<<

Appendix: The Cassini Orbiter, Behind the Scenes

In the pages that follow are pictures of Cassini orbiter operations personnel, beginning with those working at Caltech’s Jet Propulsion Laboratory (JPL) (Cassini’s Mission Operations Center), and then moving to pictures of operations personnel at each of the sites based outside of JPL where individual science instrument operations take place. The people depicted herein represent a subset of all of the people who have been part of the Cassini- Mission, from developing it as a candidate planetary-exploration mission in the early 1980s, to eventually being responsible for its design, construction, launch and flight. It is hoped that the knowledge exposited within this book will represent a small token of appreciation for the prodigious efforts of all of the people that have been involved with the Cassini-Huygens Mission. It is they who have made Cassini-Huygens a shining success, and their tireless efforts will continue to bear important scientific and cultural fruit far into the future.

1 The Cassini Mission Operations Center at Caltech’s Jet Propulsion Laboratory

1.1 The Cassini Program-Office Management, Resource Management, Mission Planning, and Outreach Teams

Fig. 1 Row 1, left to right: M. Pao, J. Jones, C. Martinez, R. Pappalardo, S. Chatterjee, R. Zimmerman-Brachman, K. Chan; Row 2, left to right: G. Yee, D. Matson, C. Vetter, J. Nelson, E. Manor-Chapman, S. Payan; Row 3, left to right: K. Munsell, L. Spilker, A. Wessen, R. Woodall, V. Barlow, S. McConnell; Row 4: J. Smith, D. Bradford, R. Mitchell, D. Seal

783 784 Appendix: The Cassini Orbiter, Behind the Scenes

1.2 The Cassini Navigation Team

Fig. 2 Row 1, left to right: E. Gist, I. Roundhill, J. Pojman, P. Antreasian, J. Frautnick, D. Vaughan; Row 2, left to right: M. Wang, R. Ionacescu, P. Thompson, J. Costello, S. Wagner, P. Williams; Row 3, left to right: K. Criddle, J. Jones, C. Ballard, F. Pelletier, B. Buffington, S. Gillam, S. Nolet; Row 4: V. Legerton, D. Roth, R. Jacobson, T. Goodson, P. Stumpf; Row 5, left to right: N. Strange, M. Wong, B. Stavert

1.3 The Cassini Mission Support Services Office

Fig. 3 Row 1, left to right: O. Castillo, N. Patel, V. Trinh, T. Fujii, B. Wilson, M. Carranza, M. Rubio; Row 2, left to right: V. Villa, J. Ibanez, C. Wong, P. Smith, R. Aguilar, D. Coppedge, J. Kesterson; Row 3, left to right: R. Jobsky, C Lush, G. Eller, M. Weisenfelder, B. Elgin, D. Doan; Row 4, left to right: B. Mogensen, D. Doody, L. Mellinger, G. Chin Appendix: The Cassini Orbiter, Behind the Scenes 785

1.4 The Cassini Science Planning Team

Fig. 4 Row 1, left to right: J. Pitesky, K. Steadman, A. Aguinaldo, R. Lopes, N. Vandermey, A. Hendrix, S. Edgington; Row 2, left to right: B. Larsen, L. Cheng, R. Lange, T. Ray, K. Grazier, B. Paczkowski, M. Burton, N. Kelly

1.5 The Cassini Instrument Operations Team (1)

Fig. 5 Row 1, left to right: E. Martinez, J. Yoshimizu, C. To, P. Lee; Row 2, left to right: P. Andres, S. Linick, P. Callahan, H. Mortensen, D. Fleishman; Row 3: A. Culver, O. Harrison, C. Acton 786 Appendix: The Cassini Orbiter, Behind the Scenes

1.6 The Cassini Instrument Operations Team (2)

Fig. 6 Row 1, left to right: L. Ly-Hollins, K. Kelleher, Y. Anderson; Row 2, left to right: A. Stevenson, B. Brooks, A. Tinio, R. Boehmer, P. Meegyeong; Row 3, left to right: C. Cordell, J. Gerhard, A. Anabtawi, E. Barbinis, M. Roy; Row 4, left to right: F. Loaiza, C. Avis, F. Leader, D. Kahan, S. Asmar, R. West

1.7 The Cassini Science and Uplink Office

Fig. 7 Row 1, left to right: K. Weld, N. Rouse, C. Chouinard, B. Landry, K. Yetter, D. Tong; Row 2, left to right: R. Espinueva, J. Boyer, S. Goo, J. Berkeley, S. Chatterjee, L. Nakamura; Row 3, left to right: K. Magee, D. Conner, S. Javidnia, W. Heventhal, J. Carter, J. Krueger Appendix: The Cassini Orbiter, Behind the Scenes 787

1.8 The Cassini Operations Office

Fig. 8 Row 1, left to right: R. Lin, L. Burke, K. Garcia, E. Wang, S. Adamiak; Row 2, left to right: J. Webster, K. Herman, P. Meakin, R. Lim, P. Morgan, M. Luna, J. Brown, A. Lee; Row 3, left to right: A. Ging, J. Wertz-Chen, C. Lee, T. Burke, M. Pellegrin, C. Mittelsteadt, S. Sarani, J. Millard, D. Beach; Row 4, left to right: C. Kirby, D. Bates, F. Chrisney, D. Morgan, R. Jurenko

1.9 The Cassini Spacecraft Operations Team

Fig. 9 Row 1, left to right: G. Yang, R. Somawardhana, N. Grenander, C. Huynh, R. Mukai; Row 2, left to right: P. Yoder, C. Sagoian, K. Baddarudin, A. Thomas, R. Weaver; Row 3, left to right: L. Christodoulou, T. Barber, T. Zorn, S. Clark 788 Appendix: The Cassini Orbiter, Behind the Scenes

