Munsell 2018 Spaces Tutorial

Total Page:16

File Type:pdf, Size:1020Kb

Munsell 2018 Spaces Tutorial Color Appearance, Color Order, & Other Color Systems Mark Fairchild Rochester Institute of Technology Integrated Sciences Academy Program of Color Science / Munsell Color Science Laboratory ISCC/AIC Munsell 2018 — Boston RIT ISA PoCS / MCSL Color Terms Color Definition Color is an attribute of visual sensation … Hue Attribute of a visual sensation according to which an area appears to be similar to one of the perceived colors, red, yellow, green, and blue, or to a combination of two of them. Brightness, Lightness Brightness: Attribute of a visual sensation according to which an area appears to emit more or less light. Lightness: The brightness of an area judged relative to the brightness of a similarly illuminated area that appears to be white or highly transmitting. Colorfulness Attribute of a visual sensation according to which the perceived color of an area appears to be more or less chromatic. Saturation, Chroma Saturation: Colorfulness, chromaticness, of an area judged in proportion to its brightness. Chroma: Colorfulness of an area judged as a proportion of the brightness of a similarly illuminated area that appears white or highly transmitting. Hue, Lightness, Chroma INCREASING LIGHTNESS INCREASING CHROMA Hue, Lightness, Saturation INCREASING LIGHTNESS INCREASING SATURATION Hue, Brilliance, Saturation INCREASING BRILLIANCE INCREASING BRILLIANCE INCREASING SATURATION Hue, Brilliance, Saturation E. Hering: Zur Lehre vom Lichtsinne (1878) A. Pope: Tone Relations in Painting (1922) R. Evans: The Perception of Color (1974) Scandinavian Colour Institute: Natural Color System (1978) M. Fairchild & R. Heckaman: Deriving Appearance Scales (2012) Color Perception Color Science The Eye The Retina light L* yellow b* green red a* blue dark Skin Color Variations One Person — Hemoglobin Level and Oxygenation (Melanin Fixed) Mean Color Background Credit — Chris Thorstenson (RIT & UR) Simultaneous Contrast Simultaneous Contrast Simultaneous Contrast White’s The Brain Chromatic Adaptation A CYAN FILTER Cognition Colorimetry CIE XYZ 2 1.8 Z 1.6 1.4 1.2 Y X 1 0.8 Tristimulus Value Tristimulus 0.6 0.4 0.2 0 380 400 450 500 550 600 650 700 720 Wavelength (nm) Nominal Scaling Color Matches No Differences or Appearance CIELAB light L* yellow b* Ratio and Interval Scaling green red Color Differences a* Approximate Appearance blue dark CIECAM02 Ratio and Interval Scaling Color Appearance More Dimensions Color Systems Types of Color Systems Color Naming Systems: Color is defined and specified according to some, essentially arbitrary, naming system (e.g., Pantone, Trumatch, Paint Color Cards). Color Mixing Systems: Color is defined according to the properties of a given system (e.g., RGB, CMYK, HSV, DIN, XYZ, etc.) Hybrid Systems: Color is defined by a combination of systems (e.g., appearance and additive mixing in Colorcurve). Color Appearance Systems: Color is defined according to various appearance attributes (e.g., Hue, Value, Chroma in Munsell, Hue, Blackness, Chromaticness in NCS, Color differences in OSA UCS). 39 Color Order Systems 40 Color Order Systems Systems that define color appearance according to some orderly arrangement to facilitate the naming and communication of colors (among other applications). Often the systems define colors using perceptual variables. Such systems are typically embodied with atlases of color samples rather than through mathematical relationships to colorimetric coordinates. Color Appearance Systems The Munsell system (Munsell Book of Color) and Swedish Natural Color System (NCS) provide two important examples of systems defined by color appearance. Thus their scales, while not defined mathematically can be used to develop and test color appearance models. 