds are plagued by an impressive diversity of ectoparasites, ranging from feather-feeding lice, to feather- degrading bacteria. Many of these ectoparasites have severe negative effects on host fitness. It is therefore not surprising that selection on birds has favored a variety of possible adaptations for dealing with ectoparasites. The functional signifi- cance of some of these defenses has been well documented. Others have barely been studied, much less tested rigorously. In this article we review the evidence - or lack thereof - for many of the purported mechanisms birds have for dealing with ectoparasites. We concentrate on features of the plumage and its components, as well as anti-parasite behaviors. In some cases, we present original data from our own recent work. We make recommendations for future studies that could im- prove our understanding of this poorly known aspect of avian biology. Keywords: Grooming, preening, dusting, sunning, molt, oil, anting, fumigation. INTRODUCTION 2) Mites and ticks (Acari): many families [6-9]. As a class, birds (Aves) are the most thoroughly studied 3) Leeches: four families [10]. group of organisms on earth. -
Coos, Booms, and Hoots: the Evolution of Closed-Mouth Vocal Behavior in Birds
ORIGINAL ARTICLE doi:10.1111/evo.12988 Coos, booms, and hoots: The evolution of closed-mouth vocal behavior in birds Tobias Riede, 1,2 Chad M. Eliason, 3 Edward H. Miller, 4 Franz Goller, 5 and Julia A. Clarke 3 1Department of Physiology, Midwestern University, Glendale, Arizona 85308 2E-mail: [email protected] 3Department of Geological Sciences, The University of Texas at Austin, Texas 78712 4Department of Biology, Memorial University, St. John’s, Newfoundland and Labrador A1B 3X9, Canada 5Department of Biology, University of Utah, Salt Lake City 84112, Utah Received January 11, 2016 Accepted June 13, 2016 Most birds vocalize with an open beak, but vocalization with a closed beak into an inflating cavity occurs in territorial or courtship displays in disparate species throughout birds. Closed-mouth vocalizations generate resonance conditions that favor low-frequency sounds. By contrast, open-mouth vocalizations cover a wider frequency range. Here we describe closed-mouth vocalizations of birds from functional and morphological perspectives and assess the distribution of closed-mouth vocalizations in birds and related outgroups. Ancestral-state optimizations of body size and vocal behavior indicate that closed-mouth vocalizations are unlikely to be ancestral in birds and have evolved independently at least 16 times within Aves, predominantly in large-bodied lineages. Closed-mouth vocalizations are rare in the small-bodied passerines. In light of these results and body size trends in nonavian dinosaurs, we suggest that the capacity for closed-mouth vocalization was present in at least some extinct nonavian dinosaurs. As in birds, this behavior may have been limited to sexually selected vocal displays, and hence would have co-occurred with open-mouthed vocalizations. -
Common Birds of Namibia and Botswana 1 Josh Engel
Common Birds of Namibia and Botswana 1 Josh Engel Photos: Josh Engel, [[email protected]] Integrative Research Center, Field Museum of Natural History and Tropical Birding Tours [www.tropicalbirding.com] Produced by: Tyana Wachter, R. Foster and J. Philipp, with the support of Connie Keller and the Mellon Foundation. © Science and Education, The Field Museum, Chicago, IL 60605 USA. [[email protected]] [fieldguides.fieldmuseum.org/guides] Rapid Color Guide #584 version 1 01/2015 1 Struthio camelus 2 Pelecanus onocrotalus 3 Phalacocorax capensis 4 Microcarbo coronatus STRUTHIONIDAE PELECANIDAE PHALACROCORACIDAE PHALACROCORACIDAE Ostrich Great white pelican Cape cormorant Crowned cormorant 5 Anhinga rufa 6 Ardea cinerea 7 Ardea goliath 8 Ardea pupurea ANIHINGIDAE ARDEIDAE ARDEIDAE ARDEIDAE African darter Grey heron Goliath heron Purple heron 9 Butorides striata 10 Scopus umbretta 11 Mycteria ibis 12 Leptoptilos crumentiferus ARDEIDAE SCOPIDAE CICONIIDAE CICONIIDAE Striated heron Hamerkop (nest) Yellow-billed stork Marabou stork 13 Bostrychia hagedash 14 Phoenicopterus roseus & P. minor 15 Phoenicopterus minor 16 Aviceda cuculoides THRESKIORNITHIDAE PHOENICOPTERIDAE PHOENICOPTERIDAE ACCIPITRIDAE Hadada ibis Greater and Lesser Flamingos Lesser Flamingo African cuckoo hawk Common Birds of Namibia and Botswana 2 Josh Engel Photos: Josh Engel, [[email protected]] Integrative Research Center, Field Museum of Natural History and Tropical Birding Tours [www.tropicalbirding.com] Produced by: Tyana Wachter, R. Foster and J. Philipp, -
Convergence and Divergence in the Evolution of Aquatic Birds Marcel Van Tuinen1{, Dave Brian Butvill2,Johna.W.Kirsch2 and S