2 The Cassini Spectrometer (CAPS) Operations Group

Fig. 10 The CAPS Operations Group. Left to right: Frank Crary, Prachet Mokashi, Greg Ferris and Judith Furman

3 The Analyzer (CDA) Operations Group

Fig. 11 The CDA Operations Group: From left to right: S. Hsu (bottom), G. Matt, S. Helfert (top), G. Linkert, S. Kempf (top), D. Linkert, R. Srama (bottom), F. Postberg, E. Grün, G. Moragas-Klostermeyer (bottom), U. Beckmann Appendix: The Cassini Orbiter, Behind the Scenes 789

4 The Composite Infrared Spectrometer (CIRS) Operations Group

Fig. 12 The CIRS Operations Group. Left to right, at Goddard Spaceflight Center: N. Gorius, G. Bjoraker, M. Segura, C. Nixon, D. Jennings, S. Albright, R. Achterberg, J. Pearl, A. Simon-Miller, A. Mamoutkine, E. Guandique, C. Anderson, J. Brasunas, R. Carlson, M. Kaelberer, J. Tingley; not pictured: V. Kunde and P. Romani; at the Jet Propulsion Laboratory: S. Edgington, S. Brooks, C. Roumeliotis; at the Observatoire de Paris-Meudon: E. Lellouch; at Oxford University, United Kingdom: S. Calcutt and N. Bowles

5 The and Neutral Mass Spectrometer (INMS) Operations Group

Fig. 13 The INMS Operations Group: Back row, left to right: David Gell (Analysis), Rob Thorpe (Ground System). Front row, left to right: Greg Fletcher (Operations team Lead), Aimee Cardenes (Operations Engineer), June Dunkelburger (Operations Engineer) 790 Appendix: The Cassini Orbiter, Behind the Scenes

6 The Imaging Science Subsystem (ISS) Group

Fig. 14 The ISS Group. Left to right: Joe Spitale, Andre Brahic, Josh Riley, Robert Jacobson, Joseph Veverka, Andrew Ingersoll, Joe Ferrier, Tilmann Denk, Doug Dawson, Michael Evans, Gerhard Neukum (front), Ben Knowles (back), Thomas Roatsch (middle), Torrence Johnson (back), Henry “Luke” Dones, Carolyn Porco, Peter Thomas, Carl Murray, Sebastien Charnoz, Joseph Burns, Elizabeth “Zibi” Turtle, John Weiss, Emma Birath, Jason Perry, Preston Dyches, Daren Wilson, Paul Helfenstein, Ashwin Vasavada, Anthony DelGenio, Matthew Tiscareno, Michael Belanger

Fig. 15 Individuals not included in the photo above. Top row, left to right: Emily Baker, Kevin Beurle (deceased), Bobby DiDia, Daiana DiNino; Bottom row, left to right: Pauline Helfenstein, Nicole Martin, Joe Mason Appendix: The Cassini Orbiter, Behind the Scenes 791

7 The Magnetospheric Imaging Instrument (MIMI) Operations Group

Fig. 16 The MIMI Operations Group. Left to right: Jon Vandegriff, Analysis and Display Software Engineer; John Aiello, Science Planning Engineer; David LaVallee, Operations Team Lead (uplink); Martha Kusterer, Downlink Lead Engineer, INCA Display Software Engineer; Linda Burke, Operations Team Engineer (uplink and downlink); Scott Turner, INCA, SPICE, Science Planning Tool, and Command Automation Software Engineer; Stuart Nylund, Operations Team Engineer (uplink)

8 The Cassini (MAG) Operations Group

Fig. 17 The MAG Operations Group: Top row, left to right: Steve Kellock (Instrument Manager), Nick Achilleos (Operations Engineer), Leah Al- concel (Operations Engineer). Bottom row, left to right: Charlotte Dunford (Archive Engineer), Tim Seears (Operations Engineer), Peter Slootweg (Operations Engineer). Right column: Adrian Hitchman (Archive Engineer), Joyce Wolf (Software Developer), Louise Lee (Software Developer). All personnel except JW and LL are current and former associates of Imperial College London. JW is associated with the Jet Propulsion Laboratory and LL with University of California, Los Angeles 792 Appendix: The Cassini Orbiter, Behind the Scenes

9 The Cassini RADAR Operations Group

Fig. 18 The RADAR Operations Group: Front row, left to right: Young Gym, Alice Le Gall, Yanhua Anderson, Kathleen Kelleher. Back row, left to right: Richard West, Mike Janssen, Bill Johnson, Phil Callahan, Bryan Stiles, Gary Hamilton

10 The and Plasma Wave Science (RPWS) Operations Group

Fig. 19 The RPWS Operations Group. Front row: Robert Johnson, Terry Averkamp, Don Kirchner, George Hospodarsky; Back row: Bill Kurth, Bill Robison, Larry Granroth, Jessica Swanner, Ann Persoon, Chris Piker Appendix: The Cassini Orbiter, Behind the Scenes 793

11 The (RSS) Operations Group

Fig. 20 The RSS Operations Group. From left to right: Sami Asmar (supervisor), John Klose, Elias Barbinis, Aseel Anabtawi (technical lead), Daniel Kahan, Don Fleischman

12 The Ultraviolet (UVIS) Operations Group

Fig. 21 The UVIS Operations Group. From left to right: Michelle Kelly, Darren Osborne, David Judd, Alain Jouchoux, Heather Buck, Crystal Salcido, and John Donnelly 794 Appendix: The Cassini Orbiter, Behind the Scenes

