Amylase 1. Overview

Total Page:16

File Type:pdf, Size:1020Kb

Amylase 1. Overview Amylase John A. Williams Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, Michigan 48109-0622 Email: [email protected] Version 1.0, April 24, 2017 [DOI: 10.3998/panc.2017.04] Gene Name: AMY1, AMY2 1. Overview (General) in other tissues or tumors; the major salivary and pancreatic amylase proteins are very similar (47). α-Amylase (1,4-α-D-glucan-glucanohydrolase, EC Salivary amylase initiates carbohydrate digestion 3.2.1.1) is the primary digestive enzyme acting on in the mouth and pancreatic amylase is the main starch or glycogen and is present in plants, enzyme for luminal digestion of carbohydrate in animals, bacteria and fungi. Starch from plants is the small intestine. Human pancreatic α-amylase a high molecular weight polymer of glucose. It is is a protein of 57 KDa for which the cDNA predicts made up of amylose, a straight-chain α-1,4 linked a protein of 512 amino acids (54). This includes a polymer of about 105units and amylopectin, a signal sequence; amylase isolated from human branched chain polymer with α1,4 linked glucose pancreatic juice has 496 amino acids (15). In with branch points made up of α-1,6 linkages that various species the reported molecular weight for contains about 106 units of glucose. Glycogen amylase is 50-57 kDa and consists of a single from animals is similar to amylopectin in structure chain protein with one carbohydrate (some but is smaller. α-Amylase cleaves the α-1,4 species have an isoform with none) and an linkage when it is not next to a branch point or isoelectric point of 7.1. (39). Human pancreatic terminal glucose residue. Thus its products are juice amylase has no sugar groups and exists as maltose (2 glucose residues), maltotriose (3 two isoforms of pI 7.2 and 6.6 termed HPA I and glucose residues) and α-limit dextrins (5-6 HPA II (15). Five disulfide bridges have been residues which contain a branch point). In described in porcine pancreatic amylase (35) and vertebrates, these are further cleaved to most species have one or two free sulphydryl monosaccharides by the intestinal brush border groups. Salivary amylase is coded for by the enzymes isomaltase and maltase which hydrolyze AMY1 gene and pancreatic amylase by AMY2; a the α-1,6 and α-1,4 bonds respectively (3). third form present in some tumors is termed Studies show that hydrolysis and not AMY2B (33, 56, 57). Amylase is a multigene monosaccharide absorption is the rate limiting family with multiple genes and pseudogenes on step in complex carbohydrate absorption in chromosome 1 in humans and chromosome 3 in humans (20). mice (19, 48). Interestingly, individuals from agricultural societies that consume high starch In animals α-amylase occurs in pancreas, parotid, diets have a higher copy number of salivary serum, urine and occasionally in smaller amounts amylase genes (37) and a high copy number 1 This work is subject to an International Creative Commons Attribution 4.0 license. leads to more protein and increased perception of digestion but prevents too rapid absorption of oral starch (26, 42). glucose. After binding to brush border proteins amylase is internalized into enterocytes restoring The amylase protein contains three domains glucose uptake (12). termed A, B, and C starting at the amino terminal with C being a globular domain of unknown 2. Pancreatic Function function. The active site is located in a cleft between the A and B domains (7). Calcium and Amylase Localization, Regulation and chloride ions bind to the A domain and may Deficiency stabilize the active site. The active center Pancreatic amylase is similar to other secretory contains 5 subsites which bind different glucose proteins and is synthesized in the rough residues in the substrate (43). Kinetic evidence endoplasmic reticulum. It then moves through the supports two additional carbohydrate binding sites Golgi apparatus and is stored in secretory (2). The rate of starch digestion also depends on granules until the time it undergoes regulated the structure of the starch which can be affected secretion. Immunostaining reveals its by storage or cooking (13). Studies of the concentration in the granules (Figure 1). As with enzymatic mechanism have also benefited from other pancreatic enzymes, the amount of amylase the existence of a large family of plant α-amylase in the pancreas is regulated by the amount of inhibitory proteins (5, 49). The best studied of dietary substrate (6, 17, 46). Rodents which eat a these are from beans and the structure of the carbohydrate rich diet synthesize more amylase enzyme-inhibitor complex has been determined which is the most abundant pancreatic digestive (41). More potent inhibitors have been derived enzyme in these species. This effect occurs at from pseudooligosaccarides of which one, the the transcriptional level and the effect is mediated pseudotetrasacharide, acarbose has been in large part by insulin. With diabetes the approved for clinical use. The