Chapter 3* - Selection of Water Quality Variables
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Estimation of Biological Oxygen Demand and Chemical Oxygen Demand for Combined Sewer Systems Using Synchronous Fluorescence Spectra
Sensors 2010, 10, 2460-2471; doi:10.3390/s100402460 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article Estimation of Biological Oxygen Demand and Chemical Oxygen Demand for Combined Sewer Systems Using Synchronous Fluorescence Spectra Jin Hur 1,*, Bo-Mi Lee 1, Tae-Hwan Lee 1 and Dae-Hee Park 2 1 Department of Earth and Environmental Sciences, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul, 143-747, Korea; E-Mails: [email protected] (B.-M.L.); [email protected] (T.-H.L.) 2 Locus Solution Co., Ltd., DMC High-Tech Center, Seoul, 121-270, Korea; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +82-2-3408-3826; Fax: +82-2-499-2354. Received: 21 January 2010; in revised form: 1 March 2010 / Accepted: 6 March 2010 / Published: 24 March 2010 Abstract: Real-time monitoring of water quality for sewer system is required for efficient sewer network design because it provides information on the precise loading of pollutant to wastewater treatment facilities and the impact of loading on receiving water. In this study, synchronous fluorescence spectra and its first derivatives were investigated using a number of wastewater samples collected in sewer systems in urban and non-urban areas, and the optimum fluorescence feature was explored for the estimation of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) concentrations of sewer samples. The temporal variations in BOD and COD showed a regular pattern for urban areas whereas they were relatively irregular for non-urban areas. -
Influence of Salinity on COD Measurements in Coastal Water Management
Desalination and Water Treatment ISSN: 1944-3994 (Print) 1944-3986 (Online) Journal homepage: http://www.tandfonline.com/loi/tdwt20 Influence of salinity on COD measurements in coastal water management Zhaoran Li, Yanqing Sheng, Wenjing Shi, Qiyao Sun & Robert J.G. Mortimer To cite this article: Zhaoran Li, Yanqing Sheng, Wenjing Shi, Qiyao Sun & Robert J.G. Mortimer (2015): Influence of salinity on COD measurements in coastal water management, Desalination and Water Treatment, DOI: 10.1080/19443994.2015.1091996 To link to this article: http://dx.doi.org/10.1080/19443994.2015.1091996 Published online: 21 Sep 2015. Submit your article to this journal Article views: 19 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tdwt20 Download by: [Tulane University] Date: 03 April 2016, At: 20:59 Desalination and Water Treatment (2015) 1–8 www.deswater.com doi: 10.1080/19443994.2015.1091996 Influence of salinity on COD measurements in coastal water management Zhaoran Lia,b, Yanqing Shenga,*, Wenjing Shia, Qiyao Suna, Robert J.G. Mortimerc aResearch Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China, Tel. +86 535 210 9265; Fax: +86 535 210 9000; emails: [email protected] (Z. Li), [email protected] (Y. Sheng), [email protected] (W. Shi), [email protected] (Q. Sun) bCollege of Research and Environment, University of Chinese Academy of Science, Beijing 100049, China cSchool of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst campus, Southwell, Nottinghamshire NG25 0QF, UK, email: [email protected] Received 14 March 2015; Accepted 1 September 2015 ABSTRACT Chemical oxygen demand (COD) is an important parameter in water quality assessment. -
Understanding Variation in Partition Coefficient, Kd, Values: Volume II
