(Synthetic Networks Or Generative Models) Prof. Ralucca Gera

Total Page:16

File Type:pdf, Size:1020Kb

(Synthetic Networks Or Generative Models) Prof. Ralucca Gera Models of networks (synthetic networks or generative models) Prof. Ralucca Gera, Applied Mathematics Dept. Naval Postgraduate School Monterey, California [email protected] Excellence Through Knowledge Learning Outcomes • Identify network models and explain their structures; • Contrast networks and synthetic models; • Understand how to design new network models (based on the existing ones and on the collected data) • Distinguish methodologies used in analyzing networks. The three papers for each of the models Synthetic models are used as reference/null models to compare against and build new complex networks •“On Random Graphs I” by Paul Erdős and Alfed Renyi in Publicationes Mathematicae (1958) Times cited: 3, 517 (as of January 1, 2015) •“Collective dynamics of ‘small-world’ networks” by Duncan Watts and Steve Strogatz in Nature, (1998) Times cited: 24, 535 (as of January 1, 2015) •“Emergence of scaling in random networks” by László Barabási and Réka Albert in Science, (1999) Times cited: 21, 418 (as of January 1, 2015) 3 Why care? • Epidemiology: – A virus propagates much faster in scale-free networks. – Vaccination of random nodes in scale free does not work, but targeted vaccination is very effective • Create synthetic networks to be used as null models: – What effect does the degree distribution alone have on the behavior of the system? (answered by comparing to the configuration model) • Create networks of different sizes – Networks of particular sizes and structures can be quickly and cheaply generated, instead of collecting and cleaning the data that takes time Reference network: Regular Lattice The 1-dimensional lattice is the Harary graph H(n,r) or the Circulant graph (1, 2, …, r) start with an n-cycle, and each vertex is adjacent to r/2 vertices to the left, and r/2 vertices to the right. 5 Source: http://mathworld.wolfram.com/CirculantGraph.html Reference network: Regular Lattice a particular Circulant graph (1, 2, …, r): Source: http://mathworld.wolfram.com/CirculantGraph.html 6 Source: http://mathworld.wolfram.com/CirculantGraph.html Reference network: Regular Lattice • The higher dimensions are generalizations of these. An example is a hexagonal lattice is a 2-dimensional lattice: graphene, a single layer of carbon atoms with a honeycomb lattice structure. 7 Source: http://phys.org/news/2013-05-intriguing-state-previously-graphene-like-materials.html Erdős-Rényi Random Graphs (1959) 8 Random graphs (Erdős-Rényi , 1959) ERmodel : created at random with fixed parameters • G(n, m): fix n (node count) and m (edge count) • G(n,p): fix n and probability p of the edge existence between vertices (m is not fixed) – The mean value of edges: 2 – The average degree 1 – The distribution of finding a node of degree is binomial: 1 1 • Constructing using Gephi need Gephi’s plug-in. • NetworkX has more synthetic models and classes 9 Creating G(n,m) • To make a random network : – take n nodes, – m unlabeled edges randomly placed between the n vertices • Put the graph in a box, make another one and put it in the box, and another one… • Pull one network at random out of the box and it will have a Normal Degree Distribution (classic degree distribution): almost everyone has the same number of friends on average 10 Creating G(n,m) – method 2 Method two and equivalent to the first: • To make a random network : – take n nodes, – m pairs of nodes at random to form edges, – place the edges between the randomly chosen nodes. • The average degree: , where is often used to denote the degree of vertex i in complex networks (enumerate the vertices, 1, 2, …) 11 Creating G(n,p) • To create a random network : – take n nodes, – A fixed probability for the whole graph – Attach edges at random to the nodes, with the probability p 12 Degree distribution for both for , and , Results about E-R graphs: • Degree distribution: Binomial • Average path is small compared to n: , where is the average degree – Comparable to the of the observed networks • Clustering coefficient is small: (The probability that two neighbors of a node are connected is equal to the probability of any two random nodes being connected) – However observed networks have high clustering.13 Generating Erdős-Rényi ER(n,p) • ER graphs are models of a network in which some specific set of parameters take fixed values, but the construction of the network is random (see below in Gephi) 14 Generating Erdős-Rényi ER(n,m) 15 Generating Erdős-Rényi random networks Reference for python: http://networkx.lanl.gov/reference/generated/networkx.generators.random_graphs.erdos_renyi_graph.html#networkx.generators.random_graphs.erdos_renyi_graph 16 The Random Geometric model 17 Random Geometric Model • Again the connections are created at random, but based on proximity (such as ad hoc networks) • Proximity is relevant: for each node , the edge is created with a probability if , for given fixed