42 Munsell Munsell Book of Color Munsell Constant-Hue Page Munsell Notation Cricket/mypsb/newYScale/psbcurrentpointuserdict/newXScale {} Software store/psb /md newHeight loadnewWidth/picOriginYpop/newHeightknown{/CricketAdjust/pse /newWidth def{} store/mypse 290299 exchexch div div exch/pse picOriginYdef defdef load picOriginX/picOriginX true def def}{/CricketAdjust sub subdef exch popdef def false def}ifelse Munsell Notation 7.5R 5/10 Hue Value/Chroma NCS Inspired by Ewald Hering Realized by Dr Lars Sivik, Prof Gunnar Tonnquist and Dr. Anders Hård, 1997 AIC Judd Award Swedish NCS W G Y B R S Based on Hering’s Opponency NCS Hue Circle NCS Constant-Hue Page 50 Natural Color System (NCS) Y w G50Y Y50R c G Y90R R s=20 s B50G R50B B c=70 NCS Notation 20, 70, Y90R Blackness (s), Chromaticness (c), Hue 51 Other Systems Pantone Color Specifications Proprietary Visual Reference, Not Appearance Scales RAL Color Specifications Proprietary Visual Reference, Not Appearance Scales DIC Color Specifications Proprietary Visual Reference, Not Appearance Scales sRGB, AdobeRGB RGB Primaries Specified Tone Transfer Specified XYZ-to-RGB Defined Rec.709, Rec.2020 RGB, HSL, HSV, CMYK Device Dependent Spaces RGB/CMYK Not Defined Categories of Systems (1) Systems Related to Colorimetry (e.g., XYZ) or Not (2) Systems Based on Color Appearance or Not Munsell & NCS: (1) Yes (2) Yes sRGB & Rec.2020: (1) Yes (2) No Pantone, RAL, Paints: (1) No** (2) No **Proprietary Principal/Unique Hues 100 5Y Munsell : 5 Principal Hues : 80 Based on Thresholds/Differences 60 5R NCS : 5G 40 4 Unique Hues : 20 Based on Appearance R b -100 -80 -60 -40 -20 20 40 60 80 100 -20 -40 -60 -80 5B 5P -100 aR Individual Differences Individual Differences Angelica Dass Causes Genetics •Different Pigments (Color Blind in Extreme) •Different Pigment Density •Cone Morphology •Eye “Color” Diet, Lifestyle, Environment, Age •Macular Pigment Density •Lens Density Psychology, Cognition •Knowledge of Conditions •“Set” of Judgments •Available Vocabulary color matches’ dataset, one sample was the adjusted a* and b* values of five color matches for 76 observers, and the other sample was the simulated a* and b* values of five color matches for 1000 CMFs generated by Monte Carlo simulation. The test was performed for each of the 10 variables (2 values x 5 matches). The results showed the variances were significantly different for 9 variables and were not significantly different for 1 variable. The F-test results infer that there are statistical similarities between the model predictions and experimental data at least for some variables. It should be pointed out that, regarding the five color matches’ dataset, given that the average intra-observer variability of five color matches was 1.4 (computed from Table 3.5), the difference between measured and predicted SDs (1.42 CIELAB unit) in Table 3.7 would be perceptually small. Tab. 3.7 – Validation results of the proposed vision model. SDs measured (obtained) by each study and SDs predicted by the model are listed. SD units for Stiles & Burch, Asano et al., and Rüfer et al. studies are rgb-CMFs space (normalized at three primaries’ wavelengths), CIELAB, and Rayleigh Match unit, respectively. Number of SDs SD Ratio Validation Datasets CIE 2006 + INDIVIDUALSSubjects Meas. Pred. (Pred./Meas.) CMFs (Stiles & Burch) 49 0.0374 0.0355 0.95 Five Color Matches (Asano et al.) 76 6.49 7.91 1.22 • Stiles Rayleigh& Burch Match (Rüfer 49 et Observers al.) 113 2.7 3.1 1.15 Fig. 3.12 – 49 sets of rgb-CMFs generated by the proposed observer model (gray lines) aiming to predict the Stiles and Burch’s experiment results. The maxima and minima of 49 sets of CMFs for the Stiles and Burch’s experiment participants are superimposed as color-shaded areas. All the CMFs are normalized to equal area. To visualize the measured and predicted variability, CMFs measured by Stiles and Burch and CMFs predicted by the proposed vision model were compared in Figure 3.12. Gray lines represent 49 sets of rgb-CMFs 3.2 Individual Colorimetric Observer Model 43 Color Rendering Animal Vision Animal Vision Birds Kestrel Bird Vision Bees Bee Color Vision Dashed - Honey Solid - Bumble Bee Color Vision Humans Honey Bees Goldfish Goldfish Color Vision Mantis Shrimp Complexity Final Thoughts … Dimensions Lightness - Chroma - Hue Brightness - Colorfulness - Hue (Saturation instead of Chroma & Colorfulness??) Brilliance - Saturation - Hue (Need at least 5 total, which can be defined by 4.) Colorimetry CIE XYZ CIELAB CIECAM02 (Remember individual variation.) Color Specification Pantone, RAL, etc. sRGB, Rec.709, Rec.2020, Dolby ICtCp (All could be replaced by colorimetry, but they are convenient and helpful.) Color Order Munsell NCS (Perhaps could be replaced by a CAM one day.) Questions.