United States Office of Air and Radiation EPA 402-R-99-004B Environmental Protection August 1999 Agency UNDERSTANDING VARIATION IN PARTITION COEFFICIENT, Kd, VALUES Volume II: Review of Geochemistry and Available Kd Values for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tritium (3H), and Uranium UNDERSTANDING VARIATION IN PARTITION COEFFICIENT, Kd, VALUES Volume II: Review of Geochemistry and Available Kd Values for Cadmium, Cesium, Chromium, Lead, Plutonium, Radon, Strontium, Thorium, Tritium (3H), and Uranium August 1999 A Cooperative Effort By: Office of Radiation and Indoor Air Office of Solid Waste and Emergency Response U.S. Environmental Protection Agency Washington, DC 20460 Office of Environmental Restoration U.S. Department of Energy Washington, DC 20585 NOTICE The following two-volume report is intended solely as guidance to EPA and other environmental professionals. This document does not constitute rulemaking by the Agency, and cannot be relied on to create a substantive or procedural right enforceable by any party in litigation with the United States. EPA may take action that is at variance with the information, policies, and procedures in this document and may change them at any time without public notice. Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government. ii FOREWORD Understanding the long-term behavior of contaminants in the subsurface is becoming increasingly more important as the nation addresses groundwater contamination. Groundwater contamination is a national concern as about 50 percent of the United States population receives its drinking water from groundwater. -
An Assessment on Different Solids, Dissolved Oxygen in Industrial Effluents and Its Impact on Public Health
American Journal of www.biomedgrid.com Biomedical Science & Research ISSN: 2642-1747 --------------------------------------------------------------------------------------------------------------------------------- Research Article Copy Right@Md Shahidul Islam An Assessment on Different Solids, Dissolved Oxygen in Industrial Effluents and Its Impact on Public Health Md Rubel1, Md Shahidul Islam*2, Sheik Md Akij3 and Mohammad Helal Uddin4 1,3Department Of Chemistry, University of Chittagong, Chittagong, Bangladesh 2Department of Pharmacy, University of Science and Technology Chittagong (USTC), Bangladesh 4Department of Applied Chemistry and Chemical Engineering (ACCE), University of Chittagong, Bangladesh *Corresponding author: Md Shahidul Islam, Department of Pharmacy, University of Science and Technology Chittagong (USTC), Chittagong, Bangladesh To Cite This Article: Md Shahidul Islam. An Assessment on Different Solids, Dissolved Oxygen in Industrial Effluents and Its Impact on Public Health. Am J Biomed Sci & Res. 2019 - 5(5). AJBSR.MS.ID.000947. DOI: 10.34297/AJBSR.2019.05.000951. Received: September 12, 2019; Published: October 14, 2019 Abstract Rapid industrialization is adversely impacting the environment globally. The study was carried out to evaluate the biophysical properties of scenario of water and air pollution by industrial discharges in order to create public awareness and its impact on public health. The study area was thesamples second contaminated largest metropolis by unplanned of Bangladesh, industrialization Chittagong. in Theterms study of Effluent was carried Treatment out in 10Plant industries (ETP) efficiency, as a sampling availability station and before to evaluate and after the treatment present of industrial discharges and covered mainly two seasons, winter and dry seasons from November 2017 to June 2019. More than six parameters Biochemical Oxygen Demand test etc. Collection, preservation and analysis of the samples were carried out in accordance with standard procedures. -
101 Lime Solvent
Sure Klean® CLEANING & PROTECTIVE TREATMENTS 101 Lime Solvent Sure Klean® 101 Lime Solvent is a concentrated acidic cleaner for dark-colored brick and tile REGULATORY COMPLIANCE surfaces which are not subject to metallic oxidation. VOC Compliance Safely removes excess mortar and construction dirt. Sure Klean® 101 Lime Solvent is compliant with all national, state and district VOC regulations. ADVANTAGES • Removes construction dirt and excess mortar with TYPICAL TECHNICAL DATA simple cold water rinse. Clear, brown liquid • Removes efflorescence from new brick and new FORM Pungent odor stone construction. SPECIFIC GRAVITY 1.12 • Safer than muriatic acid on colored mortar and dark-colored new masonry surfaces. pH 0.50 @ 1:6 dilution • Proven effective since 1954. WT/GAL 9.39 lbs Limitations ACTIVE CONTENT not applicable • Not generally effective in removal of atmospheric TOTAL SOLIDS not