Soil Development and Nutrient Availability

Total Page:16

File Type:pdf, Size:1020Kb

Soil Development and Nutrient Availability Soil Development and Nutrient Availability Along a 2 Million-Year Coastal Dune Chronosequence Under Species-Rich Mediterranean Shrubland in Southwestern Australia Benjamin L. Turner & Etienne Laliberté Ecosystems ISSN 1432-9840 Ecosystems DOI 10.1007/s10021-014-9830-0 1 23 Your article is protected by copyright and all rights are held exclusively by Springer Science +Business Media New York. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Ecosystems DOI: 10.1007/s10021-014-9830-0 Ó 2014 Springer Science+Business Media New York Soil Development and Nutrient Availability Along a 2 Million-Year Coastal Dune Chronosequence Under Species-Rich Mediterranean Shrubland in Southwestern Australia Benjamin L. Turner1* and Etienne Laliberte´2 1Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama; 2School of Plant Biology, The University of Western Australia, Crawley, Perth, Western Australia 6009, Australia ABSTRACT Soil chronosequences provide valuable model grains over a petrocalcic horizon that occurs at systems to investigate pedogenesis and associated increasing depth as soils age. Early Pleistocene effects of nutrient availability on biological com- soils (>2,000,000 years old) are completely lea- munities. However, long-term chronosequences ched of iron oxides and consist of bleached quartz occurring under seasonally dry climates remain sand several meters deep. Changes in soil organic scarce. We assessed soil development and nutrient matter and nutrient status along the Jurien Bay dynamics along the Jurien Bay chronosequence, a chronosequence are consistent with patterns 2 million-year sequence of coastal dunes in observed along other long-term chronosequences southwestern Australia. The chronosequence is and correspond closely to expectations of the significant because it occurs in a Mediterranean Walker and Syers (1976) model of biogeochemical climate and supports hyperdiverse shrublands change during pedogenesis. Organic carbon and within a global biodiversity hotspot. Young soils nitrogen (N) accumulate rapidly to maximum formed during the Holocene (<6,500 years old) amounts in intermediate-aged Holocene dunes are strongly alkaline and contain abundant car- and then decline as soils age. In contrast, total bonate, which is leached from the profile within a phosphorus (P) declines continuously along the few thousand years. Middle Pleistocene soils (ca chronosequence to extremely low levels after 120,000–500,000 years old) are yellow decalcified 2 million years of pedogenesis, eventually repre- sands with residual iron oxide coatings on quartz senting some of the lowest P soils globally. Ratios of soil organic carbon to P and N to P increase continuously along the chronosequence, consis- Received 25 June 2014; accepted 20 October 2014 tent with a shift from N limitation on young soils Electronic supplementary material: The online version of this article to extreme P limitation on old soils. Phosphorus (doi:10.1007/s10021-014-9830-0) contains supplementary material, fractionation by sequential extraction reveals a which is available to authorized users. Author contributions BT and EL designed the study and conducted rapid decline in primary and non-occluded phos- the fieldwork. BT conducted laboratory analysis and wrote the manu- phate and an increase in organic and occluded P as script, with input from EL. soils age. Concentrations of extractable (that is, *Corresponding author; e-mail: [email protected] Author's personal copy B. L. Turner and E. Laliberte´ readily bioavailable) N and P, as well as changing patterns of nutrient limitation linked to exchangeable cations, are greatest in Holocene long-term soil and ecosystem development under dunes and decline to low levels in Pleistocene a Mediterranean climate. dunes. Extractable micronutrient concentrations were generally very low and varied little across Key words: chronosequence; ecosystem devel- the chronosequence. We conclude that the Jurien opment; pedogenesis; nutrients; phosphorus; Bay chronosequence is an important example of nitrogen. INTRODUCTION 2008; Jangid