crystal structure of pancreatic amylase falls, but can recover pig amylase complexed with acarbose has been following insulin treatment (24, 51). This is reported (16). These pseudooligosaccaride especially prominent in rats where in experimental inhibitors, in contrast to the proteinaceous diabetes pancreatic amylase falls to only a few inhibitors, block all glucosidases including percent of normal. A 30 base pair insulin intestinal brush border enzymes as well as responsive element was identified in the mouse amylase (44). Amy2-2 gene (22). The fact that mice express more than one functional Amy2 gene explains Multiple pancreatic enzymes including amylase why total pancreatic amylase does not fall in are found absorbed to the surface of the duodenal diabetes as much as it does in rats. mucosa although they could be washed off with high salt (3). Amylase, however, was shown to Healthy volunteers are able to absorb nearly specifically bind to N-linked oligosaccharides of 100% of a starch load. However, in chronic brush border glycoproteins and that binding pancreatitis with loss of functioning pancreatic enhanced amylase activity (27). Specific tissue, only about 90% is digested and absorbed; glycoproteins binding amylase have been with complete inhibition of amylase this is reduced identified as sucrase-isomaltase (SI) and SGLT1 to 80-85% (25). In the latter case up to 20% of (4). This binding enhanced the activity of SI as carbohydrate reaches the ileum and the rise of well as that of amylase but inhibited the activity of plasma GIP and C peptide from proinsulin is SGLT1. The authors proposed that this enhances blocked. Patients with isolated amylase 2 deficiency have been reported with carbohydrate population studied and the gold standard used malabsorption and its resulting symptoms (30, (10, 52). A higher specificity is obtained when a 45). The patients evaluated have intact mRNA higher cutoff point is used such as 5 or even 9 but no amylase protein. This is similar to times the ULN, but at the cost of lower sensitivity. physiological pancreatic amylase deficiency at Utilizing assays to inhibit salivary amylase with birth where lack of symptoms is in part due to low wheat germ inhibitor or monoclonal antibodies dietary starch requiring amylase and in part the (50) or removing it with immobilized monoclonal action of salivary amylase. Amylase deficiency antibody (32) increase specificity somewhat and may be underreported due to mild symptoms. helps eliminate a contribution from tumors or other organs which primarily produce salivary amylase, but these tests are not always available. The combination of serum lipase with amylase is generally available and helps when serum amylase levels have already peaked and declined. A rise in serum amylase can also be due to macroamylassemia where amylase is bound to plasma protein (usually IgA or IgM) but this only occurs in only 1-3 % of normal humans. Amylase is also elevated in a variety of surgical, traumatic and neoplastic diseases (10, 38, 52). Renal disease can reduce amylase filtration and enhance plasma levels, but this increase is usually small as glomerular filtration is only a small portion of amylase clearance (38). A chronic increase in multiple serum pancreatic enzymes including amylase in otherwise healthy Figure 1. Immunoflourescent localization of amylase in subjects without pancreatic disease was mouse pancreas (green). Nuclei are stained blue with DAPI described by Gullo in 1996 and is now termed benign pancreatic hyperenzymemia or Gullo’s Serum Amylase as a Measure of syndrome (18). Advanced imaging techniques Pancreatic Function in Pancreatitis may uncover a pancreatic abnormality in some of Determination of serum amylase has long been a these patients. mainstay in the diagnosis of acute pancreatitis. Serum amylase in normal individuals is about half It is also important to be aware that pancreatitis salivary and half pancreatic form and each exists can occur without increased serum amylase in several isoforms all of which contribute to total especially with alcoholic pancreatitis or recurrent amylase. Because of the existence of different chronic pancreatitis (34). In some of these cases, assays and standards, the cutoff for acute lipase is elevated. Thus, while amylase is still one pancreatitis is usually expressed related to the of the most useful tests in diagnosing acute range of normal for the particular clinical pancreatitis, it should be carried out in conjunction laboratory. Levels greater than three times the with other tests (1) along with an understanding of upper limit of normal (ULN) are usually taken as amylase metabolism. indicative of pancreatitis. However, the diagnostic specificity is only 70-90% depending on the 3 Amylase secretion as a measure of autoanalyzer technique. Recently both types of regulated pancreatic or parotid secretion assays have been used to determine human Measurement of amylase secretion has become duodenal amylase with high correlation (14).
