Identification of Bernalite Transformation and Tridentate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nonsteady-State Dissolution of Goethite and Hematite in Response to Ph Jumps: the Role of Adsorbed Fe (III)
Water-Rock Interactions, Ore Deposits, and Environmental Geochemistry: A Tribute to David A. Crerar © The Geochemical Society, Special Publication No.7, 2002 Editors: Roland Hellmann and Scott A Wood Nonsteady-state dissolution of goethite and hematite in response to pH jumps: the role of adsorbed Fe (III) SHERRY D. SAMSON* AND CARRICK M. EGGLESTON Department of Geology and Geophysics, University of Wyoming, Laramie, WY 82071 USA * Author to whom correspondence should be addressed ([email protected]). Present address: Department of Geological Sciences, University of Colorado, Boulder CO 80309 USA Abstract-Dissolution transients following downward pH jumps to pH 1from a variety of higher pH values during dissolution in a mixed-flow reactor contain information about dissolution processes and mechanisms. Despite more than an order of magnitude difference in steady-state dissolution rates, the transients for goethite (a.-FeOOH) (this study) and hematite (a.-Fe203) (Samson and Eggleston, 1998) are similar in their pH dependence and relaxation times. After a pH jump, the time required to reach a new steady state is 40 to 50 hours. The amount of excess Fe released in the transients (defined as the amount of Fe released in excess of that released in an equivalent length of time during steady-state dissolution at pH 1) increases with in- creasing initial (i.e., pre-jump) pH, and is dependent on initial pH in a manner similar to the pH dependence of Fe3+ adsorption to other oxides. We suggest that the excess Fe released in the transients is derived from partial dissolution or depolymerization of the iron (hydr)oxide at pH ~ I and the transition of such Fe into the adsorbed state on the mineral surface. -
The Iron Oxides Structure, Properties, Reactions, Occurrence and Uses
R.M.Cornell U. Schwertmann The Iron Oxides Structure, Properties, Reactions, Occurrence and Uses Weinheim • New York VCH Basel • Cambridge • Tokyo Contents 1 Introduction to the iron oxides 1 2 Crystal structure 7 2.1 General 7 2.2 Iron oxide structures 7 2.2.1 Close packing of anion layers 10 2.2.2 Linkages of octahedra or tetrahedra 12 2.3 Structures of the individual iron oxides 14 2.3.1 The oxide hydroxides 14 2.3.1.1 Goethite a-FeOOH 14 2.3.1.2 Lepidocrocite y-FeO(OH) 16 2.3.1.3 Akaganeite ß-FeO(OH) and schwertmannite Fe16016(OH)y(S04)z • n H20 18 2.3.1.4 5-FeOOH and 8'-FeOOH (feroxyhyte) 20 2.3.1.5 High pressure FeOOH 21 2.3.1.6 Ferrihydrite 22 2.3.2 The hydroxides 24 2.3.2.1 Bernalite Fe(OH)3 • nH20 24 2.3.2.2 Fe(OH)2 25 2.3.2.3 Green rusts 25 2.3.3 The oxides 26 2.3.3.1 Haematite a-Fe203 26 2.3.3.2 Magnetite Fe304 28 2.3.3.3 Maghemite y-Fe203 30 2.3.3.4 Wüstite Fe^O 31 2.4 The Fe-Ti oxide System 33 3 Cation Substitution 35 3.1 General 35 3.2 Goethite 38 3.2.1 AI Substitution 38 3.2.1.1 Synthetic goethites 38 3.2.1.2 Natural goethites 43 3.2.2 Other substituting cations 43 3.3 Haematite 48 3.4 Other Fe oxides 50 VIII Contents 4 Crystal morphology and size 53 4.1 General 53 4.1.1 Crystal growth 53 4.1.2 Crystal morphology 55 4.1.3 Crystal size 57 4.2 The iron oxides 58 4.2.1 Goethite 59 4.2.1.1 General 59 4.2.1.2 Domainic character 64 4.2.1.3 Twinning 66 4.2.1.4 Effect of additives on goethite morphology 68 4.2.2 Lepidocrocite 70 4.2.3 Akaganeite and schwertmannite 71 4.2.4 Ferrihydrite 73 4.2.5 Haematite 74 4.2.6 Magnetite 82 4.2.7 -
Mineral Formation and Sorption Mechanisms in Marine Ferromanganese-Rich Sediments