and others 2013; Laliberte´ and others A soil chronosequence is a series of soils that differ 2013a, 2014). from each other only in the time since the onset of Long-term retrogressive soil chronosequences their formation (Stevens and Walker 1970; Vito- have been identified in only a few locations around usek 2004). Other soil-forming factors, including the world (Peltzer and others 2010). Well-known parent material, topography, climate, and vegeta- examples are the Hawaiian Islands chronosequence tion, are held relatively constant, although it is (Crews and others 1995; Vitousek 2004), the Franz recognized that climate and vegetation rarely con- Josef post-glacial chronosequence in New Zealand form strictly to this definition (Huggett 1998). (Walker and Syers 1976), and the Cooloola coastal Nevertheless, soil chronosequences provide an dune chronosequence in eastern Australia important means of assessing pedogenesis and (Thompson 1981). However, the majority of these associated patterns of nutrient availability and chronosequences occur in relatively humid cli- limitation in terrestrial ecosystems over timescales mates, with only a small number in more arid from hundreds to millions of years (Vitousek 2004; ecosystems. These include the 3 million-year San Walker and others 2010; Turner and Condron Joaquin alluvial terrace sequence under Mediter- 2013). ranean grassland in California (Harden 1982; Typically, nutrient availability follows a predict- Baisden and others 2002) and the 3 million-year able pattern during long-term pedogenesis (Walker basalt chronosequence in the Northern Arizona and Syers 1976). Nitrogen (N) is absent from most Volcanic Field, which supports a semiarid pin˜ on– parent materials, but accumulates quickly in young juniper woodland (Selmants and Hart 2008, 2010). soils through biological N fixation (Menge and Long-term nutrient dynamics might be expected Hedin 2009). In contrast, phosphorus (P) declines to deviate from the Walker and Syers (1976) model continually as pedogenesis proceeds, as it is lost in in dry ecosystems through a slower rate of P loss by runoff at a greater rate than it is supplied by bed- leaching (Lajtha and Schlesinger 1988). However, rock weathering and atmospheric deposition both the Northern Arizona and the San Joaquin (Walker and Syers 1976). At the same time, chronosequences show patterns of soil nutrients chemical and biological transformations further that are consistent with the Walker and Syers reduce the availability of the P remaining in the soil model of nutrient dynamics during pedogenesis. by converting primary mineral phosphate into or- Additional information from similar arid environ- ganic forms and occluding them within secondary ments around the world, which includes much of minerals (Walker and Syers 1976; Parfitt and others the Australian continent, is required to confirm the 2005; Turner and others 2007). As a result, primary broad applicability of the Walker and Syers (1976) productivity tends to be limited by N availability on model to Mediterranean ecosystems. young soils and by P availability on old soils Here we report the results of a study of soils (Vitousek and Farrington 1997; Laliberte´ and oth- along a 2 million-year coastal dune chronose- ers 2012; Coomes and others 2013). In very old quence at Jurien Bay, Western Australia. The soils on stable landscapes, P limitation can become chronosequence occurs under a Mediterranean strong enough to constrain plant biomass, produc- climate but differs from the previously studied dry tivity, and other ecosystem processes, termed chronosequences in terms of its origin and parent ‘ecosystem retrogression’ (Wardle and others material (coastal carbonate dunes) and is of par- 2004), and to influence the distribution and ticular interest because of the exceptionally high diversity of plant and microbial communities levels of plant diversity due to its location within (Williamson and others 2005; Lambers and others a global biodiversity hotspot (the Southwest Author's personal copy Soil Development and Nutrient Availability Australian Floristic Region) (Hopper and Gioia the east by the Darling Fault, which separates it 2004). A glasshouse nutrient-addition experiment from the Archean Yilgarn Block, part of the Wes- using soils from the Jurien Bay chronosequence tern Australian Shield (Playford and others 1976). found evidence for a shift from N to P limitation Coastal dune soils in the Swan Coastal Plain have (Laliberte´ and others 2012), which was supported been grouped into three main units based on the by a subsequent analysis of foliar nutrient con- corresponding dune systems (McArthur and Bet- centrations and resorption efficiency in naturally tenay 1974; McArthur 2004; Laliberte´ and others occurring plants in the field (Hayes and others 2012). The
