A Universal Slope Set for 1-Bend Planar Drawings Patrizio Angelini1, Michael A. Bekos2, Giuseppe Liotta3, and Fabrizio Montecchiani4 1 Wilhelm-Schickhard-Institut für Informatik, Universität Tübingen, Tübingen, Germany
[email protected] 2 Wilhelm-Schickhard-Institut für Informatik, Universität Tübingen, Tübingen, Germany
[email protected] 3 Universitá degli Studi di Perugia, Perugia, Italy
[email protected] 4 Universitá degli Studi di Perugia, Perugia, Italy
[email protected] Abstract We describe a set of ∆−1 slopes that are universal for 1-bend planar drawings of planar graphs of maximum degree ∆ ≥ 4; this establishes a new upper bound of ∆ − 1 on the 1-bend planar slope number. By universal we mean that every planar graph of degree ∆ has a planar drawing with at most one bend per edge and such that the slopes of the segments forming the edges belong to the given set of slopes. This improves over previous results in two ways: Firstly, the best previously 3 known upper bound for the 1-bend planar slope number was 2 (∆ − 1) (the known lower bound 3 being 4 (∆ − 1)); secondly, all the known algorithms to construct 1-bend planar drawings with O(∆) slopes use a different set of slopes for each graph and can have bad angular resolution, while our algorithm uses a universal set of slopes, which also guarantees that the minimum angle π between any two edges incident to a vertex is (∆−1) . 1998 ACM Subject Classification G.2.1 Combinatorics, G.2.2 Graph Theory Keywords and phrases Slope number, 1-bend drawings, planar graphs, angular resolution Digital Object Identifier 10.4230/LIPIcs.SoCG.2017.9 1 Introduction This paper is concerned with planar drawings of graphs such that each edge is a poly-line with few bends, each segment has one of a limited set of possible slopes, and the drawing has good angular resolution, i.e.