The Periepiglottic Space: Topographic Relations and Histological Organisation

Total Page:16

File Type:pdf, Size:1020Kb

The Periepiglottic Space: Topographic Relations and Histological Organisation J. Anat. (1996) 188, pp. 173-182, with 9 figures Printed in Great Britain 173 The periepiglottic space: topographic relations and histological organisation MARTINA MARIA REIDENBACH Institute of Anatomy, Rheinische Friedrich-Wilhelms-Universitat, Bonn, Germany (Accepted 10 July 1995) ABSTRACT Important aspects of histological organisation and topographic relations of the pre-epiglottic space are not fully understood. This region was therefore reinvestigated in plastinated serial sections of 19 human adult specimens. The cranial part of the pre-epiglottic space is homogenously filled with adipose tissue and extends around the epiglottis in a horseshoe fashion. Therefore, the term periepiglottic space (PES) is a more accurate description of this region. The cranial border of the PES is constituted by the hyoepiglottic membrane, which extends between the epiglottis and the tongue, and the hyoepiglottic ligament. The ligament consists of a cranial fibre layer anchored within the lingual muscles, and a caudal layer attached to the hyoid bone. Anterior to the lingual surface of the epiglottis, both fibre layers become apposed to form a dense collagenous mass, which may stabilise the epiglottis during deglutition. Contractions of the infrahyoid muscles will be transmitted to the thyrohyoid membrane anterior to the PES by numerous collagenous septa which originate from the membrane and radiate into the muscles. In contrast, the pre-epiglottic adipose tissue is not connected to the thyrohyoid membrane. The caudal part of the PES is subdivided by two paramedian sagittal collagenous septa. They include a medial compartment bordered by the epiglottis posteriorly and the thyroepiglottic ligament inferiorly. The two lateral subdivisions of the PES extend between the glands of the vestibular folds and towards the aryepiglottic folds, but a distinct confining collagenous layer is absent there. Posterolaterally, the PES is separated from the paraglottic space by the thyroarytenoid muscle and by a cranial extension of the fibrous sheet of the muscle. This collagenous tissue is often split into several layers and displays gaps which may facilitate the spread of malignancies. Key words-: Human larynx; deglutition; laryngeal carcinoma. epiglottic space is described as continuing into the INTRODUCTION adjacent laryngeal tissues. The hyoepiglottic mem- The term 'pre-epiglottic space' is not mentioned in the brane is also not mentioned in the Nomina Anatomica Nomina Anatomica (International Anatomical No- (International Anatomical Nomenclature Committee, menclature Committee, 1983, 1989), but it is defined 1983, 1989). According to recent investigations in the anatomical literature. According to Pernkopf (Vandaele et al. 1995), it is part of the submucosal (1952), Lanz & Wachsmuth (1955) and Zenker (1958), fascial tissue of the laryngopharynx and covers the the pre-epiglottic space has the following boundaries hyoepiglottic ligament cranially. This ligament (Fig. 1 a): anteriorly, the thyrohyoid membrane with connects the lingual surface of the epiglottis and the the thyrohyoid ligaments, and the cranial part of the hyoid bone (Williams et al. 1989). thyroid cartilage; superiorly, the hyoepiglottic mem- The pre-epiglottic space contains adipose tissue brane and the hyoepiglottic ligament; posteriorly, the (Pernkopf, 1952; Lanz & Wachsmuth, 1955; Anson & lingual surface of the epiglottis; inferiorly, the McVay, 1971; Williams et al. 1989), the 'corpus attachment of the epiglottis to the thyroid cartilage by adiposum pre-epiglotticum' of the Nomina the thyroepiglottic ligament. Laterally, the pre- Anatomica (International Anatomical Nomenclature Correspondence to Dr Martina Maria Reidenbach, Institute of Anatomy, Rheinische Friedrich-Wilhelms-Universitat, Nussallee 10, 53115 Bonn, Germany. 