Recommended publications
  • THE ARCHAEAN and Earllest PROTEROZOIC EVOLUTION and METALLOGENY of Australla
    Revista Brasileira de Geociências 12(1-3): 135-148, Mar.-Sel.. 1982 - Silo Paulo THE ARCHAEAN AND EARLlEST PROTEROZOIC EVOLUTION AND METALLOGENY OF AUSTRALlA DA VID I. OROVES' ABSTRACT Proterozoic fold belts in Austrália developed by lhe reworking of Archaean base­ mcnt. The nature of this basement and the record of Archaean-earliest Proterozoic evolution and metallogeny is best prescrved in the Western Australian Shield. ln the Yilgarn Craton. a poorly-mineralized high-grade gneiss terrain rccords a complex,ca. 1.0 b.y. history back to ca. 3.6b.y. This terrain is probably basement to lhe ca. 2.9~2.7 b.y. granitoid­ -greenstone terrains to lhe east-Cratonization was essentially complete by ca, 2.6 b.y. Evolution of the granitoid-greenstone terrains ofthe Pilbara Craton occurred between ca. 3.5b.y. ano 2.8 b.y. The Iectonic seuing of ali granitoid-greenstone terrains rcmains equivocaI. Despitc coincidcnt cale­ -alkalinc volcanism and granitoid emplacemcnt , and broad polarity analogous to modem are and marginal basin systcrns. thcre is no direct evidencc for plate tectonic processes. Important diffcrences in regional continuity of volcanic scqucnccs, lithofacies. regional tectonic pauerns and meta1Jogeny of lhe terrains may relate to the amount of crusta! extension during basin formation. At onc extreme, basins possibly reprcsenting low total cxrensíon (e.g. east Pilbara l are poorly mi­ ncralizcd with some porphyry-stylc Mo-Cu and small sulphute-rich volcanogenic 01' evaporitic deposits reflecting the resultam subaerial to shaJlow-water environment. ln contrast, basins inter­ prctcd to have formcd during greater crusta! cxrcnsion (e.g.
    [Show full text]
  • Explanatory Notes for the Tectonic Map of the Circum-Pacific Region Southwest Quadrant
    U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP CP-37 U.S. GEOLOGICAL SURVEY Explanatory Notes for the Tectonic Map of the Circum-Pacific Region Southwest Quadrant 1:10,000,000 ICIRCUM-PACIFIC i • \ COUNCIL AND MINERAL RESOURCES 1991 CIRCUM-PACIFIC COUNCIL FOR ENERGY AND MINERAL RESOURCES Michel T. Halbouty, Chairman CIRCUM-PACIFIC MAP PROJECT John A. Reinemund, Director George Gryc, General Chairman Erwin Scheibner, Advisor, Tectonic Map Series EXPLANATORY NOTES FOR THE TECTONIC MAP OF THE CIRCUM-PACIFIC REGION SOUTHWEST QUADRANT 1:10,000,000 By Erwin Scheibner, Geological Survey of New South Wales, Sydney, 2001 N.S.W., Australia Tadashi Sato, Institute of Geoscience, University of Tsukuba, Ibaraki 305, Japan H. Frederick Doutch, Bureau of Mineral Resources, Canberra, A.C.T. 2601, Australia Warren O. Addicott, U.S. Geological Survey, Menlo Park, California 94025, U.S.A. M. J. Terman, U.S. Geological Survey, Reston, Virginia 22092, U.S.A. George W. Moore, Department of Geosciences, Oregon State University, Corvallis, Oregon 97331, U.S.A. 1991 Explanatory Notes to Supplement the TECTONIC MAP OF THE CIRCUM-PACIFTC REGION SOUTHWEST QUADRANT W. D. Palfreyman, Chairman Southwest Quadrant Panel CHIEF COMPILERS AND TECTONIC INTERPRETATIONS E. Scheibner, Geological Survey of New South Wales, Sydney, N.S.W. 2001 Australia T. Sato, Institute of Geosciences, University of Tsukuba, Ibaraki 305, Japan C. Craddock, Department of Geology and Geophysics, University of Wisconsin-Madison, Madison, Wisconsin 53706, U.S.A. TECTONIC ELEMENTS AND STRUCTURAL DATA AND INTERPRETATIONS J.-M. Auzende et al, Institut Francais de Recherche pour 1'Exploitacion de la Mer (IFREMER), Centre de Brest, B.