Recommended publications
  • COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING
    COLOR SPACE MODELS for VIDEO and CHROMA SUBSAMPLING Color space A color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers, typically as three or four values or color components (e.g. RGB and CMYK are color models). However, a color model with no associated mapping function to an absolute color space is a more or less arbitrary color system with little connection to the requirements of any given application. Adding a certain mapping function between the color model and a certain reference color space results in a definite "footprint" within the reference color space. This "footprint" is known as a gamut, and, in combination with the color model, defines a new color space. For example, Adobe RGB and sRGB are two different absolute color spaces, both based on the RGB model. In the most generic sense of the definition above, color spaces can be defined without the use of a color model. These spaces, such as Pantone, are in effect a given set of names or numbers which are defined by the existence of a corresponding set of physical color swatches. This article focuses on the mathematical model concept. Understanding the concept Most people have heard that a wide range of colors can be created by the primary colors red, blue, and yellow, if working with paints. Those colors then define a color space. We can specify the amount of red color as the X axis, the amount of blue as the Y axis, and the amount of yellow as the Z axis, giving us a three-dimensional space, wherein every possible color has a unique position.
    [Show full text]
  • Applying CIECAM02 for Mobile Display Viewing Conditions
    Applying CIECAM02 for Mobile Display Viewing Conditions YungKyung Park*, ChangJun Li*, M. R. Luo*, Youngshin Kwak**, Du-Sik Park **, and Changyeong Kim**; * University of Leeds, Colour Imaging Lab, UK*, ** Samsung Advanced Institute of Technology, Yongin, South Korea** Abstract Small displays are widely used for mobile phones, PDA and 0.7 Portable DVD players. They are small to be carried around and 0.6 viewed under various surround conditions. An experiment was carried out to accumulate colour appearance data on a 2 inch 0.5 mobile phone display, a 4 inch PDA display and a 7 inch LCD 0.4 display using the magnitude estimation method. It was divided into v' 12 experimental phases according to four surround conditions 0.3 (dark, dim, average, and bright). The visual results in terms of 0.2 lightness, colourfulness, brightness and hue from different phases were used to test and refine the CIE colour appearance model, 0.1 CIECAM02 [1]. The refined model is based on continuous 0 functions to calculate different surround parameters for mobile 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 displays. There was a large improvement of the model u' performance, especially for bright surround condition. Figure 1. The colour gamut of the three displays studied. Introduction Many previous colour appearance studies were carried out using household TV or PC displays viewed under rather restricted viewing conditions. In practice, the colour appearance of mobile displays is affected by a variety of viewing conditions. First of all, the display size is much smaller than the other displays as it is built to be carried around easily.
    [Show full text]
  • Computational Color Harmony Based on Coloroid System
    Computational Aesthetics in Graphics, Visualization and Imaging (2005) L. Neumann, M. Sbert, B. Gooch, W. Purgathofer (Editors) Computational Color Harmony based on Coloroid System László Neumanny, Antal Nemcsicsz, and Attila Neumannx yGrup de Gràfics de Girona, Universitat de Girona, and Institució Catalana de Recerca i Estudis Avançats, ICREA, Barcelona, Spain zBudapest University of Technology and Economics, Hungary xInstitute of Computer Graphics and Algorithms, Vienna University of Technology, Austria [email protected], [email protected], [email protected] (a) (b) Figure 1: (a) visualization of the overall appearance of a dichromatic color set with `caleidoscope' option of the Color Plan Designer software and (b) interactive color selection of a dichromatic color set in multi-layer mode, applying rotated regular grid. Abstract This paper presents experimentally based rules and methods for the creation of harmonic color sets. First, dichro- matic rules are presented which concern the harmony relationships of two hues. For an arbitrarily given hue pair, we define the just harmonic saturation values, resulting in minimally harmonic color pairs. These values express the fuzzy border between harmony and disharmony regions using a single scalar. Second, the value of harmony is defined corresponding to the contrast of lightness, i.e. the difference of perceptual lightness values. Third, we formulate the harmony value of the saturation contrast, depending on hue and lightness. The results of these investigations form a basis for a unified, coherent dichromatic harmony formula as well as for analysis of polychromatic color harmony. Introduced color harmony rules are based on Coloroid, which is one of the 5 6 main color-order systems and − furthermore it is an aesthetically uniform continuous color space.