174 M. M. Reidenbach ~ ~~~~W.w. ..1W : -4r -1? Fig. 1. Schematic drawing ofmedian sagittal section oflarynx, viewed medially. (a) Topography ofthe pre-epiglottic space and its boundaries according to the literature. Asterisk, pre-epiglottic space, containing pre-epiglottic fat pad; arrow, hyoepiglottic membrane; 1, median hyoepiglottic ligament; 2, median thyrohyoid ligament; 3, thyroepiglottic ligament; 4, root of tongue; 5, epiglottis; 6, thyroid cartilage; 7, cricoid lamina; 8, cricoid arch; 9, hyoid bone; 10, transverse arytenoid muscle; 11, laryngeal ventricle. (b) Planes of horizontal (cf. Figs 3-7) and frontal (cf. Fig. 8) sections. Committee, 1989; not included in the earlier 1983 According to Sato et al. (1993), the posteroinferiot edition). During deglutition, this fat pad is deformed boundary is constituted by the thyroglottic ligament. and pressed against the epiglottis, causing it to descend This ligament was observed in a fetal larynx of 24 wk and partly close and protect the entrance of the larynx by Tucker & Smith (1962), who introduced the term (Passavant, 1886; Fink, 1975, 1976; Fink et al. 1979). 'thyroglottic ligamdnt'. The authors applied it to a From a clinical standpoint, the pre-epiglottic space is collagenous layer fanning out between the anterior ofgreat interest, particularly with regard to the spread part of the vocal cord and the thyroid cartilage. of laryngeal carcinoma. Tumours arising cranial to Concerning the posterior boundary of the pre- the glottis frequently invade the pre-epiglottic space epiglottic space, Clerf (1944) pointed out that it is (Clerf, 1944; Bocca et al. 1968; Olofsson & van constituted by an elastic membrane, in addition to the Nostrand, 1973; Micheau et al. 1976; Kirchner, 1977; narrow lower part of the epiglottis. However, the Million, 1993). In the literature, there is no agreement author did not provide further information on this as to whether the pre-epiglottic space is subdivided by membrane. collagenous septa which may represent anatomical Altogether, important aspects of histological or- barriers against tumour growth. Some authors have ganisation and topographic relations of the pre- described a collagenous layer completely dividing the epiglottic space are still a matter of controversy. This pre-epiglottic space along the median sagittal plane physiologically and clinically interesting anatomical (Testut & Jacob, 1914; Testut, 1930; Guerrier & region has therefore been reinvestigated in the present Andrea, 1973). This septum is not mentioned else- study. The study is based on the examination ofwhole where (Pernkopf, 1952; Lanz & Wachsmuth, 1955; organ sections of human adult larynges and the Braus & Elze, 1956; Anson & McVay, 1971; Maguire adjacent pre-epiglottic regions. For tissue preparation, & Dayal, 1974; Williams et al. 1989). Dayal et al. the technique of plastination was applied, which is (1972) described a condensation of fibroelastic tissue advantageous for the examination both of the healthy in the midline of the pre-epiglottic space, but denied (Eckel et al. 1993) and diseased (Eckel, 1993) larynx. the existence of a sharply defined septum. It is not fully understood which anatomical structures border the pre-epiglottic space inferiorly and posteriorly. Periepiglottic space 175 MATERIALS AND METHODS RESULTS Terminology The anatomical structures which border the PES Maguire & Dayal (1974) found the pre-epiglottic cranially and ventrally can be defined easily. In space to extend around the epiglottis in a horseshoe contrast, the topographic relations of its posterior, fashion. They therefore suggested the term 'peri- inferior and lateral extensions are much more com- epiglottic space', which is more accurate and has been plicated. They depend on the level of investigation, as adopted in this work, abbreviated to PES. does the histological organisation of the contents of The material was taken from 19 human cadavers (9 the PES. males, 10 females) aged between 44 and 87 y (mean 65.8 y). The cause of death was unrelated to upper Cranial border of the PES airways or digestive tract disease or injury. The larynges with the PES and the thyrohyoid membrane, Cranially, the PES is bordered by several layers of the hyoid bone and the root of the tongue were collagen fibres, which are loosely apposed and extend removed en bloc. The specimens were fixed by in an anteroposterior direction (Fig. 2a). The cranial immersion in a 10% formaldehyde solution for at fibres radiate into the muscle tissue at the root of the least 3 months and were then subjected to a