    [Show full text]
  • Long Term Landscape Evolution of the Western Australian Shield
    Joe Jennings: Father of modern Australian geomorphology BRAD PILLANS Research School of Earth Sciences, The Australian National University, Canberra, ACT, 0200, Australia ([email protected]) Joe Jennings was appointed to the Geography Department at the Australian National University (ANU) in 1953, and over the next three decades he had a profound and lasting effect on Australian geomorphology. Although best remembered as a karst geomorphologist, Joe had wide-ranging research interests and boundless enthusiasm for the entire discipline of geomorphology. Nowhere is this better evidenced than in the graduate students he supervised (with year of completion in brackets), including Eric Bird (1959), Nel Caine (1966), Ian Douglas (1966), Martin Williams (1969), Jim Bowler (1970), Bud Frank (1972), John Chappell (1973), Colin Pain (1973), Ross Coventry (1973), Chris Whitaker (1976), Joyce Lundberg (1976) and David Gillieson (1982). As a PhD student of John Chappell, and therefore an academic grandson of Joe, I was privileged to know him in the late 1970’s and early 1980’s at ANU. In this paper I have constructed a “family tree” of Joe’s academic descendents. Introduction Joseph Newell Jennings (1916-1984), or Joe to everyone who knew him (Fig. 1), was appointed to the fledgling Geography Department at the Australian National University (ANU) in 1953, and over the next three decades he had a profound and lasting effect on Australian geomorphology. Joe is best remembered as a karst geomorphologist, but in fact he had wide-ranging research interests and boundless enthusiasm for the entire discipline of geomorphology - see obituary and publication list in Spate & Spate (1985).
    [Show full text]
  • REFORMING AUSTRALIAN SHIELD LAWS Press Freedom Policy Papers
    Press Freedom Policy Papers Reform Briefing 2/2021 Anna Kretowicz REFORMING AUSTRALIAN SHIELD LAWS Press Freedom Policy Papers SUMMARY KEY POINTS • Shield laws allow journalists to maintain the confidentiality of information that would disclose the identity of a confidential source. • Shield laws are necessary to enable a free flow of information between members of the public and the news media. Sources, including whistleblowers, are less likely to supply the media with information if they believe that journalists will be unable to maintain their anonymity. • The scope of the protection conferred by Australia’s existing shield laws varies between different jurisdictions. This is in part due to the absence of a uniform definition of ‘journalist’. • In most Australian jurisdictions, shield laws do not prevent law enforcement agencies from accessing a journalist’s confidential information under a regular search and seizure warrant. REFORM CONSIDERATIONS • Shield laws should be harmonised nationwide. • Shield laws should be extended to police investigations. • The terms ‘journalist’ and ‘news medium’ should be defined in a consistent and broad way in order to maximise the protection of confidential sources in the modern media environment. law.uq.edu.au/research/press-freedom 2 Press Freedom Policy Papers REFORMING AUSTRALIAN SHIELD LAWS Reform Briefing 2/2021 “Journalists are bound by their code of ethics not to disclose sources, and to demand that they do is asking them to break a covenant recognised the world over as crucial to uncovering misconduct – when authorities would prefer the public to stay in the dark.”1 - The Board of the National Press Club of Australia This statement was released the day after the that could identify a source.
    [Show full text]
  • When Repatriation Doesn't Happen: Relationships Created Through Cultural Property Negotiations
    University of Denver Digital Commons @ DU Electronic Theses and Dissertations Graduate Studies 2020 When Repatriation Doesn’t Happen: Relationships Created Through Cultural Property Negotiations Ellyn DeMuynck Follow this and additional works at: https://digitalcommons.du.edu/etd Part of the Museum Studies Commons, and the Social and Cultural Anthropology Commons When Repatriation Doesn’t Happen: Relationships Created Through Cultural Property Negotiations __________________ A Thesis Presented to the Faculty of the College of Arts, Humanities and Social Sciences University of Denver __________________ In Partial Fulfillment of the Requirements for the Degree Master of Arts ___________________ by Ellyn DeMuynck March 2020 Advisor: Christina Kreps Author: Ellyn DeMuynck Title: When Repatriation Doesn’t Happen: Relationships Created Through Cultural Property Negotiations Advisor: Christina Kreps Degree Date: March 2020 Abstract This thesis analyzes the discourse of repatriation in connection to the Encounters exhibition held by the National Museum of Australia in 2015. Indigenous Australian and Torres Strait Islander artifacts were loaned to the Australian museum by the British Museum. At the close of the exhibition, one item, the Gweagal shield, was claimed for repatriation. The repatriation request had not been approved at the time of this research. The Gweagal shield is a historically significant artifact for Indigenous and non- Indigenous Australians. Analysis takes into account the political economy of the two museums and situates the exhibition within the relevant museum policies. This thesis argues that, while the shield has not yet returned to Australia, the discussions about what a return would mean are part of the larger process of repatriation. It is during these discussions that the rights to material culture are negotiated.