applicable stains and black carbon found on older masonry VOC CONTENT not applicable surfaces. Use the appropriate Sure Klean® FLASH POINT not applicable restoration cleaner to remove atmospheric staining from older masonry surfaces. FREEZE POINT <–22° F (<–30° C) • Not for use on polished natural stone. SHELF LIFE 3 years in tightly sealed, • Not for use on treated low-E glass; acrylic and unopened container polycarbonate sheet glazing; and glazing with surface-applied reflective, metallic or other synthetic coatings and films. SAFETY INFORMATION Always read full label and SDS for precautionary instructions before use. Use appropriate safety equipment and job site controls during application and handling. 24-Hour Emergency Information: INFOTRAC at 800-535-5053 Product Data Sheet • Page 1 of 4 • Item #10010 – 102715 • ©2015 PROSOCO, Inc. -
Chapter 4: Aqueous Solutions (Chs 4 and 5 in Jespersen, Ch4 in Chang)
Chapter 4: Aqueous Solutions (Chs 4 and 5 in Jespersen, Ch4 in Chang) Solutions in which water is the dissolving medium are called aqueous solutions. There are three major types of chemical processes occurring in aqueous solutions: precipitation reactions (insoluble product) acid-base reactions (transfer of H+s) redox reactions (transfer of electrons) General Properties of Aqueous Solutions solution – a homogeneous mixture of two or more substances. solvent – usually the component that is present in greater quantity. solute(s) – the other substance(s) in the solution (ionic or molecular); present in smaller quantities. saturated solution – at a given temperature, the solution that results when the maximum amount of a substance has dissolved in a solvent. AJR Ch4 Aqueous Solutions.docx Slide 1 Electrolytic Properties electrolyte – a substance whose aqueous solutions contains ions and hence conducts electricity. E.g. NaCl. nonelectrolyte – a substance that does not form ions when it dissolves in water, and so aqueous solutions of nonelectrolytes do not conduct electricity. E.g. Glucose, C6H12O6. CuSO4 and Water; Ions present; Sugar and Water; No Ions present; electricity is conducted – bulb on. electricity is not conducted – bulb off. AJR Ch4 Aqueous Solutions.docx Slide 2 Ionic Compounds in Water Ionic compounds dissociate into their component ions as they dissolve in water. The ions become hydrated. Each ion is surrounded by water molecules, with the negative pole of the water oriented towards the cation and the positive pole oriented towards the anion. Other examples of ionic compounds dissociating into their component ions: + 2– Na2CO3 → 2 Na (aq) + CO3 (aq) + 2– (NH4)2SO4 → 2 NH4 (aq) + SO4 (aq) AJR Ch4 Aqueous Solutions.docx Slide 3 Molecular Compounds in Water Most molecular compounds do not form ions when they dissolve in water; they are nonelectrolytes. -
Drugs and Acid Dissociation Constants Ionisation of Drug Molecules Most Drugs Ionise in Aqueous Solution.1 They Are Weak Acids Or Weak Bases
Drugs and acid dissociation constants Ionisation of drug molecules Most drugs ionise in aqueous solution.1 They are weak acids or weak bases. Those that are weak acids ionise in water to give acidic solutions while those that are weak bases ionise to give basic solutions. Drug molecules that are weak acids Drug molecules that are weak bases where, HA = acid (the drug molecule) where, B = base (the drug molecule) H2O = base H2O = acid A− = conjugate base (the drug anion) OH− = conjugate base (the drug anion) + + H3O = conjugate acid BH = conjugate acid Acid dissociation constant, Ka For a drug molecule that is a weak acid The equilibrium constant for this ionisation is given by the equation + − where [H3O ], [A ], [HA] and [H2O] are the concentrations at equilibrium. In a dilute solution the concentration of water is to all intents and purposes constant. So the equation is simplified to: where Ka is the acid dissociation constant for the weak acid + + Also, H3O is often written simply as H and the equation for Ka is usually written as: Values for Ka are extremely small and, therefore, pKa values are given (similar to the reason pH is used rather than [H+]. The relationship between pKa and pH is given by the Henderson–Hasselbalch equation: or This relationship is important when determining pKa values from pH measurements. Base dissociation constant, Kb For a drug molecule that is a weak base: 1 Ionisation of drug molecules. 1 Following the same logic as for deriving Ka, base dissociation constant, Kb, is given by: and Ionisation of water Water ionises very slightly. -