Mineral Formation and Sorption Mechanisms In Marine Ferromanganese-rich Sediments Amy Leanne Atkins Submitted in accordance with the requirements for the degree of Doctor of Philosophy The University of Leeds School of Earth and Environment October 2014 The candidate confirms that the work submitted is her own, except where work, which has formed part of jointly authored publications has been included. The contributions of the candidate and the other authors to this work have been indicated overleaf. The candidate confirms that appropriate credit has been given where reference has been made to the work of others. This copy has been supplied on the understanding that it is copyright material and that no quotation from this thesis may be published without proper acknowledgement. ii Declaration Chapter 4 is a reproduction of a peer-reviewed publication in the journal Geochimica et Cosmochimica Acta as: Atkins A. L., Shaw S., Peacock C. L. (2014) Nucleation and growth of todorokite: Implications for trace-metal cycling in marine sediments. Geochim. Cosmochim. Acta. 144, 109-125. TEM images presented in chapter 4 were collected by Michael Ward at the Leeds Electron Microscopy and Spectroscopy centre with the guidance of the candidate. All other experimental work has been conducted by the candidate. The interpretation of the experimental data, and preparation of the manuscript has been undertaken by the candidate with the help and guidance of her supervisors: Caroline L. Peacock and Sam Shaw. Chapter 5 is a reproduction of a manuscript currently in the final stages of preparation for submission to the journal Geochimica et Cosmochimica Acta as: Atkins A. -
High-Temperature Thermomagnetic Properties of Vivianite Nodules
EGU Journal Logos (RGB) Open Access Open Access Open Access Advances in Annales Nonlinear Processes Geosciences Geophysicae in Geophysics Open Access Open Access Natural Hazards Natural Hazards and Earth System and Earth System Sciences Sciences Discussions Open Access Open Access Atmospheric Atmospheric Chemistry Chemistry and Physics and Physics Discussions Open Access Open Access Atmospheric Atmospheric Measurement Measurement Techniques Techniques Discussions Open Access Open Access Biogeosciences Biogeosciences Discussions Open Access Open Access Clim. Past, 9, 433–446, 2013 Climate www.clim-past.net/9/433/2013/ Climate doi:10.5194/cp-9-433-2013 of the Past of the Past © Author(s) 2013. CC Attribution 3.0 License. Discussions Open Access Open Access Earth System Earth System Dynamics Dynamics Discussions High-temperature thermomagnetic properties of Open Access Open Access vivianite nodules, Lake El’gygytgyn, Northeast RussiaGeoscientific Geoscientific Instrumentation Instrumentation P. S. Minyuk1, T. V. Subbotnikova1, L. L. Brown2, and K. J. Murdock2 Methods and Methods and 1North-East Interdisciplinary Scientific Research Institute, Far East Branch of the Russian AcademyData Systems of Sciences, Data Systems Magadan, Russia Discussions Open Access 2 Open Access Department of Geosciences, University of Massachusetts, Amherst, USA Geoscientific Geoscientific Correspondence to: P. S. Minyuk ([email protected]) Model Development Model Development Received: 7 September 2012 – Published in Clim. Past Discuss.: 9 October 2012 Discussions Revised: 15 January 2013 – Accepted: 15 January 2013 – Published: 19 February 2013 Open Access Open Access Hydrology and Hydrology and Abstract. Vivianite, a hydrated iron phosphate, is abun- 1 Introduction Earth System Earth System dant in sediments of Lake El’gygytgyn, located in the Anadyr Mountains of central Chukotka, northeastern Rus- Sciences Sciences sia (67◦300 N, 172◦050 E). -
Redox Trapping of Arsenic During Groundwater Discharge in Sediments from the Meghna Riverbank in Bangladesh