13 The Visual and Infrared Mapping Spectrometer (VIMS) Operations Group

Fig. 22 The VIMS Operations Group. From left to right: Dyer Lytle, Virginia Pasek, John Ivens, Bob Watson and Dan Moynihan Index

A Amorphous ice, 476, 497 Absortive occultation(s), 182 Angular , 414, 425, 430, 435, 436, 438, 439, 443–445, 449 Abundance, 83–86, 88–98, 100–104, 106, 107 Annular rings, 136 Acceleration, 344, 350, 353, 354, 356, 357, 359–361, 364, 365, 369, , 523, 532, 533 370 40Ar, 690, 695, 713, 717 Accretion, 425, 433, 442, 445–449, 537, 538, 541, 542, 544, 545, 547, A rings, 375–381, 383–387, 391–399, 401–403, 473, 474, 478–486, 548, 552–557, 559–562, 564, 566, 568 489, 492, 496, 501, 502 Accretional heating, 589–590 Arsine (AsH3/, 10, 13–14, 89, 90, 92, 106 Acetylene (C2H2/, 92, 94, 97, 100, 101, 103, 107, 122, 130, 131, 153, Asteroid belt, 57, 59, 64 182, 183, 186, 337 , 381, 386, 399, 438, 448 ACS. See Advanced camera for surveys Atmosphere and auroral emission Activity infrared observations, 27–29 endogenic, 641, 642, 647 ultraviolet observations, 26–27 geologic, 638, 657 Atmospheric dynamics, 23–25, 749–751 tectonic, 640, 669, 672 Aurora, 98, 99, 104, 106, 228, 242, 264, 275, 333–335, 337–341, 343, volcanic, 640 345–353, 360–369 Adhesion, 416, 435, 451 Auroral arc, 336, 340, 341, 346, 347, 361 Adiabatic acceleration Auroral chemistry, 104, 106 adiabatic energization, 311 Auroral current systems, 335 butterfly distributions, 311, 312 Auroral , 337, 353 invariants, 310 Auroral energy, 337–338 isotropic invariant, 312 Auroral field lines, 334, 344–346, 351, 357 pancake/trapped distribution shapes, 311 Auroral footprint, 334 phase space density (PSD), 311–313 Auroral hiss detection, 322 pitch angle distribution shapes, 311, 312 Auroral kilometric radiation, 333 Advanced camera for surveys (ACS), 335, 337 Auroral morphology, 335–336 Aerosol(s), 85, 86, 90, 92, 96, 97, 104, 107, 161–178 Auroral oval, 334–336, 338, 339, 340, 346, 348, 351, 352, 358, 360, Aerosol structure 364, 365, 367, 369, 370 Earth-based telescopes, 17–19 Auroral/polar , 29 pioneer/voyager era measurements, 16–17 Auroral power, 349, 350, 369 Aggregate formation, 447 Azimuthal brightness variation, 426, 429 Aggregate particles, 460, 484, 496, 497, 500 AKR. See Auroral kilometric radiation B 26Al, 61, 70, 71 Ballistic transport, 430, 435 (geometric), 660, 683, 697, 700, 704–706, 716 Barnard gap, 397 Albedo-wind relationship, 138 Beaming, 343–346, 366, 369 Alfvén wings, 289 Bending , 377–380, 387, 388, 392, 398, 401, 407, 436, 446 Alkali halide, 90 Benzene (C6H6/, 14, 92, 94, 98, 100, 106, 107 Amalthea, 63, 64 Bessel gap, 397 Ammonia (NH3/, 11–12, 88, 89, 92, 95–98, 106, 107, 653–658, Bimodal optical depth variations, 434 664–667, 672, 673, 688, 690, 692, 703, 704, 711, 716 Binary encounters, 421, 422 Ammonia hydrate, 667 Birkeland current, 353 Ammonia ice, 162–166, 175, 178 Birkeland current systems, 298 Ammonium hydrosulfide (NH4SH), 88, 96, 97, 162, 163 Boltzmann equation, 418 Ammonium salt, 95–97 Bond gap, 400 Amorphization, 660 Bound water, 655, 658, 672 Amorphous carbon, 486 Bow shock, 204, 237, 238, 242–246