distance r. • There is no perfect model for the world around us, not even for specific types of networks 18 An example of a random geometric 19 https://www.youtube.com/watch?v=NUisb1-INIE Creating it in Python https://networkx.github.io/documentation/networkx- 1.10/reference/generated/networkx.generators.geometric.random_geometric_graph.html#networkx.generators.geometric.random_geometric_graph 20 The Malloy Reed Configuration model (1995) 21 The configuration model •A random graph model created based on Degree sequence of choice (can be scale free) • Maybe more than degree sequence is needed to be controlled in order to create realistic models 22 The MR configuration model • A random graph model created based on a degree sequence of choice: 4, 3, 2, 2, 2, 1, 1, 1 Step 1: Step 2: Or this step 2: 23 Mathematical properties •Let and be two nodes. • Expectation of to be an edge : – Pick an edge out of the m edges in G: the probability that the left end node is i is (its degree), and the probability that the right end node is j, is ), and so: p (used 2m since each edge is counted from each of its two ends) • Expectation of a multi edge – Given that ∈ ,then the probability that it will be an edge again is p , and so the probability of both happening is p which simplifies to: 24 Mathematical properties (parallel edges) ∑ Average degree: , and … ∑ the average of their squares: . Then, the expected number of parallel edges is: 25 http://tuvalu.santafe.edu/~aaronc/courses/5352/csci5352_2017_L4.pdf Mathematical properties (loops) 1. Recall that for parallel edges, Thus the expectation of a loop one edge of node has been used 2. And the equation on the previous page simplifies to the expected number of loops being Conclusion: Since the variables in the equation in 2. above are constant with respect to the size of the network, only a small fraction of edges are loops or parallel edges 26 http://tuvalu.santafe.edu/~aaronc/courses/5352/csci5352_2017_L4.pdf Generating it in Python https://networkx.github.io/documentation/networkx-1.10/reference/generated/networkx.generators.degree_seq.configuration_model.html 27 Part 2 28 Coding it in CoCalc •Go to www.CoCalc.com and create an account using your NPS email • Create your new folder to copy the code • Open “MA4404-2019” folder to copy its contents to your new folder. 29 Copy contents to NEW folder 30 Make a copy • Choose “CreateSyntheticNetworks.ipynb” • Notice projects, folders & files 31 Create ER networks 32 Watts-Strogatz Small World Graphs (1998) 33 Small world models • Duncan Watts and Steven Strogatz small world model: a few random links in an otherwise structured graph make the network a small world: the average shortest path is short regular lattice (one small world: random graph: type of structure): mostly structured all connections my friend’s friend is with a few random happen at always my friend connections random Source: Watts, D.J., Strogatz, S.H. (1998) Collective dynamics of 'small-world' networks. Nature 393:440-442. Small worlds, between order and chaos High clustering: .75 Low clustering: p (probability) High average path: Low average path: Small worlds the graph on the left has order (probability p =0), the graph in the middle is a "small world" graph (0 < p < 1), the graph at the right is complete random (p=1). Source: http://www.bordalierinstitute.com/target1.html Avg path and avg clustering Variations of avg path and clustering as a function of the rewiring probability p 36 https://pdfs.semanticscholar.org/8c4c/455de44fa99e73e79d6fddf008ca6ae0f9aa.pdf Generating Watts-Strogatz WS (n, k, alpha) Alpha is the rewiring probability 37 Generating Watts-Strogatz networks .15 is the rewiring probability http://networkx.lanl.gov/reference/generated/networkx.generators.random_graphs.watts_strogatz_graph.html#networkx.generators.random_graphs.watts_strogatz_graph 38 Barabási-Albert Scale free model (1999) 39 Network growth & resulting structure • Random attachment: new node picks any existing node to attach to • Preferential/fitness attachment: new node picks from existing nodes according to their degrees/fitness (high preference for high degree/fitness) http://projects.si.umich.edu/netlearn/NetLogo4/RAndPrefAttachment.html Scale-free • Scale-free networks are a type of small world • Whether static or evolutionary, they have – A power-law degree distribution: • Common ways to grow the network: – Preferential attachment based on degree (for Barabási-Albert type the probability of attachment , where is the degree of node ). ∑ – Preferential attachment based on fitness (preassigned values). Power law networks • Many real world networks contain hubs: highly connected nodes • Usually the distribution of edges is extremely skewed many nodes with small degree No “typical” degree node fat tail: a few nodes with a very large degree number of nodes of that degree that of nodes of number Degree (number of edges) But is it really a power-law? • A power-law will appear as a straight line on a log-log plot: let be the count of vertices of degree k.