    [Show full text]
  • Creating 4K/UHD Content Poster
    Creating 4K/UHD Content Colorimetry Image Format / SMPTE Standards Figure A2. Using a Table B1: SMPTE Standards The television color specification is based on standards defined by the CIE (Commission 100% color bar signal Square Division separates the image into quad links for distribution. to show conversion Internationale de L’Éclairage) in 1931. The CIE specified an idealized set of primary XYZ SMPTE Standards of RGB levels from UHDTV 1: 3840x2160 (4x1920x1080) tristimulus values. This set is a group of all-positive values converted from R’G’B’ where 700 mv (100%) to ST 125 SDTV Component Video Signal Coding for 4:4:4 and 4:2:2 for 13.5 MHz and 18 MHz Systems 0mv (0%) for each ST 240 Television – 1125-Line High-Definition Production Systems – Signal Parameters Y is proportional to the luminance of the additive mix. This specification is used as the color component with a color bar split ST 259 Television – SDTV Digital Signal/Data – Serial Digital Interface basis for color within 4K/UHDTV1 that supports both ITU-R BT.709 and BT2020. 2020 field BT.2020 and ST 272 Television – Formatting AES/EBU Audio and Auxiliary Data into Digital Video Ancillary Data Space BT.709 test signal. ST 274 Television – 1920 x 1080 Image Sample Structure, Digital Representation and Digital Timing Reference Sequences for The WFM8300 was Table A1: Illuminant (Ill.) Value Multiple Picture Rates 709 configured for Source X / Y BT.709 colorimetry ST 296 1280 x 720 Progressive Image 4:2:2 and 4:4:4 Sample Structure – Analog & Digital Representation & Analog Interface as shown in the video ST 299-0/1/2 24-Bit Digital Audio Format for SMPTE Bit-Serial Interfaces at 1.5 Gb/s and 3 Gb/s – Document Suite Illuminant A: Tungsten Filament Lamp, 2854°K x = 0.4476 y = 0.4075 session display.
    [Show full text]
  • Tabla De Conversión Pantone a NCS (Natural Color System)
    Tabla de conversión Pantone a NCS (Natural Color System) PANTONE NCS (más parecido) PANTONE NCS (más parecido) Pantone Yellow C NCS 0580-Y Pantone 3985C NCS 3060-G80Y Pantone Yellow U NCS 0580-Y Pantone 3985U NCS 4040-G80Y Pantone Warm Red C NCS 0580-Y70R Pantone 3995C NCS 5040-G80Y Pantone Warm Red U NCS 0580-Y70R Pantone 3995U NCS 6020-G70Y Pantone Rubine Red C NCS 1575-R10B Pantone 400C NCS 2005-Y50R Pantone Rubine Red U NCS 1070-R20B Pantone 400U NCS 2502-R Pantone Rhodamine Red C Pantone 401C NCS 2005-Y50R Pantone Rhodamine Red U NCS 1070-R20B Pantone 401U NCS 2502-R Pantone Purple C Pantone 402C NCS 4005-Y50R Pantone Purple U NCS 2060-R40B Pantone 402U NCS 3502-R Pantone Violet C Pantone 403C NCS 4055-Y50R Pantone Violet U NCS 3050-R60B Pantone 403U NCS 4502-R Pantone Reflex Blue C NCS 3560-R80B Pantone 404C NCS 6005-Y20R Pantone Reflex Blue U NCS 3060-R70B Pantone 404U NCS 5502-R Pantone Process Blue C NCS 2065-B Pantone 405C NCS 7005-Y20R Pantone Process Blue U NCS 1565-B Pantone 405U NCS 6502-R Pantone Green C NCS 2060-B90G Pantone 406C NCS 2005-Y50R Pantone Green U NCS 2060-B90G Pantone 406U NCS 2005-Y50R Pantone Black C NCS 8005-Y20R Pantone 407C NCS 3005-Y50R Pantone Black U NCS 7502-Y Pantone 407U NCS 3005-Y80R Pantone Yellow 012C NCS 0580-Y Pantone 408C NCS 3005-Y50R Pantone Yellow 012U NCS 0580-Y Pantone 408U NCS 4005-Y80R Pantone Orange 021C NCS 0585-Y60R Pantone 409C NCS 5005-Y50R Pantone Orange 021U NCS 0580-Y60R Pantone 409U NCS 5005-Y80R Pantone Red 032C NCS 0580-Y90R Pantone 410C NCS 5005-Y50R Pantone Red 032U NCS
    [Show full text]
  • Colornet--Estimating Colorfulness in Natural Images