    [Show full text]
  • Components and Structure of the Yilgarn Craton, As Interpreted from Aeromagnetic Data
    536 Components and structure of the Yilgarn Craton, as interpreted from aeromagnetic data A.J. Whitaker Australian Geological Survey Organisation Canberra, ACT, Australia xisting geological models of the structure and evolution of the Yilgarn Craton are poorly constrained with E extensive regolith (weathering and surficial cover) a significant factor in limiting understanding. Regional aeromagnetic data acquired with a ground clearance of 60 metres or greater are little effected by this regolith, and their interpretation provides a continuous model of the distribution of the Archaean rocks. Five distinct regionally distributed geophysical map units are defined (undivided gneiss-migmatite-granite, banded gneiss, granite plutons, sinuous gneiss, and greenstone) which in various proportions comprise eight large domains that may equate with geological provinces. The domain boundaries coincide with abrupt changes in magnetisation and or structural trends. Boundaries of geologically-based models commonly occur in areas where there is no geophysical evidence for changes in crustal structure or composition. Interlinking shears in the Norseman-Wiluna Belt define a craton scale shear zone with less deformed crust to the east and west. Background Gee et al. (1981) subdivided the Yilgarn Craton on geological grounds into four provinces, the Western Gneiss Terrane, and three granite-greenstone provinces to the east (Murchison, Southern Cross and the Eastern Goldfields Provinces). Subsequent zircon dating has yielded ages of 3.7 to 3.3 Ga for gneiss in the northern Western Gneiss Terrane, 3.00 to 2.70 Ga for greenstone deposition in the Murchison and Southern Cross Provinces, and 2.74 to 2.63 Ga for greenstone deposition and granite intrusion in the Eastern Goldfields Province.
    [Show full text]
  • University of Canberra Handbook 1996
    University of Canberra Handbook 1996 University of Canberra, AUSTRALIA HANDBOOK 1996 Contents * Principal dates for 1996 * How to use this Handbook * The University * Information for Students * Faculty of Applied Science * Faculty of Communication * Faculty of Education * Faculty of Environmental Design * Faculty of Information Sciences and Engineering * Faculty of Management * Electives * Unit Availability * Keyword search 1996 Handbook * Search Description of Units file:////warsaw/www/uc/hb/handbook96/index.html [11/09/2013 1:51:16 PM] University of Canberra 1996 - Principal dates for 1996 University of Canberra, AUSTRALIA HANDBOOK 1996 Principal dates for 1996 ● Semester 1 ● Semester 2 ● Dates to Note: Semester 1 26 February - 01 March Orientation/Registration Week 04 - 08 March Week 1 11 - 15 March Week 2 19 - 22 March Week 3 25 - 29 March Week 4 01 - 04 April Week 5 09 - 12 April Week 6 15 - 19 April Week 7 22 April - 3 May Class free period 06 - 10 May Week 10 13 - 17 May Week 11 20 - 24 May Week 12 27 - 31 May Week 13 03 - 07 June Week 14 11 - 14 June Week 15 19 June - 06 July Examination Period Semester 2 15 - 19 July Registration Week 22 - 26 July Week 1 29 July - 02 August Week 2 05 - 09 August Week 3 12 - 16 August Week 4 19 - 23 August Week 5 26 - 30 August Week 6 02 - 06 September Week 7 09 - 13 September Week 8 16 - 20 September Week 9 23 September - 07 October Class free period 08 - 11 October Week 12 14 - 18 October Week 13 21 - 25 October Week 14 28 October - 1 November Week 15 06 - 23 November Examination Period Dates
    [Show full text]
  • The Geomorphic Evolution of the Warrumbungle Volcanic Complex, New South Wales, Australia
    Chapter One: The geomorphic evolution ofthe Warrumbungle Volcanic Complex Chapter one The geomorphic evolution of the Warrumbungle Volcanic Complex, New South Wales, Australia. An approach to volcanism may be made through either petrology or geomorphology, a volcano and its mechanism being regarded either as a geological crucible or as a builder of landforms. C.A. Cotton 1944 1.1 Rationale for the study Many volcanic studies are written from a geological point of view, concentrating on mechanisms of eruption, geochemistry and petrology. From a geomorphic standpoint, volcanic provinces are characterised by distinctive landforms, mostly constructive in origin, resulting from the emplacement of magma and the eruption of lavas and tephra. This work adopts Cotton's latter approach to volcanism as a builder of landforms, and their geomorphic development, and is specifically concerned