795 796 Index

Branching ratio, 98, 99, 104, 107 C2H2. See Acetylene (C2H2/ Brightness asymmetry, 428, 429, 438, 443, 452 C2H4. See Ethylene (C2H4/ B ring core, 462, 463, 496 Chaotic particle motion, 439 B rings, 375, 377, 381, 383, 384, 386–397, 399–401, 407, 408, 471, Chapman-Ferraro current, 211 474, 476–492, 494, 496–498, 502, 503, 511, 512, 514, 518–521, Charged dust, 511, 519, 521 533 Charge exchange, 193, 197, 355, 370 Broadband electromagnetic noise, 353 , 63, 66, 68 Bulk densities, 62–64 CH3D/CH4 ratio measurements, 14–15 Bulk viscosity, 420, 421, 432, 445 Chemical lifetime, 194 Butterfly distributions, 311 Chemistry, 83–107 Chorus emissions, 322–323 C Chromophore, 107 Calcium aluminum inclusions (CAIs), 56, 64, 70, 71 CIR. See Corotating interaction regions (CIRs) , 61, 63, 64, 66, 68–70 Circulation, 94, 99, 103, 104, 107 Capture probability, 448 Circumplanetary disk, 60–62 Carbon, 62, 65–67, 83, 86–89, 94, 95, 97, 106 Circumplanetary nebula, 499 Carbon dioxide (CO2/, 94, 95, 100, 104, 105, 651, 652, 654–656, 672, Circumstellar disk, 58, 60 684, 688, 703, 704, 708, 710, 711, 715, 718 CIRS. See Composite infrared spectrometer (CIRS) Carbon monoxide (CO), 10, 13–14, 89, 94–96, 99, 100, 104, 105, 106 Clathrate, 688, 699, 704, 713, 715, 717 Cartographic mapping Closed field line, 335, 348, 360, 361, 363–370 high-resolution atlases, 766–768, 771–776 Cloud(s), 83, 84, 86–88, 91, 96, 97, 103, 106, 107, 161–178 ISS images, 766–775 Cloud decks Saturnian , 764–766 ammonia, 115, 118 south polar region, 779 ammonium hydrosulfide, 118 VIMS data, 770–779 water, 118 Cassini division, 375–381, 386, 392, 394–401, 407, 408, 436, 438, Cloud microphysical models, 162 463–465, 468, 470–472, 474, 476–482, 485, 488, 489, 493, 494, Cloud particle properties, 163, 164, 166 496, 497, 502, 518, 654, 655, 672 Clouds and aerosols Cassini dust analyzer (CDA), 246 Earth-based telescopes, 17–19 Cassini Equinox mission, 154, 369 pioneer/voyager era measurements, 16–17 Cassini Extended mission Cloud top level Equinox mission design, 726–727 infrared (5 micron), 122 Equinox mission science objectives, 727–729 near-infrared/visible, 119, 122 Equinox mission trajectory, 732–740 ultraviolet, 121 operational and safety constraints, 729–730 Cloud vertical structure, 168 spacecraft subsystems, 725 Clustering, 418 tour design and development process, 730–732 CMI. See Cyclotron maser instability (CMI) Cassini/Huygens, 55, 62, 68, 69 Coagulation, 418, 419, 452 Cassini-Huygens mission Coefficient of restitution, 414–417, 422, 424, 428, 447, 448, 450 atmospheric composition, 748–749 Cohesion, 417 atmospheric dynamics, 23–25, 749–751 Cohesive force, 417, 447 clouds and aerosols, 16–19 Collision, 539–543, 545, 546, 549, 556, 558, 559, 561–563, 565–567, composition, 10–16 569, 570 exploration, 756–757 Collisional cascade, 548, 557 icy satellites, 41–46 Collisional cooling, 420, 440 interior, 16, 746–747 Collisional evolution, 67, 540, 563, 568, 570 low-density giant , 747–748 Collision frequency, 414, 418, 423, 430, 441, 442, 445 , 752–753 Collision integrals, 416, 418, 419 planetary magnetic field and magnetosphere, 29–36 Colombo gap, 399 , 36–41, 753–755 Column density, 189 , 755–756 Cometary chronology, 618 temperature, 19–23 Cometary impact, 94, 95, 106, 107 Cassini magnetometer (MAG), 218, 228, 243, 246 Comet-like interactions, 288–289 Cassini plasma spectrometer (CAPS), 214–221, 231, 232, 235–243, Comets, 58, 63, 64, 621–626 245, 247, 260–262, 270, 273, 274 Compaction state, 661 Cassini Solstice mission, 154 Composite infrared spectrometer (CIRS), 85–91, 93–95, 97, 100–102, Catastrophic disruption, 625–626 104, 106, 107, 116, 119, 123, 124, 126–135, 139, 141–143, 145, Centaurs and ecliptic comets, 615 146, 152, 153, 339, 639, 640, 663 Centrifugal acceleration mechanism, 315–316 Composition, 83–107 Centrifugal interchange instability ionosphere, 193 Cassini , 301, 302 upper atmosphere, 181–182 “injection/dispersion” signatures, 300–301 Compositional maps, VIMS data magnetic equatorial plane, 298, 300 data processing, 770–771 , 300 , 771, 776, 777 Rice Convection Model (RCM) simulation, 302, 303 , 776, 778–779 ring current impoundment, 300 , 776–778 Index 797