tongue, whereas the caudal fibre group is attached to plastination process (Fritsch, 1988, 1989a; Schmolke, the periosteum of the upper rim of the hyoid bone. A 1994). After rinsing in water for 48 h to remove the few of the cranial fibres course beneath the mucosal formaldehyde, the specimens were dehydrated in lining of the epiglottic valleculae and join the 100% acetone at -25 °C (Schwab & Hagens, 1981) perichondrium anterior to the free part of the changed weekly for 4 wk. This was followed by epiglottis. These fibres constitute the weak another 2 wk in 100 % acetone at room temperature hyoepiglottic membrane. The remaining collagen to dissolve the fat. Impregnation was then performed fibres of both the cranial and caudal layers interlace in a vacuum chamber (Hagens, 1985) with a mixture into the dense fibrous mass of the median of the epoxy resins Biodur E12 (2 parts) and Biodur hyoepiglottic ligament (Fig. 2a). This extends E6 (1 part), and the accelerator Biodur E600 caudalward at the lingual surface of the epiglottis and (0.2 vol %) over 2 wk. After another 2 wk of poly- contains numerous groups of glands. A few merisation at 50 °C, the epoxy
Recommended publications
  • Larynx Anatomy
    LARYNX ANATOMY Elena Rizzo Riera R1 ORL HUSE INTRODUCTION v Odd and median organ v Infrahyoid region v Phonation, swallowing and breathing v Triangular pyramid v Postero- superior base àpharynx and hyoid bone v Bottom point àupper orifice of the trachea INTRODUCTION C4-C6 Tongue – trachea In women it is somewhat higher than in men. Male Female Length 44mm 36mm Transverse diameter 43mm 41mm Anteroposterior diameter 36mm 26mm SKELETAL STRUCTURE Framework: 11 cartilages linked by joints and fibroelastic structures 3 odd-and median cartilages: the thyroid, cricoid and epiglottis cartilages. 4 pair cartilages: corniculate cartilages of Santorini, the cuneiform cartilages of Wrisberg, the posterior sesamoid cartilages and arytenoid cartilages. Intrinsic and extrinsic muscles THYROID CARTILAGE Shield shaped cartilage Right and left vertical laminaà laryngeal prominence (Adam’s apple) M:90º F: 120º Children: intrathyroid cartilage THYROID CARTILAGE Outer surface à oblique line Inner surface Superior border à superior thyroid notch Inferior border à inferior thyroid notch Superior horns à lateral thyrohyoid ligaments Inferior horns à cricothyroid articulation THYROID CARTILAGE The oblique line gives attachement to the following muscles: ¡ Thyrohyoid muscle ¡ Sternothyroid muscle ¡ Inferior constrictor muscle Ligaments attached to the thyroid cartilage ¡ Thyroepiglottic lig ¡ Vestibular lig ¡ Vocal lig CRICOID CARTILAGE Complete signet ring Anterior arch and posterior lamina Ridge and depressions Cricothyroid articulation
    [Show full text]
  • How the Larynx (Voice Box) Works
    How the Larynx (Voice Box) Works Charles R. Larson, PhD If you love opera, or if you admire the voices of pop singers such as Celine Dion or Barbra Streisand, you may have wondered how it is these marvelous singers are able to create such beautiful music with this instrument we call the human voice. You may also know of someone who has a bad voice or has had to have their voice box, or larynx, removed because of illness or injury. The larynx is a critical organ of human speech and singing, and it serves important biological functions as well. Let's have a look at the larynx to understand its functions, what it looks like and how it works. It is thought that the same factors that favored the evolution of air‐breathing animals on earth led to the evolution of the larynx. Lungs are comprised of very delicate tissues that must be maintained within strict biological limits, that is, temperature, humidity and freedom from foreign particles. Thus, along with the first air‐breathing animals, there appeared a primitive sort of larynx, whose one and only function was protection of the lung. This function remains the most important of those the larynx has assumed in subsequent evolutionary developments. Now, of course we recognize that the larynx is critical for human speech and singing. But we also should realize that the larynx is important for swallowing, coughing, vomiting and eliminating contents of the abdomen. If you have ever felt your 'Adam's Apple', then you know where the larynx is.