    COLORNET - ESTIMATING COLORFULNESS IN NATURAL IMAGES Emin Zerman∗, Aakanksha Rana∗, Aljosa Smolic V-SENSE, School of Computer Science, Trinity College Dublin, Dublin, Ireland ABSTRACT learning-based objective metric ‘ColorNet’ for the estimation of colorfulness in natural images. Based on a convolutional neural Measuring the colorfulness of a natural or virtual scene is critical network (CNN), our proposed ColorNet is a two-stage color rating for many applications in image processing field ranging from captur- model, where at stage I, a feature network extracts the characteristics ing to display. In this paper, we propose the first deep learning-based features from the natural images and at stage II, a rating network colorfulness estimation metric. For this purpose, we develop a color estimates the colorfulness rating. To design our feature network, rating model which simultaneously learns to extracts the pertinent we explore the designs of the popular high-level CNN based fea- characteristic color features and the mapping from feature space to ture models such as VGG [22], ResNet [23], and MobileNet [24] the ideal colorfulness scores for a variety of natural colored images. architectures which we finally alter and tune for our colorfulness Additionally, we propose to overcome the lack of adequate annotated metric problem at hand. We also propose a rating network which dataset problem by combining/aligning two publicly available color- is simultaneously learned to estimate the relationship between the fulness databases using the results of a new subjective test which characteristic features and ideal colorfulness scores. employs a common subset of both databases. Using the obtained In this paper, we additionally overcome the challenge of the subjectively annotated dataset with 180 colored images, we finally absence of a well-annotated dataset for training and validating Col- demonstrate the efficacy of our proposed model over the traditional orNet model in a supervised manner.
    [Show full text]
  • Khronos Data Format Specification
    Khronos Data Format Specification Andrew Garrard Version 1.2, Revision 1 2019-03-31 1 / 207 Khronos Data Format Specification License Information Copyright (C) 2014-2019 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. This version of the Data Format Specification is published and copyrighted by Khronos, but is not a Khronos ratified specification. Accordingly, it does not fall within the scope of the Khronos IP policy, except to the extent that sections of it are normatively referenced in ratified Khronos specifications. Such references incorporate the referenced sections into the ratified specifications, and bring those sections into the scope of the policy for those specifications. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible.
    [Show full text]
  • Yasser Syed & Chris Seeger Comcast/NBCU
    Usage of Video Signaling Code Points for Automating UHD and HD Production-to-Distribution Workflows Yasser Syed & Chris Seeger Comcast/NBCU Comcast TPX 1 VIPER Architecture Simpler Times - Delivering to TVs 720 1920 601 HD 486 1080 1080i 709 • SD - HD Conversions • Resolution, Standard Dynamic Range and 601/709 Color Spaces • 4:3 - 16:9 Conversions • 4:2:0 - 8-bit YUV video Comcast TPX 2 VIPER Architecture What is UHD / 4K, HFR, HDR, WCG? HIGH WIDE HIGHER HIGHER DYNAMIC RESOLUTION COLOR FRAME RATE RANGE 4K 60p GAMUT Brighter and More Colorful Darker Pixels Pixels MORE FASTER BETTER PIXELS PIXELS PIXELS ENABLED BY DOLBYVISION Comcast TPX 3 VIPER Architecture Volume of Scripted Workflows is Growing Not considering: • Live Events (news/sports) • Localized events but with wider distributions • User-generated content Comcast TPX 4 VIPER Architecture More Formats to Distribute to More Devices Standard Definition Broadcast/Cable IPTV WiFi DVDs/Files • More display devices: TVs, Tablets, Mobile Phones, Laptops • More display formats: SD, HD, HDR, 4K, 8K, 10-bit, 8-bit, 4:2:2, 4:2:0 • More distribution paths: Broadcast/Cable, IPTV, WiFi, Laptops • Integration/Compositing at receiving device Comcast TPX 5 VIPER Architecture Signal Normalization AUTOMATED LOGIC FOR CONVERSION IN • Compositing, grading, editing SDR HLG PQ depends on proper signal BT.709 BT.2100 BT.2100 normalization of all source files (i.e. - Still Graphics & Titling, Bugs, Tickers, Requires Conversion Native Lower-Thirds, weather graphics, etc.) • ALL content must be moved into a single color volume space. Normalized Compositing • Transformation from different Timeline/Switcher/Transcoder - PQ-BT.2100 colourspaces (BT.601, BT.709, BT.2020) and transfer functions (Gamma 2.4, PQ, HLG) Convert Native • Correct signaling allows automation of conversion settings.