with the activity of the Warrumbungle Volcanic Complex (cover page), New South Wales, Australia. This study of the Warrumbungle Volcanic Complex (hereafter called the Warrumbungle Complex) is undertaken as a response to the lack of significant geomorphic studies of this feature compared to other Australian shield volcanoes. The W arrumbungle Complex, along with other central-type shield volcanoes, contributes significantly to the nature of the eastern Australian landscape, and is large enough to have a considerable effect on regional topography, soil development and drainage. It is therefore important to develop a thorough examination of this neglected area, and this thesis is intended to contribute to an ongoing analysis of shield volcanoes and their impact on the development of the eastern Australian 1 Chapter One: The geomorphic evolution ofthe Warrumbungle Volcanic Complex landscape.
    [Show full text]
  • THE INDIAN OCEAN the GEOLOGY of ITS BORDERING LANDS and the CONFIGURATION of ITS FLOOR by James F
    0 CX) !'f) I a. <( ~ DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY THE INDIAN OCEAN THE GEOLOGY OF ITS BORDERING LANDS AND THE CONFIGURATION OF ITS FLOOR By James F. Pepper and Gail M. Everhart MISCELLANEOUS GEOLOGIC INVESTIGATIONS MAP I-380 0 CX) !'f) PUBLISHED BY THE U. S. GEOLOGICAL SURVEY I - ], WASHINGTON, D. C. a. 1963 <( :E DEPARTMEI'fr OF THE ltfrERIOR TO ACCOMPANY MAP J-S80 UNITED STATES OEOLOOICAL SURVEY THE lliDIAN OCEAN THE GEOLOGY OF ITS BORDERING LANDS AND THE CONFIGURATION OF ITS FLOOR By James F. Pepper and Gail M. Everhart INTRODUCTION The ocean realm, which covers more than 70percent of ancient crustal forces. The patterns of trend of the earth's surface, contains vast areas that have lines or "grain" in the shield areas are closely re­ scarcely been touched by exploration. The best'known lated to the ancient "ground blocks" of the continent parts of the sea floor lie close to the borders of the and ocean bottoms as outlined by Cloos (1948), who continents, where numerous soundings have been states: "It seems from early geological time the charted as an aid to navigation. Yet, within this part crust has been divided into polygonal fields or blocks of the sea floQr, which constitutes a border zone be­ of considerable thickness and solidarity and that this tween the toast and the ocean deeps, much more de­ primary division formed and orientated later move­ tailed information is needed about the character of ments." the topography and geology. At many places, strati­ graphic and structural features on the coast extend Block structures of this kind were noted by Krenke! offshore, but their relationships to the rocks of the (1925-38, fig.
    [Show full text]
  • EPBC Act Referral
    Submission #2071 - Urban development of Lot 107 Wattleup Road, Hammond Park Title of Proposal - Urban development of Lot 107 Wattleup Road, Hammond Park Section 1 - Summary of your proposed action Provide a summary of your proposed action, including any consultations undertaken. 1.1 Project Industry Type Residential Development 1.2 Provide a detailed description of the proposed action, including all proposed activities. Macla House Pty Ltd (the Proponent) proposes to develop Lot 107 Wattleup Road, Hammond Park, Western Australia (the site) for urban purposes (the Proposed Action). The site is shown in the attached Figure 1. The Proposed Action will involve the clearing of approximately 2.6 hectares (ha) of native vegetation. The proposed development of the site for residential use is in accordance with the current Metropolitan Region Scheme (MRS) “Urban” zoning and the City of Cockburn (CoC) Town Planning Scheme (TPS) No. 3 “Development” zoning. The CoC TPS No. 3 outlines that all proposed developments within areas zoned “Development” are required to be in accordance with a comprehensive structure plan, that must be lodged and approved by the CoC prior to subdivision occurring. A Structure Plan (SP) incorporating the site and the adjacent Lot 108 Wattleup Road has been prepared by Burgess Design Group. The spatial extent and nature of the development and future land uses within the site will be guided by the SP (subject to approval and endorsement from local and state agencies). The SP has been based on the outcomes of a comprehensive multi-disciplinary planning and design process (including town planning, urban design, environmental, civil engineering and traffic management), which included a number of detailed technical investigations and assessments.