    [Show full text]
  • Understanding Your Child's Videofluoroscopy
    Understanding your child’s videofluoroscopy swallow study report This leaflet will explain some of the words used by the speech and language therapist (SLT) in the letter sent out after the videofluoroscopy swallow study. The recommendations introduce some of the ways that your child’s problems with swallowing can be managed. If you have any questions or concerns, please speak to your SLT. What happens during swallowing? Swallowing is a series of movements that prepares food and fluid in the mouth, and then delivers it through the pharynx and oesophagus to the stomach. This is a diagram of the inside of the mouth and throat. You might find it useful to refer to when reading the information in this leaflet. 1 Tongue 2 Hard palate (roof of the mouth) 3 Soft palate (soft tissue at the back of the roof of the mouth) 4 Pharynx or throat (tube that connects the mouth and nostrils to the gullet) 5 Valeculae (depression below the root of the tongue) 6 Epiglottis (cartilage flap attached at the top of the larynx) 7 Pyriform sinuses (recesses on either side of the entrance to the larynx) 8 Larynx (the voice box, which is located at the top of the airway) 9 Vocal cords (two membranes which vibrate when speaking and move together when swallowing. This movement is a protective mechanism to stop food or drink entering the airway. The vocal cords are located in the voice box.) 10 Trachea (tube connecting the larynx to the lungs) 11 Upper oesophageal sphincter (muscular ring at the entrance to the oesophagus to reduce the risk of food coming back up) 12 Gullet or oesophagus (tube connecting the pharynx to the stomach) 1 of 3 Swallowing phases Swallowing involves three phases: 1.
    [Show full text]
  • Larynx 2017‐2018 Naaccr Webinar Series
    NAACCR 2017-2018 Webinar Series 11/2/2017 COLLECTING CANCER DATA: LARYNX 2017‐2018 NAACCR WEBINAR SERIES Q&A • Please submit all questions concerning webinar content through the Q&A panel. • Reminder: • If you have participants watching this webinar at your site, please collect their names and emails. • We will be distributing a Q&A document in about one week. This document will fully answer questions asked during the webinar and will contain any corrections that we may discover after the webinar. 2 Larynx 1 NAACCR 2017-2018 Webinar Series 11/2/2017 Fabulous Prizes 3 AGENDA • Anatomy • Epi Moment • Quiz 1 • Staging • Treatment • Quiz 2 • Case Scenarios 4 Larynx 2 NAACCR 2017-2018 Webinar Series 11/2/2017 ANATOMY LARYNX 5 LARYNX ANATOMY • Voice Box • Passageway of air • Extends from C3 to C6 vertebrae 6 Larynx 3 NAACCR 2017-2018 Webinar Series 11/2/2017 LARYNX ANATOMY • Divided into 3 Sections • Supraglottis • area above vocal cords, contains epiglottis • arytenoids, aryepiglottic folds and false cords • Glottis • containing true vocal cords, anterior and posterior commissures • Subglottis • below the vocal cords 7 LARYNX ANATOMY • Epiglottis • Aryepiglottic Folds • Anterior and Posterior • False vocal cords Commissure • True vocal cords • Arytenoids 8 Larynx 4 NAACCR 2017-2018 Webinar Series 11/2/2017 LARYNX ANATOMY • Thyroid cartilage • Arytenoid cartilage • Adam’s apple • Influence position and tension of the • Thyrohyoid membrane vocal cords • Cricoid cartilage • Corniculate cartilage • Inferior wall of larynx • Horn shaped pieces located
    [Show full text]
  • Epiglottis Reconstruction with Auricular Free Flap For