Recommended publications
  • Sagemath and Sagemathcloud
    Viviane Pons Ma^ıtrede conf´erence,Universit´eParis-Sud Orsay [email protected] { @PyViv SageMath and SageMathCloud Introduction SageMath SageMath is a free open source mathematics software I Created in 2005 by William Stein. I http://www.sagemath.org/ I Mission: Creating a viable free open source alternative to Magma, Maple, Mathematica and Matlab. Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 2 / 7 SageMath Source and language I the main language of Sage is python (but there are many other source languages: cython, C, C++, fortran) I the source is distributed under the GPL licence. Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 3 / 7 SageMath Sage and libraries One of the original purpose of Sage was to put together the many existent open source mathematics software programs: Atlas, GAP, GMP, Linbox, Maxima, MPFR, PARI/GP, NetworkX, NTL, Numpy/Scipy, Singular, Symmetrica,... Sage is all-inclusive: it installs all those libraries and gives you a common python-based interface to work on them. On top of it is the python / cython Sage library it-self. Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 4 / 7 SageMath Sage and libraries I You can use a library explicitly: sage: n = gap(20062006) sage: type(n) <c l a s s 'sage. interfaces .gap.GapElement'> sage: n.Factors() [ 2, 17, 59, 73, 137 ] I But also, many of Sage computation are done through those libraries without necessarily telling you: sage: G = PermutationGroup([[(1,2,3),(4,5)],[(3,4)]]) sage : G . g a p () Group( [ (3,4), (1,2,3)(4,5) ] ) Viviane Pons (U-PSud) SageMath and SageMathCloud October 19, 2016 5 / 7 SageMath Development model Development model I Sage is developed by researchers for researchers: the original philosophy is to develop what you need for your research and share it with the community.
    [Show full text]
  • Networkx Tutorial
    5.03.2020 tutorial NetworkX tutorial Source: https://github.com/networkx/notebooks (https://github.com/networkx/notebooks) Minor corrections: JS, 27.02.2019 Creating a graph Create an empty graph with no nodes and no edges. In [1]: import networkx as nx In [2]: G = nx.Graph() By definition, a Graph is a collection of nodes (vertices) along with identified pairs of nodes (called edges, links, etc). In NetworkX, nodes can be any hashable object e.g. a text string, an image, an XML object, another Graph, a customized node object, etc. (Note: Python's None object should not be used as a node as it determines whether optional function arguments have been assigned in many functions.) Nodes The graph G can be grown in several ways. NetworkX includes many graph generator functions and facilities to read and write graphs in many formats. To get started though we'll look at simple manipulations. You can add one node at a time, In [3]: G.add_node(1) add a list of nodes, In [4]: G.add_nodes_from([2, 3]) or add any nbunch of nodes. An nbunch is any iterable container of nodes that is not itself a node in the graph. (e.g. a list, set, graph, file, etc..) In [5]: H = nx.path_graph(10) file:///home/szwabin/Dropbox/Praca/Zajecia/Diffusion/Lectures/1_intro/networkx_tutorial/tutorial.html 1/18 5.03.2020 tutorial In [6]: G.add_nodes_from(H) Note that G now contains the nodes of H as nodes of G. In contrast, you could use the graph H as a node in G.