Recommended publications
  • Characterization of Prebiotics and Their Synergistic Activities with Lactobacillus Probiotics for Β-Glucuronidase Reduction
    ESEARCH ARTICLE R ScienceAsia 45 (2019): 538–546 doi: 10.2306/scienceasia1513-1874.2019.45.538 Characterization of prebiotics and their synergistic activities with Lactobacillus probiotics for β-glucuronidase reduction a, a b a Achara Chaiongkarn ∗, Jirapa Dathong , Wipaporn Phatvej , Premsuda Saman , Chutima Kuanchaa, Lawan Chatanona, Somporn Moonmungmeea a Biodiversity Research Center, Thailand Institute of Scientific and Technological Research, Pathum Thani 12120 Thailand b Expert Center of Innovative Herbal Products, Thailand Institute of Scientific and Technological Research, Pathum Thani 12120 Thailand ∗Corresponding author, e-mail: [email protected] Received 1 Jun 2018 Accepted 28 Oct 2019 ABSTRACT: The role of synbiotics for enriching health and well-being in addition to suppressing disease is gaining interest. Synergistic activities of four candidate prebiotics as exopolysaccharides (EPSs) derived from Lactobacillus fer- mentum TISTR 2514 (EPS-TISTR 2514), Pediococcus acidilactici TISTR 2612 (EPS-TISTR 2612), manno-oligosaccharides and rice syrup-oligosaccharides were characterized and evaluated for decreasing the risk of colorectal cancer (CRC). Results revealed that one or more candidate prebiotics stimulated the growth of Lactobacillus casei DSM 20011, Lactobacillus plantarum DSM 2648, and Lactobacillus rhamnosus DSM 20021 by at least two orders of magnitude higher than positive control (using FOS as carbon source) within 24 h in vitro. Simulated gastrointestinal (pH 1) and α-amylase (pH 7) resistance were tested. Results showed more than 75% remaining after incubation at 37 °C after 6 h for all treatments except rice syrup. L. plantarum DSM 2648 + manno-oligosaccharides (Tr.1), L. plantarum DSM 2648 + EPS-TISTR 2612 (Tr.2), L. rhamnosus DSM 20021 + rice syrup-oligosaccharides (Tr.3), L.
    [Show full text]
  • Revised Glossary for AQA GCSE Biology Student Book
    Biology Glossary amino acids small molecules from which proteins are A built abiotic factor physical or non-living conditions amylase a digestive enzyme (carbohydrase) that that affect the distribution of a population in an breaks down starch ecosystem, such as light, temperature, soil pH anaerobic respiration respiration without using absorption the process by which soluble products oxygen of digestion move into the blood from the small intestine antibacterial chemicals chemicals produced by plants as a defence mechanism; the amount abstinence method of contraception whereby the produced will increase if the plant is under attack couple refrains from intercourse, particularly when an egg might be in the oviduct antibiotic e.g. penicillin; medicines that work inside the body to kill bacterial pathogens accommodation ability of the eyes to change focus antibody protein normally present in the body acid rain rain water which is made more acidic by or produced in response to an antigen, which it pollutant gases neutralises, thus producing an immune response active site the place on an enzyme where the antimicrobial resistance (AMR) an increasing substrate molecule binds problem in the twenty-first century whereby active transport in active transport, cells use energy bacteria have evolved to develop resistance against to transport substances through cell membranes antibiotics due to their overuse against a concentration gradient antiretroviral drugs drugs used to treat HIV adaptation features that organisms have to help infections; they
    [Show full text]
  • NADPH-Dependent A-Oxidation of Unsaturated Fatty Acids With
    Proc. Natl. Acad. Sci. USA Vol. 89, pp. 6673-6677, August 1992 Biochemistry NADPH-dependent a-oxidation of unsaturated fatty acids with double bonds extending from odd-numbered carbon atoms (5-enoyl-CoA/A3,A2-enoyl-CoA isomerase/A3',52'4-dienoyl-CoA isomerase/2,4-dienoyl-CoA reductase) TOR E. SMELAND*, MOHAMED NADA*, DEAN CUEBASt, AND HORST SCHULZ* *Department of Chemistry, City College of the City University of New York, New York, NY 10031; and tJoined Departments of Chemistry, Manhattan College/College of Mount Saint Vincent, Riverdale, NY 10471 Communicated by Salih J. Wakil, April 13, 1992 ABSTRACT The mitochondrial metabolism of 5-enoyl- a recent observation of Tserng and Jin (5) who reported that CoAs, which are formed during the (3-oxidation of unsaturated the mitochondrial -oxidation of 5-enoyl-CoAs is dependent fatty acids with double bonds extending from odd-numbered on NADPH. Their analysis of metabolites by gas chroma- carbon atoms, was studied with mitochondrial extracts and tography/mass spectrometry led them to propose that the purified enzymes of (3-oxidation. Metabolites were identified double bond of 5-enoyl-CoAs is reduced by NADPH to yield spectrophotometrically and by high performance liquid chro- the corresponding saturated fatty acyl-CoAs, which are then matography. 