Compton-Getting effect, 264 Density profiles Condensate, 65–68 atomic hydrogen, 182, 185, 190, 197 Condensate clouds, 162, 169 , 181, 185, 191–195, 197, 199 Condensation, 83, 92, 94, 96–98, 560–562, 569, 650, 703, 713–715, ion, 189–191, 194–197, 199 717 molecular hydrogen, 199 Condensation levels, 118–120, 137–139, 144, 152–154 Density waves, 375, 377–383, 386, 387, 390, 392, 393, 396–399, 401, Condensible, 83, 88 407, 429, 430, 435–439, 452 Conduction, heat transfer, 590 Deuterium, 88, 106 Contamination, 663–668, 672, 673 Diacetylene (C4H2/, 14, 92, 94, 98, 100, 101, 107 Continuum filter, 121 Diamagnetic current, 316 Convection, 90 Dichotomy, 640, 656–658, 666, 667, 673 evolution of, 594–595 Dielectric constant, 667 heat transfer, 590–593 Differential rotation, 423 onset of, 593–594 Differentiation, 686 Convective clouds Diffuse aurora, 336, 369 discrete, 137, 140 Diffuse rings, 511–533, 538, 539, 568–570 , 137, 138 Diffusion instability, 430, 433 , 137–140 Diffusive separation, 181 Cooling rates, 191 Dione, 4–5, 44, 69, 523, 524, 526, 528–530, 686, 691, 692, 716, 720 Co-orbital satellites, 438 ISS basemaps, 766, 768, 772, 775 Core nucleated accretion model, 57 thermal evolution and internal structure, 604–605 Coriolis acceleration, 189, 302 VIMS composition map, 771, 776, 777 Coriolis force(s), 447 Diphosphine, 162, 163, 178 Coronal mass ejection (CME), 273 Direction-finding, 346 Corotating interactions regions (CIRs), 273, 274, 334, 365 Discrete aurora, 361, 363, 369 Corotating plasma, 335 Dispersion relation, 431, 432, 437, 438, 452 Corotation, 189, 257–261, 267–270, 274, 336, 338, 348, 360, 361, Disruption, 446, 448, 449 363–365, 370, 435 Dissipative collisions, 413, 414, 417, 420 Corotation resonance(s), 444 Dissociative recombination, 195 Cosmic dust analyzer (CDA), 514, 524–528, 530, 532, 533 Diurnal variation, 192, 194–196, 199 Cosmic rays, 655 D ring, 511, 514–518, 533 Cosmic recycling, 538, 544–545, 548, 570 Dst index, 228 Cratering chronology, 618–619 Dungey cycle, 205, 207, 208, 247, 258, 267, 268, 273, 274, 361–363, Craters, 683, 684, 686, 693, 694, 696–699, 701, 703, 705, 718 365, 366, 370 Crater statistics and interpretation Dungey process, 258 Enceladus, , Dione and Rhea, 629 Dusk, 191, 192, 194 Gyr, 628–629 Dust, 684, 705, 707, 711, 716, 717, 720 and , 630 Dust streams, 511, 512, 530–532 R-plot, 626–627 Dynamical ephemeral bodies, 446, 541, 556 size-frequency distribution (SFD), 627–630 Dynamical regime, 114 C rings, 375–377, 381, 386–389, 394–402, 407, 408, 462–464, 468, Dynamic pressure, 421 470, 471, 476–482, 485–490, 492, 494, 496, 497, 502, 503 Dynamics, 83, 86, 88, 103, 107 Cryovolcanism/cryovolcanic, 70, 683–720 Dynamic viscosity, 417, 418 Crystalline ice, 476, 477, 498 Crystallization, 660 E Cryvolcanic eruption, 650 Earth-orbiting spacecraft, 9–10 Current generation Eccentricity, 643 curvature vector, 316 Eddy diffusion, 96, 99, 100, 186 force balance, and , 317–318 Eddy momentum flux, 127, 137–139, 147, 152, 153 gradient and curvature drifts, 316 Ejecta, 435 ring current, 317 Electromagnetic cyclotron waves (EMIC), 314 Cusp, 336, 340, 349, 360, 366, 367, 369 Electron collisions, 193 Cyclotron maser instability (CMI), 342, 345 Electron cyclotron frequency, 343, 354 Electron cyclotron harmonic (ECH) emissions, 319–321 D Electron-impact excitation, 339 Damping scale, 438 Electron-induced processes, 288 , 377, 381, 382, 408, 440–442, 448 Electron-neutral collisions, 286 Dark material, 639, 640, 652–659, 663, 664, 666–668, 672, 673 ENAs. See Energetic neutral atoms (ENAs) Dawes gap, 400 Enceladus, 42–43, 64, 65, 69–71, 511, 514, 523–533 Dawn, 191, 192, 194, 195 ISS basemaps, 766–767, 773 Dayglow, 182, 185 VIMS composition map, 776, 778–779 Deep atmosphere, 114, 117–120 Enceladus flybys, 733 Deformation radius, 119, 135, 148, 149 Enceladus orbiter, 720 Density(ies), 55, 57, 60–70, 639, 640, 642–644, 650, 657, 660, 663, Enceladus plume, 538, 570 664, 666, 671, 673 Enceladus torus, 287, 288 798 Index