    [Show full text]
  • How Close Is Close Enough? Specifying Colour Tolerances for Hdr and Wcg Displays
    HOW CLOSE IS CLOSE ENOUGH? SPECIFYING COLOUR TOLERANCES FOR HDR AND WCG DISPLAYS Jaclyn A. Pytlarz, Elizabeth G. Pieri Dolby Laboratories Inc., USA ABSTRACT With a new high-dynamic-range (HDR) and wide-colour-gamut (WCG) standard defined in ITU-R BT.2100 (1), display and projector manufacturers are racing to extend their visible colour gamut by brightening and widening colour primaries. The question is: how close is close enough? Having this answer is increasingly important for both consumer and professional display manufacturers who strive to balance design trade-offs. In this paper, we present “ground truth” visible colour differences from a psychophysical experiment using HDR laser cinema projectors with near BT.2100 colour primaries up to 1000 cd/m2. We present our findings, compare colour difference metrics, and propose specifying colour tolerances for HDR/WCG displays using the ΔICTCP (2) metric. INTRODUCTION AND BACKGROUND From initial display design to consumer applications, measuring colour differences is a vital component of the imaging pipeline. Now that the industry has moved towards displays with higher dynamic range as well as wider, more saturated colours, no standardized method of measuring colour differences exists. In display calibration, aside from metamerism effects, it is crucial that the specified tolerances align with human perception. Otherwise, one of two undesirable situations might result: first, tolerances are too large and calibrated displays will not appear to visually match; second, tolerances are unnecessarily tight and the calibration process becomes uneconomic. The goal of this paper is to find a colour difference measurement metric for HDR/WCG displays that balances the two and closely aligns with human vision.
    [Show full text]
  • Khronos Data Format Specification
    Khronos Data Format Specification Andrew Garrard Version 1.3.1 2020-04-03 1 / 281 Khronos Data Format Specification License Information Copyright (C) 2014-2019 The Khronos Group Inc. All Rights Reserved. This specification is protected by copyright laws and contains material proprietary to the Khronos Group, Inc. It or any components may not be reproduced, republished, distributed, transmitted, displayed, broadcast, or otherwise exploited in any manner without the express prior written permission of Khronos Group. You may use this specification for implementing the functionality therein, without altering or removing any trademark, copyright or other notice from the specification, but the receipt or possession of this specification does not convey any rights to reproduce, disclose, or distribute its contents, or to manufacture, use, or sell anything that it may describe, in whole or in part. This version of the Data Format Specification is published and copyrighted by Khronos, but is not a Khronos ratified specification. Accordingly, it does not fall within the scope of the Khronos IP policy, except to the extent that sections of it are normatively referenced in ratified Khronos specifications. Such references incorporate the referenced sections into the ratified specifications, and bring those sections into the scope of the policy for those specifications. Khronos Group grants express permission to any current Promoter, Contributor or Adopter member of Khronos to copy and redistribute UNMODIFIED versions of this specification in any fashion, provided that NO CHARGE is made for the specification and the latest available update of the specification for any version of the API is used whenever possible.