5-cis-Octenoyl-CoA, a putative metabolite of further degraded by P-oxidation. linolenic acid, was efficiently dehydrogenated by medium- This report addresses the question of how 5-enoyl-CoAs chain acyl-CoA dehydrogenase (EC 1.3.99.3) to 2-trans-5-cis- are chain-shortened by P-oxidation. We demonstrate that octadienoyl-CoA, which was isomerized to 3,5-octadienoyl- 5-enoyl-CoAs, after dehydrogenation to 2,5-dienoyl-CoAs, CoA either by mitochondrial A3,A2-enoyl-CoA isomerase (EC can be isomerized to 2,4-dienoyl-CoAs, which are reduced by 5.3.3.8) or by peroxisomal trifunctional enzyme.
    [Show full text]
  • Isolated Co-Lipase Deficiency in Two Brothers
    Gut: first published as 10.1136/gut.23.3.243 on 1 March 1982. Downloaded from Gut, 1982, 23, 243-246 Case reports Isolated co-lipase deficiency in two brothers H HILDEBRAND,* B BORGSTROM, A BEKASSY, C ERLANSON-ALBERTSSON, AND I HELIN From the Department ofPaediatrics and the Department ofPhysiological Chemistry, University ofLund, Sweden SUMMARY Two normally developed Assyrian brothers with isolated pancreatic co-lipase deficiency are described. They presented at the age of 5-6 years with loose stools. They had steatorrhoea, and analysis of exocrine pancreatic enzymes in the small intestine showed co-lipase deficiency, while amylase, chymotrypsin, trypsin, and lipase were normal. Intraduodenal infusion of purified co-lipase improved fat digestion measured by the triolein breath test. Their steatorrhoea diminished on treatment with enteric-coated pancreatic enzymes. The first indication for the existence of a co-factor for activities were assayed titrimetrically`5 using p-tosyl-l- pancreatic lipase was reported in 1963.1 In 1969 a arginine methyl ester (TAME) and N-acetyl-L-tyro- heat-stable co-factor was separated from lipase by gel- sine ethyl ester (ATEE), respectively, as substrates. filtration.2 Pure pancreatic lipase is inhibited by bile Lipase and co-lipase were measured titrimetrically salts in concentrations over their critical micellar con- using tributyrate as substrate.4 Total bile salt concen- centrations.3 The function of the co-factor, called co- trations and the ratio of glycine- to taurine-conjugated lipase, is to restore
    [Show full text]
  • Chapter 7. "Coenzymes and Vitamins" Reading Assignment
    Chapter 7. "Coenzymes and Vitamins" Reading Assignment: pp. 192-202, 207-208, 212-214 Problem Assignment: 3, 4, & 7 I. Introduction Many complex metabolic reactions cannot be carried out using only the chemical mechanisms available to the side-chains of the 20 standard amino acids. To perform these reactions, enzymes must rely on other chemical species known broadly as cofactors that bind to the active site and assist in the reaction mechanism. An enzyme lacking its cofactor is referred to as an apoenzyme whereas the enzyme with its cofactor is referred to as a holoenzyme. Cofactors are subdivided into essential ions and organic molecules known as coenzymes (Fig. 7.1). Essential ions, commonly metal ions, may participate in substrate binding or directly in the catalytic mechanism. Coenzymes typically act as group transfer agents, carrying electrons and chemical groups such as acyl groups, methyl groups, etc., depending on the coenzyme. Many of the coenzymes are derived from vitamins which are essential for metabolism, growth, and development. We will use this chapter to introduce all of the vitamins and coenzymes. In a few cases--NAD+, FAD, coenzyme A--the mechanisms of action will be covered. For the remainder of the water-soluble vitamins, discussion of function will be delayed until we encounter them in metabolism. We also will discuss the biochemistry of the fat-soluble vitamins here. II. Inorganic cation cofactors Many enzymes require metal cations for activity. Metal-activated enzymes require or are stimulated by cations such as K+, Ca2+, or Mg2+. Often the metal ion is not tightly bound and may even be carried into the active site attached to a substrate, as occurs in the case of kinases whose actual substrate is a magnesium-ATP complex.