Encke gap, 376, 377, 381, 382, 385, 395, 396, 399, 408, 429, 436, 438, F ring, 375–377, 396, 401–406, 408 440, 441, 443, 464, 470, 472, 480 F-ring clumps, 554, 566–568 Energetic neutral atoms (ENAs), 3, 36–37, 222, 224, 225, 227–229, F-ring spiral, 568 235, 260, 264, 267–270, 272, 273, 286, 287, 342, 350, 357 F-ring strands, 567, 568 Energetic particles, 222, 223, 225, 227, 229–231, 235, 241, 244, 246 FUSE. See Far Ultraviolet Spectroscopic Explorer (FUSE) electron counting rates, 33–34 energy intervals, 32–33 G equatorial field stress calculations, 34–35 Galilean satellites, 64, 70 phase-space density, 34–35 , 63, 64, 68, 69 radial dependences, 32–34 Gap formation, 60, 62 spectrograms, 32–33 Gas instability model, 57, 58 Energy balance, 188–191 Gas-kinetics, 419 Energy cascade, 139, 148, 149 Geometric thickness, 416, 417, 422, 429 Enskog factor, 419 Germane (GeH4/, 10, 13–14, 89, 90, 92, 95–98, 106 Enskog’s theory, 418 Geyser, 645, 651, 660 Epics, ISS images, 766, 770 Giant planets, 55–62, 64, 65, 68, 70 Epicyclic frequency, 423, 436 Global evolution Epicyclic length, 415 , 601–603 , 375, 377, 381, 386, 390, 392, 393, 396, 397, 407, 436, icy , 599–600 438, 443, 452, 523, 532 lithosphere, 600–601 Equation of state, 419, 420 shape, 601 , 640, 642, 644, 648, 649, 670 Global MHD models, 237 Equilibrium condensation, 64–68 Graben, 639, 641, 645, 647, 648, 669, 670 Equinox and Solstice missions, 7 Gradient drift, 350 Equinox mission, 684–686 Granular flow(s), 420 Bi-and mono-propellant profile, 740–741 Granular temperature, 419, 420 Cassini end-of-mission, 742–743 Gravitational accretion, 425, 447, 448 design overview, 726–727 Gravitational encounters, 418, 422, 440 icy satellite objectives, 728 Gravitational instability, 421, 554 magnetosphere, 728 Gravitational potential, 420 ring, 728–729 Gravitational stirring, 421 Saturn, 729 Gravitational torques, 425, 443 seasonal declination, 741 Gravitational viscosity, 421, 425–427, 435 trajectory, 732–740 Gravitational wakes, 460, 472, 473 Equipartition, 418, 421, 450, 451 field and shape, 75–76 E ring, 511, 512, 514, 521, 523–532, 683–684, 688, 704–706, 711, Gravity waves, 195, 199 712, 715–717, 719 Great White Spot (GWS), 24–25 Eris, 63, 66 G ring, 511–514, 521–524, 532, 533 Erosion, 435, 449 Ground state, 181, 182, 193, 196 Escape speed, 422 Ethane (C2H6/, 14–15, 89, 92–94, 98–104, 106, 107, 122, 125, H 130–132, 134, 153, 337 H, 181, 184, 185, 191, 193 Ethylene (C2H4/, 92, 94, 98, 100, 101, 107, 183, 186 H+, 185, 193, 195, 196 Evander, 642, 672 H2, 181–186, 193–197, 199 Evaporation, 713–715 H2+, 195 Excess variance, 446 H3+, 188, 189, 192–193 Extraordinary (R-X) mode, 345 Hapke theory, 484 Hard spheres, 419 F Haze, 86, 90, 91, 96, 97, 100, 106 Far Ultraviolet Spectroscopic Explorer (FUSE), 337 particle properties, 127 Fast Fourier transform, 438 vertical structure, 168 Fast rotators, 451 He, 181–183, 193 Field-aligned current (FACs), 335, 351, 353, 354, 357, 358, 360–367 Heat flow, 419 Field-aligned potentials, 345, 357 Heat flux, 420 Flow shear, 348, 364, 366 Heating rate, 190 interchange, 208, 237 Heat sources Flyby, Phoebe, 757 radioactivity, 585–586 Focusing, 418 tidal heating, 586–588 Formation, 83, 84, 88, 89, 90, 96–98, 106 Heat transport, 686, 690, 691, 713, 714 Fourier’s law, 420 Heavy elements, 84 Fragmentation, 418, 419, 445, 448, 449, 452 Helium (He), 10–11, 83–86, 99, 106 Frequency–time spectrogram Helium partitioning problem, 79–80 dynamic injection event, 319–321 Hematite, 655, 656, 672 high planetary latitude, 319, 320 Herschel, 638, 642, 645, 665, 668, 671 Saturn’s equatorial plane, 319, 320 Herschel gap, 396 Friction, 416, 418, 419, 445, 447, 448, 450, 451 Hexagon, 115, 134, 141–144 Index 799

Hexagonal wave structure, 24 surface compositions and optical properties, 41–42 Hill approximation, 446 Tethys, 43–44 Hill potential, 447 thermal conductivity, 595 Hill radius, 421, 446 voyager color image, 42–43 Hill scale, 440 voyager era, 613–615 Hill sphere, 59, 61, 404, 442, 447, 448 I/F. See Reflectivity History, 10 Imaging Science Subsystem (ISS), 116, 117, 119, 121–125, 127–130, H3 + molecular ion, 27–28 137–139, 143–146, 152, 339, 639, 640, 657, 658, 663, 667–671 H2O, 182, 185, 194, 196 Imaging science subsystem (ISS), 763–779 Homopause, 83, 99, 100, 107, 181, 183–188, 198 IMF. See Interplanetary magnetic field (IMF) Hopf bifurcation, 431 Impact basins, 59, 70, 71 HST. See (HST) Impact bombardment, 642 Hubble Space Telescope (HST), 23–24, 114–116, 122, 123, 127–129, Impact cratering and age determination 136–138, 141, 145, 268, 274, 275, 333–337, 339, 340, 343, comets, 621–626 346–349, 351, 358, 359, 361, 363, 365–368 cratering chronology, 618–619 Huygens gap, 395, 396, 518 heavy bombardments, 617–618 Hydrocarbon haze, 162–164 impactor populations, 615–617 Hydrocarbons, 14–15, 84, 92–95, 97–107, 184, 185, 187, 193, 334 physics and scaling laws, 619–621 Hydrodynamic equations, 419 statistics and interpretation, 626–630 Hydrogen (H2/, 10–12, 84–91, 95, 97–99, 104–106, 655, 660, 661 voyager era, 613–615 Hydrogen corona, 185 Impact craters Hydrogen escape, 190 bright ray crater, 640, 669, 671 Hydrogen peroxide (H2O2), 703 central pit craters, 642 Hydrogen (D/H) ratio, 15–16 complex craters, 642 Hydrostatic, 69, 182–184, 188 ejecta, 640, 642, 666, 669, 671 Hyperion, 44–45 Impact frequency, 421 Hypervelocity impacts, 435 Impacts, 517, 521, 524, 525, 527–530, 532 INCA. See Ion and Neutral Camera (INCA) I Incompressibility, 420 Iapetus, 4, 45, 61, 62, 64, 67, 68, 70, 71, 397 Inertial-acoustic wave, 432 global evolution, 601–603 Infrared (IR), 333, 338–341, 352, 364, 369, 370 ISS basemaps, 766, 769, 772 Infrared auroral observations, 27–29 Ice-II, 63 Infrared space observatory (ISO), 87–90, 92, 94, 100, 101 Ice III, 63 Infrared telescope facility (IRTF), 338 Icy satellites, 4–5 Inhomogeneous cloud structure, 19 Ansa-to-Ansa occultations (T62–T68), 738–739 Injection, 259–261 cartography, 763–779 Injection energization, 315–316 comets, 621–626 Injection events, 222, 228, 230, 231, 238, 239, 335 cratering chronology, 618–619 Instability dimensions, densities and rotational properties, 41 Arnol’d II, 134, 135 Dione, 44 baroclinic, 125, 138, 139, 141, 142, 145, 147, 149, 150, 152, 153 dynamical evolution, 598–603 barotropic, 125, 134, 140–143, 148 Enceladus, 42–43 Charney-Stern, 149 Equinox mission science objectives, 728 convective, 117 geology, 42 Interchange, 365 heat sources, 585–590 Internal heat source, 114, 118, 136 heat transfer, 590–595 International ultraviolet explorer (IUE), 26 heavy bombardments, 617–618 Interplanetary magnetic field (IMF), 204, 242, 243, 246, 305, 336, 348, Hyperion, 44–45 349, 363, 365–367 Iapetus, 45 Ion and neutral camera (INCA), 260, 261, 269, 270, 273, 340, 351, impactor populations, 615–617 353–356 laboratory data, 605–606 Ion and neutral mass spectrometer (INMS), 215, 219 orbits, 42 Ion conics, 353, 355, 357, 358 Mimas, Tethys and Dione, 604–605 Ion cyclotron waves, 344 modeling, 606 Ion drag, 189, 190 Phoebe, 603–604 Ion–neutral collisions, 286 physics and scaling laws, 619–621 Ionosphere, 257, 262, 267, 268, 270, 271, 275 porosity effect, 596 equatorial, 191, 192 processes, 606 polar, 189 Rhea, 44 Ionospheric conductivity, 204, 240 rock thermal conductivity, 595–596 Ion phase space holes, 344 satellite properties, 579–585 Ion pickup, 237 small satellites, 45–46 IR. See Infrared (IR) space, 605 IR aurora, 338–339 statistics and interpretation, 626–630 Irregular satellites, 59, 66 structural evolution, 596–598 ISO/SWS spectrum, 11 800 Index