Redox trapping of arsenic during groundwater discharge in sediments from the Meghna riverbank in Bangladesh S. Dattaa,b, B. Maillouxc, H.-B. Jungd, M. A. Hoquee, M. Stutea,c, K. M. Ahmede, and Y. Zhenga,d,1 aLamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, New York, NY 10964; bKansas State University, Department of Geology, Manhattan, KS 66506; cBarnard College, Department of Environmental Sciences, New York, NY 10027; dQueens College, School of Earth and Environmental Sciences, City University of New York, Flushing, New York, NY 11367; and eUniversity of Dhaka, Department of Geology, Dhaka, 1000 Bangladesh Communicated by Charles H. Langmuir, Harvard University, Cambridge, MA, July 30, 2009 (received for review September 5, 2007) Groundwater arsenic (As) is elevated in the shallow Holocene Results aquifers of Bangladesh. In the dry season, the shallow groundwa- Aquifers in the GBMD. The Ganges and Brahmaputra rivers coalesce ter discharges to major rivers. This process may influence the northwest of Dhaka and then join the Meghna River south of chemistry of the river and the hyporheic zone sediment. To assess Dhaka before flowing into the Bay of Bengal (see Fig. 1). Bang- the fate of As during discharge, surface (0–5 cm) and subsurface ladesh is less than 10 m above sea level, except for the uplifted (1–3 m) sediment samples were collected at 9 sites from the bank Pleistocene terraces, the Chittagong Hills, and the hilly area in the of the Meghna River along a transect from its northern source northeast. The sandy, unconsolidated Pleistocene to Holocene (25° N) to the Bay of Bengal (22.5° N). -
Petrography and Geochemistry of the Banded Iron Formation of the Gangfelum Area, Northeastern Nigeria
Earth Science Research; Vol. 7, No. 1; 2018 ISSN 1927-0542 E-ISSN 1927-0550 Published by Canadian Center of Science and Education Petrography and Geochemistry of the Banded Iron Formation of the Gangfelum Area, Northeastern Nigeria Anthony Temidayo Bolarinwa1 1 Department of Geology, University of Ibadan, Ibadan, Nigeria Correspondence: Anthony Temidayo Bolarinwa, Department of Geology, University of Ibadan, Ibadan, Nigeria. E-mail: [email protected] Received: September 15, 2016 Accepted: October 3, 2016 Online Published: October 3, 2017 doi:10.5539/esr.v7n1p25 URL: https://doi.org/10.5539/esr.v7n1p25 Abstract The Gangfelum Banded Iron Formation (BIF) is located within the basement complex of northeastern Nigeria. It is characterized by alternate bands of iron oxide and quartz. Petrographic studies show that the BIF consist mainly of hematite, goethite subordinate magnetite and accessory minerals including rutile, apatite, tourmaline and zircon. Chemical data from inductively coupled plasma optical emission spectrometer (ICP-OES) and inductively coupled plasma mass spectrometer (ICP-MS) show that average Fe2O3(t) is 53.91 wt.%. The average values of Al2O3 and CaO are 1.41 and 0.05 wt.% respectively, TiO2 and MnO are less than 0.5 wt. % each. The data suggested that the BIF is the oxide facies type. Trace element concentrations of Ba (67-332 ppm), Ni (28-35 ppm), Sr (13-55 ppm) and Zr (16-25 ppm) in the Gangfelum BIF are low and similar to the Maru and Muro BIF in northern Nigeria and also the Algoma iron formation from North America, the Orissa iron oxide facies of India and the Itabirite from Minas Gerais in Brazil. -
Crystallographic Determination of Wild Type, Mutant and Substrate
Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author. Crystallographic Determination of Wild Type, Mutant and SubstrateSubstrate---- Analogue Inhibited Structures of Bacterial Members of a Family of Superoxide Dismutases bybyby Simon Hardie Oakley Submitted as part of the requirements for the degree of Doctor of Philosophy Institute of Fundamental Sciences, Chemistry Massey University, New Zealand 2009 i "Part of the inhumanity of the computer is that, once it is competently programmed and working smoothly, it is completely honest." Isaac Asimov (1920-92), author, inventor of the word “robotics”. ii 0.1 Abstract Crystallographic Determination of Wild Type, Mutant and Substrate-Analogue Inhibited Structures of Bacterial Members of a Family of Superoxide Dismutases The iron and manganese superoxide dismutases are a family of metallo-enzymes with highly conserved protein folds, active sites and dimer interfaces. They catalyse the elimination of the cytotoxic free radical superoxide to molecular oxygen and hydrogen peroxide by alternate reduction then oxidation of the active- site with the concomitant transfer of protons from the solvent. There are many key aspects of enzymatic function that lack a structural explanation. The focus of this study is on three crystal structures. The iron-substituted manganese superoxide dismutase from Escherichia coli complexed with azide, a substrate-mimicking inhibitor, was solved to 2.2 Å. This “wrong” metal form shows a binding pattern seen previously in the manganese superoxide dismutase from Thermus thermophilus. -