    [Show full text]
  • SI Gene Sucrase-Isomaltase
    SI gene sucrase-isomaltase Normal Function The SI gene provides instructions for producing the enzyme sucrase-isomaltase. This enzyme is found in the intestinal tract, where it is involved in breaking down the sugars sucrose (a sugar found in fruits, and also known as table sugar) and maltose (the sugar found in grains). Sucrose and maltose are called disaccharides because they are each made up of two simple sugar molecules. Disaccharides must be broken down into simple sugar molecules to be digested properly. The sucrase-isomaltase enzyme is found on the surface of the intestinal epithelial cells, which are cells that line the walls of the intestine. These cells have fingerlike projections called microvilli that absorb nutrients from food as it passes through the intestine. Based on their appearance, groups of these microvilli are known collectively as the brush border. The role of the sucrase-isomaltase enzyme is to break down sucrose and maltose into simple sugars so that they can be absorbed by microvilli into intestinal epithelial cells. Health Conditions Related to Genetic Changes Congenital sucrase-isomaltase deficiency At least 10 mutations in the SI gene have been found to cause congenital sucrase- isomaltase deficiency. These mutations disrupt the folding and processing of the sucrose-isomaltase enzyme, transportation of the enzyme within the intestinal epithelial cells, the orientation of the enzyme to the cell surface, or its normal functioning. An impairment in any of these cell processes results in a sucrase-isomaltase enzyme that cannot effectively break down sucrose, maltose, or other compounds made from these sugar molecules (carbohydrates).
    [Show full text]
  • Enzymes Main Concepts: •Proteins Are Polymers Made up of Amino Acids
    Biology 102 Karen Bledsoe, Instructor Notes http://www.wou.edu/~bledsoek/ Chapter 6, section 4 Topic: Enzymes Main concepts: • Proteins are polymers made up of amino acids. Enzymes are a category of proteins. • Enzymes are catalysts. They speed up the rate of a chemical reaction by reducing the activation energy, which is the energy needed to carry out the reaction. An example of a catalyst: if you put a lit match to a sugar cube, it’s hard to make the sugar catch fire. But if you rub a corner of the sugar cube with ash or charcoal, it catches more easily. The ash or charcoal acts as a catalyst. • Many important chemical reactions in living cells can happen spontaneously, but these reactions happen too rarely and too slowly to sustain life. Enzymes make the reactions happen more quickly and more often. • Some reactions happen too violently to support life. Sugar, when burned, released a lot of energy, but the energy is mostly heat. A rapid reaction like that would overheat our cells. Enzyme-controlled reactions can release energy from sugar in a way that captures most of the energy and loses less of the energy as heat, so that the energy is useful to the cell and does not overheat the cell. • The structure of enzymes allows them to carry out reactions. Each enzyme is shaped to carry out only one specific reaction. This is known as enzyme specificity. Amylase, for example, is an enzyme that breaks down starch into glucose. Amylase only breaks down starch; it does not break down any other molecule, nor does it build starch out of glucose.