Solvent Effects on the Thermodynamic Functions of Dissociation of Anilines and Phenols
University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 1982 Solvent effects on the thermodynamic functions of dissociation of anilines and phenols Barkat A. Khawaja University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation Khawaja, Barkat A., Solvent effects on the thermodynamic functions of dissociation of anilines and phenols, Master of Science thesis, Department of Chemistry, University of Wollongong, 1982. -
Solvent-Tunable Binding of Hydrophilic and Hydrophobic Guests by Amphiphilic Molecular Baskets Yan Zhao Iowa State University, [email protected]
Chemistry Publications Chemistry 8-2005 Solvent-Tunable Binding of Hydrophilic and Hydrophobic Guests by Amphiphilic Molecular Baskets Yan Zhao Iowa State University, [email protected] Eui-Hyun Ryu Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/chem_pubs Part of the Chemistry Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ chem_pubs/197. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Chemistry at Iowa State University Digital Repository. It has been accepted for inclusion in Chemistry Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Solvent-Tunable Binding of Hydrophilic and Hydrophobic Guests by Amphiphilic Molecular Baskets Abstract Responsive amphiphilic molecular baskets were obtained by attaching four facially amphiphilic cholate groups to a tetraaminocalixarene scaffold. Their binding properties can be switched by solvent changes. In nonpolar solvents, the molecules utilize the hydrophilic faces of the cholates to bind hydrophilic molecules such as glucose derivatives. In polar solvents, the molecules employ the hydrophobic faces of the cholates to bind hydrophobic guests. A water-soluble basket can bind polycyclic aromatic hydrocarbons including anthracene, pyrene, and perylene. The binding free energy (−ΔG) ranges from 5 to 8 kcal/mol and is directly proportional to the surface area of the aromatic hosts. Binding of both hydrophilic and hydrophobic guests is driven by solvophobic interactions. Disciplines Chemistry Comments Reprinted (adapted) with permission from Journal of Organic Chemistry 70 (2005): 7585, doi:10.1021/ jo051127f. -
I. the Nature of Solutions
Solutions The Nature of Solutions Definitions Solution - homogeneous mixture Solute - substance being dissolved Solvent - present in greater amount Types of Solutions SOLUTE – the part of a Solute Solvent Example solution that is being dissolved (usually the solid solid ? lesser amount) solid liquid ? SOLVENT – the part of a solution that gas solid ? dissolves the solute (usually the greater liquid liquid ? amount) gas liquid ? Solute + Solvent = Solution gas gas ? Is it a Solution? Homogeneous Mixture (Solution) Tyndall no Effect? Solution Is it a Solution? Solution • homogeneous • very small particles • no Tyndall effect • particles don’t settle • Ex: •rubbing alcohol Is it a Solution? Homogeneous Mixture (Solution) Tyndall no Effect? yes Solution Suspension, Colloid, or Emulsion Will mixture separate if allowed to stand? no Colloid (very fine solid in liquid) Is it a Solution? Colloid • homogeneous • very fine particles • Tyndall effect • particles don’t settle • Ex: •milk Is it a Solution? Homogeneous Mixture (Solution) Tyndall Effect? no yes Solution Suspension, Colloid, or Emulsion Will mixture separate if allowed to stand? no yes Colloid Suspension or Emulsion Solid or liquid particles? solid Suspension (course solid in liquid) Is it a Solution? Suspension • homogeneous • large particles • Tyndall effect • particles settle if given enough time • Ex: • Pepto-Bismol • Fresh-squeezed lemonade Is it a Solution? Homogeneous Mixture (Solution) Tyndall no Effect? yes Solution Suspension, Colloid, or Emulsion Will mixture separate if allowed to stand? no yes Colloid Suspension or Emulsion Solid or liquid particles? solid liquid Suspension (course solid in liquid) Emulsion (liquid in liquid) Is it a Solution? Emulsion • homogeneous • mixture of two immiscible liquids • Tyndall effect • particles settle if given enough time • Ex: • Mayonnaise Pure Substances vs. -