    ISSN: 2572-4193 Bottini et al. J Otolaryngol Rhinol 2017, 3:032 DOI: 10.23937/2572-4193.1510032 Volume 3 | Issue 2 Journal of Open Access Otolaryngology and Rhinology CASE REPORT Epiglottis Reconstruction with Auricular Free Flap for Re- habilitation of Dysphagia: A Case Study Battista Bottini G1*, Brandtner C1, Rasp G2 and Gaggl A1 1Department of Oral and Maxillofacial Surgery, University Hospital, Private Medical University Paracelsus, Austria 2Department of Ear, Nose and Throat, University Hospital, Private Medical University Paracelsus, Check for updates Austria *Corresponding author: Gian Battista Bottini, MD, DMD, Department of Oral and Maxillofacial Surgery, Uni- versity Hospital, Private Medical University Paracelsus, 48 Muellner Hauptstrasse, 5020 Salzburg, Austria, Tel: +43(0)57255-57230, Fax: +43(0)57255-26499, E-mail: [email protected] and requires a coordinated activity of nerves, muscles, Abstract the hyoid bone and the larynx [1]. The process can be Supraglottic laryngectomy for laryngeal cancer aims to remove divided in stages: oral pharyngeal and oesophageal [1]. cancer of the larynx whilst preserving its functions of airway protection, breathing and voice production. A well-known long- During the pharyngeal stage, the vocal cords adduct term complication of this procedure is aspiration. to seal the glottis and the arytenoid tilt forward to con- We present a case of a delayed epiglottis reconstruction tact the epiglottis base. with auricular free flap for surgical rehabilitation of dyspha- gia. Primarily the patient underwent supraglottic laryngecto- When the hyo-laryngeal complex is pulled in anterior my, bilateral neck dissection and radiotherapy. She had a and superior direction against the base of the tongue, permanent tracheostoma because of a complete paralysis the epiglottis, acting like a shield, tilts backwards and of the right vocal cord and a residual minimal mobility of the covers completely the glottis [1].
    [Show full text]
  • Unusual Organization of the Ansa Cervicalis: a Case Report
    CASE REPORT ISSN- 0102-9010 UNUSUAL ORGANIZATION OF THE ANSA CERVICALIS: A CASE REPORT Ranjana Verma1, Srijit Das2 and Rajesh Suri3 Department of Anatomy, Maulana Azad Medical College, New Delhi-110002, India. ABSTRACT The superior root of the ansa cervicalis is formed by C1 fibers carried by the hypoglossal nerve, whereas the inferior root is contributed by C2 and C3 nerves. We report a rare finding in a 40-year-old male cadaver in which the vagus nerve fused with the hypoglossal nerve immediately after its exit from the skull on the left side. The vagus nerve supplied branches to the sternohyoid, sternothyroid and superior belly of the omohyoid muscles and also contributed to the formation of the superior root of the ansa cervicalis. In this arrangement, paralysis of the infrahyoid muscles may result following lesion of the vagus nerve anywhere in the neck. The cervical location of the vagus nerve was anterior to the common carotid artery within the carotid sheath. This case report may be of clinical interest to surgeons who perform laryngeal reinnervation and neurologists who diagnose nerve disorders. Key words: Ansa cervicalis, hypoglossal nerve, vagus nerve, variations INTRODUCTION cadaver. The right side was normal. The neck region The ansa cervicalis is a nerve loop formed was dissected and the neural structures in the carotid by the union of superior and inferior roots. The and muscular triangle regions were exposed, with superior root is a branch of the hypoglossal nerve particular attention given to the organization of the containing C1 fibers, whereas the inferior root is ansa cervicalis.