    [Show full text]
  • Congenital Sucrase-Isomaltase Deficiency
    Congenital sucrase-isomaltase deficiency Description Congenital sucrase-isomaltase deficiency is a disorder that affects a person's ability to digest certain sugars. People with this condition cannot break down the sugars sucrose and maltose. Sucrose (a sugar found in fruits, and also known as table sugar) and maltose (the sugar found in grains) are called disaccharides because they are made of two simple sugars. Disaccharides are broken down into simple sugars during digestion. Sucrose is broken down into glucose and another simple sugar called fructose, and maltose is broken down into two glucose molecules. People with congenital sucrase- isomaltase deficiency cannot break down the sugars sucrose and maltose, and other compounds made from these sugar molecules (carbohydrates). Congenital sucrase-isomaltase deficiency usually becomes apparent after an infant is weaned and starts to consume fruits, juices, and grains. After ingestion of sucrose or maltose, an affected child will typically experience stomach cramps, bloating, excess gas production, and diarrhea. These digestive problems can lead to failure to gain weight and grow at the expected rate (failure to thrive) and malnutrition. Most affected children are better able to tolerate sucrose and maltose as they get older. Frequency The prevalence of congenital sucrase-isomaltase deficiency is estimated to be 1 in 5, 000 people of European descent. This condition is much more prevalent in the native populations of Greenland, Alaska, and Canada, where as many as 1 in 20 people may be affected. Causes Mutations in the SI gene cause congenital sucrase-isomaltase deficiency. The SI gene provides instructions for producing the enzyme sucrase-isomaltase.
    [Show full text]
  • K113436 B. Purpose for Submi
    510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY ASSAY ONLY TEMPLATE A. 510(k) Number: k113436 B. Purpose for Submission: New device C. Measurand: Alkaline Phosphatase, Amylase, and Lactate Dehydrogenase D. Type of Test: Quantitative, enzymatic activity E. Applicant: Alfa Wassermann Diagnostic Technologies, LLC F. Proprietary and Established Names: ACE Alkaline Phosphatase Reagent Amylase Reagent ACE LDH-L Reagent G. Regulatory Information: Product Classification Regulation Section Panel Code CJE II 862.1050, Alkaline phosphatase 75-Chemistry or isoenzymes test system CIJ II 862.1070, Amylase test system 75-Chemistry CFJ II, exempt, meets 862.1440, Lactate 75-Chemistry limitations of dehydrogenase test system exemption. 21 CFR 862.9 (c) (4) and (9) H. Intended Use: 1. Intended use(s): See indications for use below. 2. Indication(s) for use: The ACE Alkaline Phosphatase Reagent is intended for the quantitative determination of alkaline phosphatase activity in serum using the ACE Axcel Clinical Chemistry System. Measurements of alkaline phosphatase are used in the diagnosis and treatment of liver, bone, parathyroid and intestinal diseases. This test is intended for use in clinical laboratories or physician office laboratories. For in vitro diagnostic use only. The ACE Amylase Reagent is intended for the quantitative determination α-amylase activity in serum using the ACE Axcel Clinical Chemistry System. Amylase measurements are used primarily for the diagnosis and treatment of pancreatitis (inflammation of the pancreas). This test is intended for use in clinical laboratories or physician office laboratories. For in vitro diagnostic use only. The ACE LDH-L Reagent is intended for the quantitative determination of lactate dehydrogenase activity in serum using the ACE Axcel Clinical Chemistry System.
    [Show full text]
  • Extrapancreatic Sources of Lipase
    Clinical Chemistry Byline David Parry, PhD, FCACB St. Boniface General Hospital James Dalton, PhD, FCACB Health Sciences Centre Extrapancreatic Sources of Lipase Reports now abound in the literature indicating that serum lipase is more specific and sensitive than amylase for detecting acute pancreatitis in patients presenting with acute abdominal pain (1-7). Amylase has been the mainstay biochemical test for the investigation of acute pancreatitis for many years, whereas lipase has not been widely used primarily because, until recently, reliable lipase assays were not suitable for rapid turnaround of results. Now, reliable and rapid lipase results are available at HSC, St. Boniface General Hospital, Seven Oaks General Hospital and Grace General Hospital. It is generally well appreciated that increases in serum amylase are seen not only in pancreatic disorders, but also in a number of non-pancreatic abdominal and non-abdominal diseases (1). With increased use of lipase, it has become increasingly recognized that lipase too can be elevated in clinical conditions that do not involve the pancreas. Even though the superiority of lipase over amylase for investigating acute pancreatitis has been shown repeatedly in recent literature (2-5), it is important to be aware that there are a number of clinical conditions that can give rise to elevated nonpancreatic lipase: 1) A recent study (2) has shown that some patients presenting with acute abdominal pain have elevations in serum lipase that are due to extrapancreatic disease processes. The sources of elevated lipase were attributed to a number of intra-abdominal anatomic locations other than the pancreas, including the biliary tract, esophagus, stomach, duodenum and small intestine.