    [Show full text]
  • Networkx: Network Analysis with Python
    NetworkX: Network Analysis with Python Salvatore Scellato Full tutorial presented at the XXX SunBelt Conference “NetworkX introduction: Hacking social networks using the Python programming language” by Aric Hagberg & Drew Conway Outline 1. Introduction to NetworkX 2. Getting started with Python and NetworkX 3. Basic network analysis 4. Writing your own code 5. You are ready for your project! 1. Introduction to NetworkX. Introduction to NetworkX - network analysis Vast amounts of network data are being generated and collected • Sociology: web pages, mobile phones, social networks • Technology: Internet routers, vehicular flows, power grids How can we analyze this networks? Introduction to NetworkX - Python awesomeness Introduction to NetworkX “Python package for the creation, manipulation and study of the structure, dynamics and functions of complex networks.” • Data structures for representing many types of networks, or graphs • Nodes can be any (hashable) Python object, edges can contain arbitrary data • Flexibility ideal for representing networks found in many different fields • Easy to install on multiple platforms • Online up-to-date documentation • First public release in April 2005 Introduction to NetworkX - design requirements • Tool to study the structure and dynamics of social, biological, and infrastructure networks • Ease-of-use and rapid development in a collaborative, multidisciplinary environment • Easy to learn, easy to teach • Open-source tool base that can easily grow in a multidisciplinary environment with non-expert users
    [Show full text]
  • Graph Database Fundamental Services
    Bachelor Project Czech Technical University in Prague Faculty of Electrical Engineering F3 Department of Cybernetics Graph Database Fundamental Services Tomáš Roun Supervisor: RNDr. Marko Genyk-Berezovskyj Field of study: Open Informatics Subfield: Computer and Informatic Science May 2018 ii Acknowledgements Declaration I would like to thank my advisor RNDr. I declare that the presented work was de- Marko Genyk-Berezovskyj for his guid- veloped independently and that I have ance and advice. I would also like to thank listed all sources of information used Sergej Kurbanov and Herbert Ullrich for within it in accordance with the methodi- their help and contributions to the project. cal instructions for observing the ethical Special thanks go to my family for their principles in the preparation of university never-ending support. theses. Prague, date ............................ ........................................... signature iii Abstract Abstrakt The goal of this thesis is to provide an Cílem této práce je vyvinout webovou easy-to-use web service offering a database službu nabízející databázi neorientova- of undirected graphs that can be searched ných grafů, kterou bude možno efektivně based on the graph properties. In addi- prohledávat na základě vlastností grafů. tion, it should also allow to compute prop- Tato služba zároveň umožní vypočítávat erties of user-supplied graphs with the grafové vlastnosti pro grafy zadané uži- help graph libraries and generate graph vatelem s pomocí grafových knihoven a images. Last but not least, we implement zobrazovat obrázky grafů. V neposlední a system that allows bulk adding of new řadě je také cílem navrhnout systém na graphs to the database and computing hromadné přidávání grafů do databáze a their properties.
    [Show full text]
  • Networkx Reference Release 1.9.1
    NetworkX Reference Release 1.9.1 Aric Hagberg, Dan Schult, Pieter Swart September 20, 2014 CONTENTS 1 Overview 1 1.1 Who uses NetworkX?..........................................1 1.2 Goals...................................................1 1.3 The Python programming language...................................1 1.4 Free software...............................................2 1.5 History..................................................2 2 Introduction 3 2.1 NetworkX Basics.............................................3 2.2 Nodes and Edges.............................................4 3 Graph types 9 3.1 Which graph class should I use?.....................................9 3.2 Basic graph types.............................................9 4 Algorithms 127 4.1 Approximation.............................................. 127 4.2 Assortativity............................................... 132 4.3 Bipartite................................................. 141 4.4 Blockmodeling.............................................. 161 4.5 Boundary................................................. 162 4.6 Centrality................................................. 163 4.7 Chordal.................................................. 184 4.8 Clique.................................................. 187 4.9 Clustering................................................ 190 4.10 Communities............................................... 193 4.11 Components............................................... 194 4.12 Connectivity..............................................
    [Show full text]
  • Exploring Network Structure, Dynamics, and Function Using Networkx
    Proceedings of the 7th Python in Science Conference (SciPy 2008) Exploring Network Structure, Dynamics, and Function using NetworkX Aric A. Hagberg ([email protected])– Los Alamos National Laboratory, Los Alamos, New Mexico USA Daniel A. Schult ([email protected])– Colgate University, Hamilton, NY USA Pieter J. Swart ([email protected])– Los Alamos National Laboratory, Los Alamos, New Mexico USA NetworkX is a Python language package for explo- and algorithms, to rapidly test new hypotheses and ration and analysis of networks and network algo- models, and to teach the theory of networks. rithms. The core package provides data structures The structure of a network, or graph, is encoded in the for representing many types of networks, or graphs, edges (connections, links, ties, arcs, bonds) between including simple graphs, directed graphs, and graphs nodes (vertices, sites, actors). NetworkX provides ba- with parallel edges and self-loops. The nodes in Net- sic network data structures for the representation of workX graphs can be any (hashable) Python object simple graphs, directed graphs, and graphs with self- and edges can contain arbitrary data; this flexibil- loops and parallel edges. It allows (almost) arbitrary ity makes NetworkX ideal for representing networks objects as nodes and can associate arbitrary objects to found in many different scientific fields. edges. This is a powerful advantage; the network struc- In addition to the basic data structures many graph ture can be integrated with custom objects and data algorithms are implemented for calculating network structures, complementing any pre-existing code and properties and structure measures: shortest paths, allowing network analysis in any application setting betweenness centrality, clustering, and degree dis- without significant software development.