doi 10.1098/rspb.2001.1679 Convergence and divergence in the evolution of aquatic birds Marcel Van Tuinen1{, Dave Brian Butvill2,JohnA.W.Kirsch2 and S. Blair Hedges1* 1Department of Biology, Institute of Molecular Evolutionary Genetics and Astrobiology Research Center, 208 Mueller Laboratory, The Pennsylvania State University, University Park, PA16802, USA 2The University of Wisconsin Zoological Museum, 250North Mills Street, Madison,WI 53706, USA Aquatic birds exceed other terrestrial vertebrates in the diversity of their adaptations to aquatic niches. For many species this has created di¤culty in understanding their evolutionary origin and, in particular, for the £amingos, hamerkop, shoebill and pelecaniforms. Here, new evidence from nuclear and mitochondrial DNA sequences and DNA^DNA hybridization data indicates extensive morphological convergence and divergence in aquatic birds. Among the unexpected ¢ndings is a grouping of £amingos and grebes, species which otherwise show no resemblance. These results suggest that the traditional characters used to unite certain aquatic groups, such as totipalmate feet, foot-propelled diving and long legs, evolved more than once and that organismal change in aquatic birds has proceeded at a faster pace than previously recognized. Keywords: phylogeny; £amingo; grebe; avian; DNA sequence; DNA^DNA hybridization birds with similar morphologies seemed more distantly 1. INTRODUCTION related (e.g. loons with grebes and pelicans with cormor- Many adaptations in birds to life around water are ants). In order to account for such relationships, rapid related to feeding style (Storer 1971). Examples include rates of morphological evolution were implied. Such the traditional pelecaniforms with their webbing around scenarios have generally received little support (Feduccia all four toes (totipalmate feet), loons and grebes with 1996). -
AC24 Inf. 4 (English Only / Únicamente En Inglés / Seulement En Anglais)
AC24 Inf. 4 (English only / únicamente en inglés / seulement en anglais) CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ___________________ Twenty-fourth meeting of the Animals Committee Geneva, (Switzerland), 20-24 April 2009 TRADE IN GREY (BALEARICA REGULORUM) AND BLACK CROWNED (BALEARICA PAVONINA) CRANES This information document has been submitted by the International Crane Foundation. * * The geographical designations employed in this document do not imply the expression of any opinion whatsoever on the part of the CITES Secretariat or the United Nations Environment Programme concerning the legal status of any country, territory, or area, or concerning the delimitation of its frontiers or boundaries. The responsibility for the contents of the document rests exclusively with its author. AC24 Inf. 4 – p. 1 ICF / EWT PARTNERSHIP FOR AFRICAN CRANES Private Bag X11, Parkview, 2122, South Africa Tel: +27 (0) 11 486-1102 Fax: +27 (0) 11 486-1506 Cell: +27 (0) 82 877 5126 Email: [email protected] [email protected] TRADE IN GREY (Balearica regulorum) AND BLACK CROWNED (Balearica pavonina) CRANES Background information for the CITES Animals Committee meeting 20 – 24 April 2009 Put together by Kerryn Morrison of the ICF/ EWT Partnership for African Cranes TABLE OF CONTENTS Summary of the trade in Grey and Black Crowned Cranes 1 Appendix I: 2008 IUCN World Conservation Congress Motion 4 Appendix II: IUCN Red Data List Review submission for Grey Crowned Cranes 6 Appendix III: IUCN Red Data List Review submission for Black Crowned Cranes 13 Appendix IV: Assessment of the CITES database 16 Appendix V: African Crane Trade Workshop Report 36 Summary of the trade in Grey (Balearica Regulorum) and Black Crowned (Balearica Pavonina) Cranes The cranes, belonging to the family Gruidae, are among the most threatened families of birds in the world. -
Bugeranus Carunculatus) in Malagarasi Wetlands, Tanzania
Tanzania Journal of Science 45(1): 32-43, 2019 ISSN 0856-1761, e-ISSN 2507-7961 © College of Natural and Applied Sciences, University of Dar es Salaam, 2018 Plant Diet Selectivity and Some Environmental Parameters at Foraging Sites of Wattled Crane (Bugeranus carunculatus) in Malagarasi Wetlands, Tanzania Jasson R.M. John Department of Zoology and Wildlife Conservation, College of Natural and Applied Sciences, University of Dar es Salaam, P. O. Box 35064, Dar es Salaam, Tanzania. E-mail address: [email protected] Abstract Wattled Crane Bugeranus carunculatus is a threatened wetland-dependent bird species of sub- Saharan Africa with a declining population throughout its range due to habitat degradation. Ecological studies on this species have come from large populations in Botswana and Zambia. Little is known of the isolated small populations, especially those in Tanzania where about 200 individuals survive. This study reports observations made on vegetation height, water depth and consumption of plant tubers at foraging locations of the Wattled Crane in Malagarasi- Muyovozi Ramsar Site. Foraging birds preferred wet habitats with short vegetation. Birds fed mainly on Pycreus nitidus and Cyperus articulatus plant tubers but not those of Eleocharis, a chief food plant in southern Africa, which in this study was restricted to deep water levels along lakeshores. As water gradually recedes, the swamp provides good foraging environment for the Wattled Crane. Moreover, it is during the same period when human activities especially livestock grazing and burning increase in the swamp. These human activities are likely to interfere with water level balance and change wetland vegetation structure.