    [Show full text]
  • Diagnostic Value of Serum Enzymes-A Review on Laboratory Investigations
    Review Article ISSN 2250-0480 VOL 5/ ISSUE 4/OCT 2015 DIAGNOSTIC VALUE OF SERUM ENZYMES-A REVIEW ON LABORATORY INVESTIGATIONS. 1VIDYA SAGAR, M.SC., 2DR. VANDANA BERRY, MD AND DR.ROHIT J. CHAUDHARY, MD 1Vice Principal, Institute of Allied Health Sciences, Christian Medical College, Ludhiana 2Professor & Ex-Head of Microbiology Christian Medical College, Ludhiana 3Assistant Professor Department of Biochemistry Christian Medical College, Ludhiana ABSTRACT Enzymes are produced intracellularly, and released into the plasma and body fluids, where their activities can be measured by their abilities to accelerate the particular chemical reactions they catalyze. But different serum enzymes are raised when different tissues are damaged. So serum enzyme determination can be used both to detect cellular damage and to suggest its location in situ. Some of the biochemical markers such as alanine aminotransferase, aspartate aminotransferase, alkaline phasphatase, gamma glutamyl transferase, nucleotidase, ceruloplasmin, alpha fetoprotein, amylase, lipase, creatine phosphokinase and lactate dehydrogenase are mentioned to evaluate diseases of liver, pancreas, skeletal muscle, bone, etc. Such enzyme test may assist the physician in diagnosis and treatment. KEYWORDS: Liver Function tests, Serum Amylase, Lipase, CPK and LDH. INTRODUCTION mitochondrial AST is seen in extensive tissue necrosis during myocardial infarction and also in chronic Liver diseases like liver tissue degeneration DIAGNOSTIC SERUM ENZYME and necrosis². But lesser amounts are found in Enzymes are very helpful in the diagnosis of brain, pancreas and lung. Although GPT is plentiful cardiac, hepatic, pancreatic, muscular, skeltal and in the liver and occurs only in the small amount in malignant disorders. Serum for all enzyme tests the other tissues.
    [Show full text]
  • Digestive Enzyme: Amylase
    DIGESTIVE ENZYME: AMYLASE BACKGROUND Caution: Most animals begin their digestion in their mouths. Chewing breaks up Lugol’s solution is slightly large pieces of food and chemicals in the saliva begin breaking apart hazardous: molecules of starch. In this experiment we add saliva to crackers to • It should not be observe the how quickly this process begins to happen. handled by small children. Basic definitions: • It is dangerous if Amylase: an enzyme that breaks down starch into sugars. swallowed. Enzyme: a protein that speeds up a chemical reaction. • Participants should Chemical Indicator: a chemical that allows you to observe that a wear gloves. reaction has taken place. • Adults should place Starch: a complex arrangement of sugar molecules. the Lugol’s solution into a small dropper Starch is a long group of glucose (sugar) molecules bonded together. bottle for youth to Amylose is the starch form that’s found in crackers. In amylose, the use. sugar molecules form a structure that has small spaces in between the molecules of sugar. Lugol’s solution contains iodine molecules that fit Skills: tightly inside these small spaces. When the iodine molecules are inside • Observation, these small spaces between bonded sugar molecules, the iodine looks teamwork. blue-black in color. If the sugar molecules begin to break apart and release the iodine molecules, the indicator solution looks light brown- Grade Levels: Grades 4 - brown in color. 12 Amylase is the protein that breaks apart starch into sugars. Amylase is a • Time: 15 – 20 minutes chemical found in the saliva of many animals. Number of Youth: Materials for each test group: Any Lugol’s Solution (2%) in small dropper bottle 2 test tubes with lids : 25ml or 50 ml Supplies Needed: Small cup of water Materials for each test Crushed saltine cracker in zip lock bag group: 5-7 plastic cups: 3 oz.
    [Show full text]