Isothermal, 420, 430 Magnetic field perturbations, 292 Isotopic ratios, 15–16 Magnetic flux transport, 208 ISS. See Imaging Science Subsystem (ISS) Magnetodisk, 263, 266, 272, 273, 274 ISS basemaps, 766 Magnetometer (MAG), 348 Dione, 766, 768, 772, 775 Magnetopause, 204, 205, 207, 208, 211–213, 219, 221, 222, 226, 228, Enceladus, 766–767, 773 230, 231, 234, 237, 238, 242, 247–248, 257, 260, 264, 265, Epics, 766, 770 267–269, 274, 336, 347, 351, 361–363, 365, 368, 370 Iapetus, 766, 769, 772 compressibility, 247–248 Mimas, 766–767 shape, 248 Phoebe, 766, 770, 771 standoff distance, 228, 230, 247 Rhea, 766, 769 Magnetopause reconnection Tethys, 766, 768, 774 dayside magnetopause, 305 , 638, 645, 646, 649, 669, 670 interplanetary magnetic field (IMF), 305 pre-Cassini study, 306–307 J proxy estimation, Earth, 306 , 375, 377, 381, 383, 386, 390–393, 396, 397, 401, 407, 436, 438, Magnetosheath, 246 443, 452, 523, 532 Magnetosphere, 3, 6, 333, 335, 342, 343, 347–350, 352, 353, 360–370 Jeffreys gaps, 394, 396 corotation breakdown, 204, 207, 208 Jets corotation lag, 204 eastward, 115, 122–124, 126, 127, 132, 134, 136–145, 152, 154 current sheet, 206, 212, 213, 226 equatorial, 115–118, 123, 124, 127, 128, 140, 147, 149–151, 153 Earth, 213 westward, 116, 117, 122–125, 134, 136, 137, 139, 146, 150, 152 Equinox mission science objectives, 728 Joule heating, 189, 191, 197 hinging distance, 212 Julian–Toomre wakes, 423 Jupiter, 211 , 275 plasma environment, 31–32, 36–37 Jupiter, 79–80 plasma sheet, 212, 220, 231–234 Magnetosphere–ionosphere (M–I) coupling, 297–298 K Magnetospheric and plasma science group (MAPS), 737 Ka-band, 462, 463 Magnetospheric dynamics, 258, 274, 347–351, 361, 365 Keeler gaps, 375, 377, 381–382, 408, 440, 452, 464, 470, 472, 523 Magnetospheric Imaging Instrument (MIMI), 206, 222–225, 227–231, Kepler speed, 421 235, 243–245, 336, 340, 350, 352, 353, 356 KiloRayleigh, 334, 336, 337, 365 Magnetospheric plasma Kinematic viscosity, 414, 417, 426 composition, 220 Kinetic equation, 418, 419 corotation, 12, 31, 33, 34, 38 Kinetic theory, 418–419, 421 Enceladus source, 220 Objects (KOBs), 63, 615–616 losses, 19 K , 186 zz source rate, 3, 16, 19, 36, 38 L sources, 204, 206, 207, 211, 214, 215, 219 Lagrangian points, 447 Magnetotail, 204, 207, 212, 213, 231, 234–237, 239, 258, 264, Langrangian orbits, 639 267–273, 275, 343, 347, 350, 363, 366 Laplace gaps, 396, 397, 518 current, 213 Lapse rate, 118, 119, 137, 139, 140 lobes, 234 Late Heavy Bombardment (LHB), 56, 59, 70, 71, 547, 563, 566, 570 Magnitude (opposition), 638 Libration, 444 Main-belt asteroids, 615 Life, 717–719 Mass flux, 6–7 Lightning, 136–140 Mass loading interactions Lindblad resonance(s), 376, 377, 379, 381, 382, 391, 395, 401, 436, candidate process, 295 443–445 cryovolcanic plume, 294 Liouville’s theorem, 418 3D hybrid code, 294 Lithosphere, 642, 672 draping pattern, magnetic field, 293, 294 Local thermodynamic equilibrium (LTE), 181 distribution, 295 Local viscosity, 414, 417, 418, 425, 426, 428, 433 plasma flow vectors, 294, 295 Loss-cone distribution, 345 Mass point, 416 L-shell, 640 Mass transfer, 297 Lyman continuum, 336 Maximum entropy methods, 438 Lyman series, 336 Maxwell gap, 399, 518 Maxwellian distribution, 290 M Mean free path, 415–417 MAG. See Magnetometer (MAG) Meridian line projections, 30 Magnetic field Meteoritic bombardment, 657, 659, 673 earth, 204 Meteoroid bombardment, 460, 492–497, 537, 543–545, 549–551, 557, equatorial, 204, 207 559, 560, 567, 568, 570 Gauss coefficients, 209, 210 Meteoroid mass flux, 496, 501 induced, 289, 293 Meteoroids, 521, 525, 527, 532 intrinsic, 203, 209–211 Methane (CH4/, 10–11, 85–89, 92, 95–101, 103, 107, 183, 184, Jupiter, 207 186–188, 337, 358, 688, 710, 711, 715, 718, 719 Index 801