    [Show full text]
  • RAINSTONE Inspired by Nature, This Collection Will Give Fresh and Natural Design Elements to Any Space
    RAINSTONE Inspired by nature, this collection will give fresh and natural design elements to any space. Rain Stone Dark Grey 60x60 cm | 24”x 24” Dark Grey Rain Stone 12 13 Floor Floor Floor Rain Stone_Natural 60x60 | 24”x24” 14 15 RAIN STONE NATURAL RAIN STONE BEIGE WHITE *CERST060002_NATURAL 60x120 - 24”x48” rect. CERST060006_NATURAL 60x60 - 24”x24” rect. *CERST060001_BEIGE WHITE 60x120 - 24”x48” rect. CERST060005_BEIGE WHITE 60x60 - 24”x24” rect. *CERST030014 _NATURAL 30x120 - 12”x48” rect. CERST030002_NATURAL 30x60 - 12”x24” rect. *CERST030013 _BEIGE WHITE 30x120 - 12”x48” rect. CERST030001_BEIGE WHITE 30x60 - 12”x24” rect. *CERST029002_NATURAL 29x29 - 12”x12” rect. CERST005002_NATURAL MOSAICO *CERST029001_BEIGE WHITE 29x29 - 12”x12” rect. CERST005001_BEIGE WHITE MOSAICO 5x5 - 2”x2” rect. 5x5 - 2”x2” rect. *CERST015002_NATURAL 15x60 - 6”x24” rect. *CERST010002_NATURAL 10x30 - 4”x12” rect. *CERST015001_BEIGE WHITE 15x60 - 6”x24” rect. *CERST010001_BEIGE WHITE 10x30 - 4”x12” rect. *CERST030006_NATURAL *CERST030010_NATURAL WALL *CERST030005_BEIGE WHITE *CERST030009_ BEIGE WHITE WALL 5x15 - 2”x6” rect. 30x60 - 12”x24” rect. 5x15 - 2”x6” rect. 30x60 - 12”x24” rect. 30x30 - 12”x12” su rete rect. 30x30 - 12”x12” su rete rect. *CERST031002 _ NATURAL CHEVRON *CERST028002 _ NATURAL FRINGE *CERST031001_ BEIGE WHITE CHEVRON *CERST028001_ BEIGE WHITE FRINGE 31,5x29,6 - 12,40”x11,65” rect. 28,8X28,8 - 11,34”x11,34” rect. 31,5x29,6 - 12,40”x11,65” rect. 28,8X28,8 - 11,34”x11,34” rect. 16 * Special order sizes 17 RAIN STONE LIGHT GREY RAIN STONE DARK GREY *CERST060003_LIGHT GREY 60x120 - 24”x48” rect. CERST060007_LIGHT GREY 60x60 - 24”x24” rect. *CERST060004_DARK GREY 60x120 - 24”x48” rect. CERST060008_DARK GREY 60x60 - 24”x24” rect.
    [Show full text]
  • Color Appearance Models Today's Topic
    Color Appearance Models Arjun Satish Mitsunobu Sugimoto 1 Today's topic Color Appearance Models CIELAB The Nayatani et al. Model The Hunt Model The RLAB Model 2 1 Terminology recap Color Hue Brightness/Lightness Colorfulness/Chroma Saturation 3 Color Attribute of visual perception consisting of any combination of chromatic and achromatic content. Chromatic name Achromatic name others 4 2 Hue Attribute of a visual sensation according to which an area appears to be similar to one of the perceived colors Often refers red, green, blue, and yellow 5 Brightness Attribute of a visual sensation according to which an area appears to emit more or less light. Absolute level of the perception 6 3 Lightness The brightness of an area judged as a ratio to the brightness of a similarly illuminated area that appears to be white Relative amount of light reflected, or relative brightness normalized for changes in the illumination and view conditions 7 Colorfulness Attribute of a visual sensation according to which the perceived color of an area appears to be more or less chromatic 8 4 Chroma Colorfulness of an area judged as a ratio of the brightness of a similarly illuminated area that appears white Relationship between colorfulness and chroma is similar to relationship between brightness and lightness 9 Saturation Colorfulness of an area judged as a ratio to its brightness Chroma – ratio to white Saturation – ratio to its brightness 10 5 Definition of Color Appearance Model so much description of color such as: wavelength, cone response, tristimulus values, chromaticity coordinates, color spaces, … it is difficult to distinguish them correctly We need a model which makes them straightforward 11 Definition of Color Appearance Model CIE Technical Committee 1-34 (TC1-34) (Comission Internationale de l'Eclairage) They agreed on the following definition: A color appearance model is any model that includes predictors of at least the relative color-appearance attributes of lightness, chroma, and hue.
    [Show full text]