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • The Role of Strap Muscles in Phonation Laryngeal Model in Vivo
    Journal of Voice Vol. 11, No. 1, pp. 23-32 © 1997 Lippincott-Raven Publishers, Philadelphia The Role of Strap Muscles in Phonation In Vivo Canine Laryngeal Model Ki Hwan Hong, *Ming Ye, *Young Mo Kim, *Kevin F. Kevorkian, and *Gerald S. Berke Department of Otolaryngology, Chonbuk National University, Medical School, Chonbuk, Korea; and *Division of Head and Neck Surgery, UCLA School of Medicine, Los Angeles, California, U.S.A. Summary: In spite of the presumed importance of the strap muscles on laryn- geal valving and speech production, there is little research concerning the physiological role and the functional differences among the strap muscles. Generally, the strap muscles have been shown to cause a decrease in the fundamental frequency (Fo) of phonation during contraction. In this study, an in vivo canine laryngeal model was used to show the effects of strap muscles on the laryngeal function by measuring the F o, subglottic pressure, vocal in- tensity, vocal fold length, cricothyroid distance, and vertical laryngeal move- ment. Results demonstrated that the contraction of sternohyoid and sternothy- roid muscles corresponded to a rise in subglottic pressure, shortened cricothy- roid distance, lengthened vocal fold, and raised F o and vocal intensity. The thyrohyoid muscle corresponded to lowered subglottic pressure, widened cricothyroid distance, shortened vocal fold, and lowered F 0 and vocal inten- sity. We postulate that the mechanism of altering F o and other variables after stimulation of the strap muscles is due to the effects of laryngotracheal pulling, upward or downward, and laryngotracheal forward bending, by the external forces during strap muscle contraction.
    [Show full text]
  • Medical Term for Throat
    Medical Term For Throat Quintin splined aerially. Tobias griddles unfashionably. Unfuelled and ordinate Thorvald undervalues her spurges disroots or sneck acrobatically. Contact Us WebsiteEmail Terms any Use Medical Advice Disclaimer Privacy. The medical term for this disguise is called formication and it been quite common. How Much sun an Uvulectomy in office Cost on Me MDsave. The medical term for eardrum is tympanic membrane The direct ear is. Your throat includes your esophagus windpipe trachea voice box larynx tonsils and epiglottis. Burning mouth syndrome is the medical term for a sequence-lastingand sometimes very severeburning sensation in throat tongue lips gums palate or source over the. Globus sensation can sometimes called globus pharyngeus pharyngeus refers to the sock in medical terms It used to be called globus. Other medical afflictions associated with the pharynx include tonsillitis cancer. Neil Van Leeuwen Layton ENT Doctor Tanner Clinic. When we offer a throat medical conditions that this inflammation and cutlery, alcohol consumption for air that? Medical Terminology Anatomy and Physiology. Empiric treatment of the lining of the larynx and ask and throat cancer that can cause nasal cavity cancer risk of the term throat muscles. MEDICAL TERMINOLOGY. Throat then Head wrap neck cancers Cancer Research UK. Long term monitoring this exercise include regular examinations and. Long-term a frequent exposure to smoke damage cause persistent pharyngitis. Pharynx Greek throat cone-shaped passageway leading from another oral and. WHAT people EXPECT ON anything LONG-TERM BASIS AFTER A LARYNGECTOMY. Sensation and in one of causes to write the term for throat medical knowledge. The throat pharynx and larynx is white ring-like muscular tube that acts as the passageway for special food and prohibit It is located behind my nose close mouth and connects the form oral tongue and silk to the breathing passages trachea windpipe and lungs and the esophagus eating tube.
    [Show full text]
  • Variation of the Infrahyoid Muscle: Duplicated Omohyoid and Appearance of the Levator Glandulae Thyroideae Muscles
    DOI 10.3349/ymj.2010.51.6.984 Case Report pISSN: 0513-5796, eISSN: 1976-2437 Yonsei Med J 51(6):984-986, 2010 Variation of the Infrahyoid Muscle: Duplicated Omohyoid and Appearance of the Levator Glandulae Thyroideae Muscles Deog-Im Kim,1 Ho-Jeong Kim,2 Jae-Young Park,2 and Kyu-Seok Lee2 1Department of Anatomy, Catholic Institution for Applied Anatomy, College of Medicine, The Catholic University of Korea, Seoul; 2Department of Anatomy, Kwandong University College of Medicine, Gangneung, Korea. Received: November 21, 2008 The embryologic origin of the omohyoid muscle is different from that of the other Revised: March 23, 2009 neck muscles. A number of variations such as the absence of muscle, variable sites Accepted: March 27, 2009 of origin and insertion, and multiple bellies have been reported. However, varia- Corresponding author: Dr. Kyu-Seok Lee, tions in the inferior belly of the omohyoid muscle are rare. There have been no Department of Anatomy, Kwandong University reports of the combined occurrence of the omohyoid muscle variation with the College of Medicine, 522 Naegok-dong, appearance of the levator glandulase thyroideae muscle. Routine dissection of a 51- Gangneung 210-701, Korea. year-old female cadaver revealed a duplicated omohyoid muscle and the appea- Tel: 82-33-649-7473, Fax: 82-33-641-1074 rance of the levator glandulae thyroideae muscle. In this case, the two inferior E-mail: [email protected] bellies of the omohyoid muscle were found to originate inferiorly from the superior border of the scapula. One of the inferior bellies generally continued to the superior ∙The authors have no financial conflicts of belly with the tendinous intersection.