Chapter 18 Solutions and Their Behavior
Chapter 18 Solutions and Their Behavior 18.1 Properties of Solutions Lesson Objectives The student will: • define a solution. • describe the composition of solutions. • define the terms solute and solvent. • identify the solute and solvent in a solution. • describe the different types of solutions and give examples of each type. • define colloids and suspensions. • explain the differences among solutions, colloids, and suspensions. • list some common examples of colloids. Vocabulary • colloid • solute • solution • solvent • suspension • Tyndall effect Introduction In this chapter, we begin our study of solution chemistry. We all might think that we know what a solution is, listing a drink like tea or soda as an example of a solution. What you might not have realized, however, is that the air or alloys such as brass are all classified as solutions. Why are these classified as solutions? Why wouldn’t milk be classified as a true solution? To answer these questions, we have to learn some specific properties of solutions. Let’s begin with the definition of a solution and look at some of the different types of solutions. www.ck12.org 394 E-Book Page 402 Homogeneous Mixtures A solution is a homogeneous mixture of substances (the prefix “homo-” means “same”), meaning that the properties are the same throughout the solution. Take, for example, the vinegar that is used in cooking. Vinegar is approximately 5% acetic acid in water. This means that every teaspoon of vinegar contains 5% acetic acid and 95% water. When a solution is said to have uniform properties, the definition is referring to properties at the particle level. -
Effective Removal of Chemical Oxygen Demand and Phosphates from Aqueous Medium Using Entrapped Activated Carbon in Alginate
MOJ Biology and Medicine Research Article Open Access Effective removal of chemical oxygen demand and phosphates from aqueous medium using entrapped activated carbon in alginate Abstract Volume 3 Issue 6 - 2018 The aim of this study is to decrease different wastewater contaminants using entrapped Soha A Abd El-Gawad,1 Hossam M Abd El- activated carbon in alginate polymer (AG-AC) by adsorption. Different phosphate 2 concentrations were prepared in the laboratory. The effect of the operating parameter Aziz 1Chemistry Department, Faculty of Science, Cairo University, was studied by external factors (e.g., contact time, pH, concentrations, adsorbent dose, Egypt and stirring rate). The results were analyzed according to the Freundlich and Langmuir 2Chemical Industries Development (CID) Company, Egypt adsorption isotherm. The adsorption data are more appropriate by the Freundlich isotherm. Efficient removal percentages for COD (500 mg\L) at pH 3 using dose 30g of the adsorbent Correspondence: Hossam Mohammed Abd El Aziz, CID for 60min with a fixed stirring rate at 100rpm were about (79%). Efficient removal Company, Giza, Egypt, Tel 00201229102427, percentages for phosphates (5mg\L) at pH 4 using dose 30g of the adsorbent for 45min with Email a fixed stirring rate at 100rpm were about (89%). The best-operating conditions have been determined to increase phosphate removal efficiency. Received: August 08, 2018 | Published: December 28, 2018 Keywords: entrapped AG-AC, COD, phosphate, adsorption study Introduction thus this method has agitated great concern during the latest years.41–44 The focus of this study was to examine the probability of entrapped Water is the basis of life on the Earth and the most important natural activated carbon in alginate polymer for the removal of COD and resources after air for all living organisms.