    [Show full text]
  • Ancient Weathering Zones, Pedocretes and Palaeosols on the Australian Precambrian Shield and in Adjoining Sedimentary Basins: a Review
    Journal of the Royal Society of Western Australia, 89:57–82, 2006 Ancient weathering zones, pedocretes and palaeosols on the Australian Precambrian shield and in adjoining sedimentary basins: a review J B Firman 14 Giddens Court, North Lake, WA 6163 Manuscript received June 2005; accepted May 2006 Abstract A stratigraphic approach is used in this review of ancient weathering zones, mottled zones, pedocretes and palaeosols on the Australian Precambrian Shield and in adjoining sedimentary basins. Pedogenic features identified in the landscape during regional stratigraphic mapping have been traced along the western margin of the Australian Precambrian Shield. The weathered zones, pedocretes, mottled zones and palaeosols identified in South Australia and elsewhere have been extended into the Perth Basin where there are correlative conformities. The weathered zones, pedocretes, mottled zones and palaeosol units are described in a geochronological framework from Palaeozoic to Late Cainozoic. The weathering products of the Palaeozoic include the Playfair Weathering Zone. Mesozoic sequences include the Arckaringa Weathering Zone (a pallid zone in laterite profiles) and the San Marino mottled zone equivalent. The units taken together have been said by some authors to form “a distinctive basal horizon which underlies all true laterites”. The laterite in this sense refers to the ferricrete forming a caprock on older materials. Early and Middle Cainozoic sequences include bauxite, the Greenmount Ferricrete and the Calingiri Silcrete. Late Cainozoic sequences contain the Jumperdine Ferricrete and the Karoonda Soil (which in some places is a syndepositional silcrete), and the mottled zones of lateritic podzolic soils. The weathered zones, pedocretes and palaeosols were formed under different climatic regimes.
    [Show full text]
  • Conference Series:Digital Earth Repository and Environmental Universitas Science Jember
    Digital Repository Universitas Jember University of Jember Faculty of Teacher Training and Education PROCEEDINGS 3rd 2020 The Third International Conference on Environmental Geography and Geography Education th th September 12 - 13 , 2020 at Faculty of Teacher Training and Education, University of Jember [email protected] icegess.fkip.unej.ac.id IOP Conference Series:Digital Earth Repository and Environmental Universitas Science Jember PAPER • OPEN ACCESS Preface To cite this article: 2021 IOP Conf. Ser.: Earth Environ. Sci. 747 011001 View the article online for updates and enhancements. This content was downloaded from IP address 103.241.204.130 on 09/06/2021 at 07:14 Digital Repository Universitas Jember 3rd International Conference on Environmental Geography and Geography Education IOP Publishing IOP Conf. Series: Earth and Environmental Science 747 (2021) 011001 doi:10.1088/1755-1315/747/1/011001 The Third International Conference on Environmental Geography and Geography Education (ICEGE) 2020 Sumardi Editor in Chief of International Conference on Environmental Geography and Geography Education 2020 E-mail: [email protected] We would like to express our gratitude to all participants joining “The International Conference on Environmental Geography and Geography Education” (ICEGE). The 3rd International conference held by the Department of Social Science Education held by FKIP-University of Jember on 12-13 September 2020. The participants of this ICEGE 2020 are research students, academicians and researchers, scholars, scientist, teachers and practitioners from many countries. Due to Covid-19, this conference was held in dual-mode, namely online and face to face. For those invited speakers from abroad who have travel restrictions presented their research topics through zoom cloud meeting.
    [Show full text]