    [Show full text]
  • Graph and Network Analysis
    Graph and Network Analysis Dr. Derek Greene Clique Research Cluster, University College Dublin Web Science Doctoral Summer School 2011 Tutorial Overview • Practical Network Analysis • Basic concepts • Network types and structural properties • Identifying central nodes in a network • Communities in Networks • Clustering and graph partitioning • Finding communities in static networks • Finding communities in dynamic networks • Applications of Network Analysis Web Science Summer School 2011 2 Tutorial Resources • NetworkX: Python software for network analysis (v1.5) http://networkx.lanl.gov • Python 2.6.x / 2.7.x http://www.python.org • Gephi: Java interactive visualisation platform and toolkit. http://gephi.org • Slides, full resource list, sample networks, sample code snippets online here: http://mlg.ucd.ie/summer Web Science Summer School 2011 3 Introduction • Social network analysis - an old field, rediscovered... [Moreno,1934] Web Science Summer School 2011 4 Introduction • We now have the computational resources to perform network analysis on large-scale data... http://www.facebook.com/note.php?note_id=469716398919 Web Science Summer School 2011 5 Basic Concepts • Graph: a way of representing the relationships among a collection of objects. • Consists of a set of objects, called nodes, with certain pairs of these objects connected by links called edges. A B A B C D C D Undirected Graph Directed Graph • Two nodes are neighbours if they are connected by an edge. • Degree of a node is the number of edges ending at that node. • For a directed graph, the in-degree and out-degree of a node refer to numbers of edges incoming to or outgoing from the node.
    [Show full text]
  • Networkx: Network Analysis with Python
    NetworkX: Network Analysis with Python Dionysis Manousakas (special thanks to Petko Georgiev, Tassos Noulas and Salvatore Scellato) Social and Technological Network Data Analytics Computer Laboratory, University of Cambridge February 2017 Outline 1. Introduction to NetworkX 2. Getting started with Python and NetworkX 3. Basic network analysis 4. Writing your own code 5. Ready for your own analysis! 2 1. Introduction to NetworkX 3 Introduction: networks are everywhere… Social Mobile phone networks Vehicular flows networks Web pages/citations Internet routing How can we analyse these networks? Python + NetworkX 4 Introduction: why Python? Python is an interpreted, general-purpose high-level programming language whose design philosophy emphasises code readability + - Clear syntax, indentation Can be slow Multiple programming paradigms Beware when you are Dynamic typing, late binding analysing very large Multiple data types and structures networks Strong on-line community Rich documentation Numerous libraries Expressive features Fast prototyping 5 Introduction: Python’s Holy Trinity Python’s primary NumPy is an extension to Matplotlib is the library for include primary plotting mathematical and multidimensional arrays library in Python. statistical computing. and matrices. Contains toolboxes Supports 2-D and 3-D for: Both SciPy and NumPy plotting. All plots are • Numeric rely on the C library highly customisable optimization LAPACK for very fast and ready for implementation. professional • Signal processing publication. • Statistics, and more…
    [Show full text]
  • A New Way to Measure Homophily in Directed Graphs
    The Popularity-Homophily Index: A new way to measure Homophily in Directed Graphs Shiva Oswal UC Berkeley Extension, Berkeley, CA, USA Abstract In networks, the well-documented tendency for people with similar characteris- tics to form connections is known as the principle of homophily. Being able to quantify homophily into a number has a signicant real-world impact, ranging from government fund-allocation to netuning the parameters in a sociological model. This paper introduces the “Popularity-Homophily Index” (PH Index) as a new metric to measure homophily in directed graphs. The PH Index takes into account the “popularity” of each actor in the interaction network, with popularity precalculated with an importance algorithm like Google PageRank. The PH Index improves upon other existing measures by weighting a homophilic edge leading to an important actor over a homophilic edge leading to a less important actor. The PH Index can be calculated not only for a single node in a directed graph but also for the entire graph. This paper calculates the PH Index of two sample graphs, and concludes with an overview of the strengths and weaknesses of the PH Index, and its potential applications in the real world. Keywords: measuring homophily; popularity-homophily index; social interaction networks; directed graphs 1 Introduction Homophily, meaning “love of the same,” captures the tendency of agents, most com- monly people, to connect with other agents that share sociodemographic, behavioral, or intrapersonal characteristics (McPherson et al, 2001). In the language of social interaction networks, homophily is the “tendency for friendships and many other arXiv:2109.00348v1 [cs.SI] 29 Aug 2021 interpersonal relationships to occur between similar people” (Thelwall, 2009).