Surface Geochemistry of the Clay Minerals
Proc. Natl. Acad. Sci. USA Vol. 96, pp. 3358–3364, March 1999 Colloquium Paper This paper was presented at the National Academy of Sciences colloquium ‘‘Geology, Mineralogy, and Human Welfare,’’ held November 8–9, 1998 at the Arnold and Mabel Beckman Center in Irvine, CA. Surface geochemistry of the clay minerals GARRISON SPOSITO*†,NEAL T. SKIPPER‡,REBECCA SUTTON*, SUNG-HO PARK*, ALAN K. SOPER§, AND JEFFERY A. GREATHOUSE¶ *Earth Sciences Division, Mail Stop 90y1116, Ernest Orlando Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720; ‡Department of Physics and Astronomy, University College, Gower Street, London WC1E 6BT, United Kingdom; §ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom; and ¶Department of Chemistry, University of the Incarnate Word, 4301 Broadway, San Antonio, TX 78209 ABSTRACT Clay minerals are layer type aluminosilicates (6) and in the construction of environmental liners (7). Major that figure in terrestrial biogeochemical cycles, in the buff- impact on industrial organic synthesis comes in the many ering capacity of the oceans, and in the containment of toxic designed catalysts developed from clay minerals with adsorbed waste materials. They are also used as lubricants in petroleum polymeric cations (8). extraction and as industrial catalysts for the synthesis of many Certain clay minerals are isostructural with mica (1, 2) but organic compounds. These applications derive fundamentally are not as well crystallized because of random isomorphic from the colloidal size and permanent structural charge of cation substitutions in their structure (9, 10). These cation clay mineral particles, which endow them with significant substitutions lead to a negative net surface charge that induces surface reactivity. -
Visible-To-Near-Infrared Spectral Variability of Hydrated Sulfates and Candidate Mars Landing Sites
Western Washington University Western CEDAR WWU Graduate School Collection WWU Graduate and Undergraduate Scholarship Winter 2018 Visible-to-Near-Infrared Spectral Variability of Hydrated Sulfates and Candidate Mars Landing Sites: Implications for the Mastcam- Z Investigation on NASA’s Mars-2020 Rover Mission Darian Dixon Western Washington University, [email protected] Follow this and additional works at: https://cedar.wwu.edu/wwuet Part of the Geology Commons Recommended Citation Dixon, Darian, "Visible-to-Near-Infrared Spectral Variability of Hydrated Sulfates and Candidate Mars Landing Sites: Implications for the Mastcam-Z Investigation on NASA’s Mars-2020 Rover Mission" (2018). WWU Graduate School Collection. 638. https://cedar.wwu.edu/wwuet/638 This Masters Thesis is brought to you for free and open access by the WWU Graduate and Undergraduate Scholarship at Western CEDAR. It has been accepted for inclusion in WWU Graduate School Collection by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Visible-to-Near-Infrared Spectral Variability of Hydrated Sulfates and Candidate Mars Landing Sites: Implications for the Mastcam-Z Investigation on NASA’s Mars-2020 Rover Mission By Darian Dixon Accepted in Partial Completion of the Requirements for the Degree Master of Science Kathleen L. Kitto, Dean of the Graduate School ADVISORY COMMITTEE Chair, Dr. Melissa Rice Dr. Pete Stelling Dr. Michael Kraft MASTER’S THESIS In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Western Washington University, I grant to Western Washington University the non-exclusive royalty-free right to archive, reproduce, distribute, and display the thesis in any and all forms, including electronic format, via any digital library mechanisms maintained by WWU. -