    [Show full text]
  • An Anomalous Digastric Muscle in the Carotid Sheath: a Case Report with Its
    Short Communication 2020 iMedPub Journals Journal of Stem Cell Biology and Transplantation http://journals.imedpub.com Vol. 4 ISS. 4 : sc 37 ISSN : 2575-7725 DOI : 10.21767/2575-7725.4.4.37 8th Edition of International Conference on Clinical and Medical Case Reports - An anomalous digastric muscle in the carotid sheath: a case report with its embryological perspective and clinical relevance Srinivasa Rao Sirasanagandla Sultan Qaboos University, Oman Abstract Key words: Although infrahyoid muscles show considerable variations in Anterior belly, Posterior belly, Variation, Stylohyoid muscle, My- their development, existence of an anomalous digastric muscle lohyoid muscle, Hyoid bone in the neck was seldom reported. During dissection of trian- Anatomy gles of the neck for medical undergraduate students, we came across an anomalous digastric muscle in the carotid sheath of There is a pair of digastric muscles in the neck, and each digas- left side of neck. It was observed in a middle-aged cadaver at tric muscle has the anterior belly and the posterior belly. The College of Medicine and Health Sciences, Sultan Qaboos Uni- anterior belly is attached to the digastric fossa on the base of versity, Muscat, Oman. Digastric muscle was located within the the mandible close to the midline and runs toward the hyoid carotid sheath between the common and internal carotid arter- bone. The posterior belly is attached to the notch of the mas- ies and internal jugular vein. It had two bellies; cranial belly and toid process of the temporal bone and also runs toward the caudal belly which were connected by an intermediate tendon.
    [Show full text]
  • The Anomalous Human Levator Claviculae Muscle: a Case Report
    Central Annals of Vascular Medicine & Research Case Report *Corresponding author Kunwar P Bhatnagar, Department of Anatomical Sciences and Neurobiology, University of Louisville, 7000 Creekton, USA, Tel: 150-2456-4779; Email: bhatnagar@ The Anomalous Human Levator louisville.edu Submitted: 08 February 2021 Claviculae Muscle: A Case Accepted: 20 February 2021 Published: 24 February 2021 ISSN: 2378-9344 Report Copyright © 2021 Bhatnagar KP, et al. Kunwar P Bhatnagar1* and Timothy D Smith2 OPEN ACCESS 1Department of Anatomical Sciences and Neurobiology, University of Louisville, USA 2School of Physical Therapy, Slippery Rock University, USA Keywords • Anomalous muscle • Levator claviculae Abstract • omo-trachelien • Omocervicalis This case report describes the observation of a unilaterally present anomalous levator claviculae muscle in a 66 -year-old human male. The observations were made during routine laboratory dissections. In our 80- • Sternomastoideus some years of cumulative human dissection education prior to this detection, this was the first observation (with about 45 cadavers dissected yearly) of this muscle. The levator claviculae muscle was observed with intact nerve supply from the ventral ramus of C3, indicating its functional status. The muscle was lambda (λ)-shaped with its stem oriented cranially, attaching to the fascia of the longus capitis muscle at the level of the transverse process of the fourth cervical vertebra. More inferiorly, the stem splits into a pars medialis and pars lateralis each with fascial attachments to the clavicle within the middle third of the bone. Both parts had fascial attachments to the clavicle within the middle third of the bone, and the lateral part passed medial to the external jugular vein.
    [Show full text]