    [Show full text]
  • PDF Reference
    NetworkX Reference Release 1.0 Aric Hagberg, Dan Schult, Pieter Swart January 08, 2010 CONTENTS 1 Introduction 1 1.1 Who uses NetworkX?..........................................1 1.2 The Python programming language...................................1 1.3 Free software...............................................1 1.4 Goals...................................................1 1.5 History..................................................2 2 Overview 3 2.1 NetworkX Basics.............................................3 2.2 Nodes and Edges.............................................4 3 Graph types 9 3.1 Which graph class should I use?.....................................9 3.2 Basic graph types.............................................9 4 Operators 129 4.1 Graph Manipulation........................................... 129 4.2 Node Relabeling............................................. 134 4.3 Freezing................................................. 135 5 Algorithms 137 5.1 Boundary................................................. 137 5.2 Centrality................................................. 138 5.3 Clique.................................................. 142 5.4 Clustering................................................ 145 5.5 Cores................................................... 147 5.6 Matching................................................. 148 5.7 Isomorphism............................................... 148 5.8 PageRank................................................. 161 5.9 HITS..................................................
    [Show full text]
  • Network Science and Python
    Network Analysis using Python Muhammad Qasim Pasta Assistant Professor Usman Institute of Technology About Me • Assistant Professor @ UIT • Research Interest: Network Science / Social Network Analysis • Consultant / Mentor • Python Evangelist • Github: https://github.com/mqpasta • https://github.com/mqpasta/pyconpk2018 • Website: http://qasimpasta.info Today’s Talk What is a Network? • An abstract representation to model pairwise relationship between objects. • Network = graph: mathematical representation nodes/vertices/actors edges/arcs/lines Birth of Graph Theory • Königsberg bridge problem: the seven bridges of the city of Königsberg over the river Preger • traversed in a single trip without doubling back? • trip ends in the same place it began Solution as graph! • Swiss mathematician - Leonhard Euler • considering each piece of island as dot • each bridge connecting two island as a line between two dots • a graph of dots (vertices or nodes) and lines (edges or links). Background | Literature Review | Questions | Contributions | Conclusion | Q/A Network Science • ―Network science is an academic field which studies complex networks such as telecommunication networks, computer networks …‖ [Wikipedia] • ―In the context of network theory, a complex network is a graph (network) with non- trivial topological features—features that do not occur in simple networks …‖ [Wikipedia] Study of Network Science Social Graph structure theory Inferential Statistical modeling mechanics Information Data Mining Visualization Background | Literature Review
    [Show full text]
  • Synthetic Networks Or Generative Models)
    Models of networks (synthetic networks or generative models) Prof. Ralucca Gera, Applied Mathematics Dept. Naval Postgraduate School Monterey, California [email protected] Excellence Through Knowledge Learning Outcomes • Identify network models and explain their structures; • Contrast networks and synthetic models; • Understand how to design new network models (based on the existing ones and on the collected data) • Distinguish methodologies used in analyzing networks. The three papers for each of the models Synthetic models are used as reference/null models to compare against and build new complex networks •“On Random Graphs I” by Paul Erdős and Alfed Renyi in Publicationes Mathematicae (1958) Times cited: 3, 517 (as of January 1, 2015) •“Collective dynamics of ‘small-world’ networks” by Duncan Watts and Steve Strogatz in Nature, (1998) Times cited: 24, 535 (as of January 1, 2015) •“Emergence of scaling in random networks” by László Barabási and Réka Albert in Science, (1999) Times cited: 21, 418 (as of January 1, 2015) 3 Why care? • Epidemiology: – A virus propagates much faster in scale-free networks. – Vaccination of random nodes in scale free does not work, but targeted vaccination is very effective • Create synthetic networks to be used as null models: – What effect does the degree distribution alone have on the behavior of the system? (answered by comparing to the configuration model) • Create networks of different sizes – Networks of particular sizes and structures can be quickly and cheaply generated, instead of collecting and cleaning
    [Show full text]