The Transformation of Ferrihydrite Into Goethite Or Hematite, Revisited Yannick Cudennec, André Lecerf
The transformation of ferrihydrite into goethite or hematite, revisited Yannick Cudennec, André Lecerf To cite this version: Yannick Cudennec, André Lecerf. The transformation of ferrihydrite into goethite or hematite, revisited. Journal of Solid State Chemistry, Elsevier, 2006, 179 (3), pp.716-722. 10.1016/j.jssc.2005.11.030. hal-02495178 HAL Id: hal-02495178 https://hal.archives-ouvertes.fr/hal-02495178 Submitted on 3 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Solid State Chemistry 179 (2AAO) 703-709 The transformation of ferrihydrite into goethite or hematite, revisited Yannick Cudennec_, Andre' Lecerf Groupe de Recherche en Chimie et Me'tallurgie, Institut National des Sciences Applique'es de Rennes, 20 avenue des buttes de Coe"smes,35043 Rennes cedex, France The transformation of ferrihydrite into goethite or hematite, revisited Yannick Cudennec , André Lecerf Groupe de Recherche en Chimie et Métallurgie, Institut National des Sciences Appliquées de Rennes, 20 avenue des buttes de Coësmes, 35043 Rennes cedex, France. Abstract During the oxidation of iron, poorly crystallized phases are firstly formed: 2 line-ferrihydrite and 6-line ferrihydrite, which present for the last phase, a similarity with wustite FeO but also with hematite o-FezO3. -
Hematite and Goethite Inclusions in Low-Grade
HEMATITE AND GOETHITE INCLUSIONS IN LOW-GRADE DOLOMITIC BANDED IRON FORMATIONS: PHYSICAL PARAMETER EVALUATION TO OPTIMIZE ORE BENEFICIATION Beate Orberger, Christiane Wagner, Alina Tudryn, Benoît Baptiste, Richard Wirth, Rachael Morgan, Serge Miska To cite this version: Beate Orberger, Christiane Wagner, Alina Tudryn, Benoît Baptiste, Richard Wirth, et al.. HEMATITE AND GOETHITE INCLUSIONS IN LOW-GRADE DOLOMITIC BANDED IRON FORMATIONS: PHYSICAL PARAMETER EVALUATION TO OPTIMIZE ORE BENEFICIA- TION. XXVIII International Mineral Processing Congress Proceedings , Canadian Institute of Mining, Metallurgy and Petroleum, 2016, pp.1-11. hal-01394125 HAL Id: hal-01394125 https://hal.archives-ouvertes.fr/hal-01394125 Submitted on 8 Nov 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. IMPC 2016: XXVIII International Mineral Processing Congress Proceedings - ISBN: 978-1-926872-29-2 HEMATITE AND GOETHITE INCLUSIONS IN LOW-GRADE DOLOMITIC BANDED IRON FORMATIONS: PHYSICAL PARAMETER EVALUATION TO OPTIMIZE ORE BENEFICIATION *B. Orberger1, C. Wagner2, A. Tudryn1, -
Properties of Synthetic Goethites and Their Effect on Sulfate Adsorption Munoz, Miguel A., Ph.D
Order Number 8824578 Properties of synthetic goethites and their effect on sulfate adsorption Munoz, Miguel A., Ph.D. The Ohio State University, 1988 Copyright ©1988by Munoz, Miguel A. All rights reserved. UMI 300 N. Zeeb Rd. Ann Arbor, MI 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark •/ . 1. Glossy photographs or pages. 2. Colored illustrations, paper or print • 3. Photographs with dark background _____ 4. Illustrations are poor copy ____ 5. Pages with black marks, not original copy ^ 6. Print shows through as there is text on both sides of page ______ 7. Indistinct, broken or small print on several pages _______ 8. Print exceeds margin requirements______ 9. Tightly bound copy with print lost in spine _______ 10. Computer printout pages with indistinct print ______ 11. Page(s)___________ lacking when material received, and not available from school or author. 12. Page(s) seem to be missing in numbering only as text follows. 13. Two pages numbered . Text follows. 14. Curling and wrinkled pages S 15. Dissertation contains pages with print at a slant, filmed as received 16. Other PROPERTIES OF SYNTHETIC GOETHITES AND THEIR EFFECT ON SULFATE ADSORPTION DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Miguel A. Munoz, B.S., M.S. The Ohio State University 1988 Dissertation Committee: Approved by Dr. J .M . Bigham Dr. S.J.