Methane absorption, 164, 168, 172 O Methane band filters, 121, 128, 137, 143 Oblateness, 444 , 523, 532, 533 Obliquity, 129 Methylacetylene (CH3C2H), 14, 92, 94, 100, 101 Occultation, 84–87, 93, 94, 98–101, 106, 107, 684, 685, 707–710, 712, Methyl radical (CH3/, 14, 92, 94, 97, 98, 100, 101, 105–107 717, 720 Micrometeorite, 705 Ocean, 686–689, 692, 693, 704, 715, 718, 719 Micro-meteoroids, 435 , 638, 642, 645, 646, 650, 651, 669 Microprobe, 758 OH, 684, 716, 717 Mimas, 42, 64, 375, 377, 392, 395, 396, 400, 401, 436, 438, 439, 692, Open-closed field line boundary, 360, 363–367, 369, 370 716 Open field line, 347, 360, 363–366 ISS basemaps, 766–767 Opposition effect, 484, 501–503 thermal evolution and internal structure, 604–605 Optical constants, 653, 661 Mimas gap, 304 Optical depth (Ë), 163, 165, 167–171, 174, 414, 417, 418, 421–423, MIMI. See Magnetospheric Imaging Instrument (MIMI) 425, 427–439, 441, 442, 445, 450, 451, 511–514, 516, 518, 520, Miscellaneous acceleration mechanisms, 316 529 Mixing (atmospheric), 186, 187, 198 , 588 Models of the general circulation Orbital evolution, 686, 692, 693, 719 Boussinesq, 151 , 643 Orbiter, 757–758 chemistry-diffusion, 153 Ordinary mode, 345, 346 deep cylinders, 146–147 Organics, 459, 476, 486–488, 497–500, 656, 660, 672 3D general circulation models, 153 Organic tholins, 486, 498 2D transport models, 153 Oxygen, 15, 83, 84, 88, 94–96, 100, 101, 104–107, 655, 656, 660 shallow water, 149, 151 shallow weather layers, 149 P two-layer, 149 , 523, 532 Molecular conduction, 190, 191 , 377, 381, 382, 396, 398, 408, 440–442, 448, 449 Molecular oxygen, radiolytic production, 285–286 , 377, 381, 386, 387, 391, 392, 396, 398, 402–404, 436, 439, Moment equations, 419 443, 452 Monolayer, 416, 445 Pan wakes, 440, 441 (s), 436, 439–445, 448–450 Para fraction, 86, 91 –magnetosphere interactions Para-hydrogen fraction, 127 Alfvén wings, 289 Particles internal magnetic fields, 289–290 composition, 163–165 Keplerian motion, 290 scattering phase function, 165, 166 magnetohydrodynamic (MHD) waves, 289 single scattering albedo, 170, 172 mass loading interactions, 293–295 Particle spin, 419, 445, 449–451 physical process, 290 Pedersen current, 362–364 plasma absorbing interactions, 290–293 Periodicity, 258, 261–264, 266 plasma flow, 289 Phase-mixing, 439 Morphology, 640–651, 671 Phase space density (PSD), 311–313 Multilayer, 416 Phoebe, 45, 55, 63, 65, 66, 68 Multiple scattering, 461, 468, 473, 475, 476, 483, 484, 488, 500 ISS basemaps, 766, 770, 771 Multi ring basins, 642 thermal evolution and internal structure, 603–604 Multi-scale expansion, 432 Phosphine (PH3/, 13, 89–91, 95–98, 106, 107, 122, 127 Photochemical haze, 161, 164 Photochemical model, 186, 187, 198 N Photochemistry, 14–15, 83, 84, 90, 96–101, 104–107 Nanohematite, 488, 489, 497 Photodissociation, 493 Narrowband Saturn kilometric radiation (n-SKR), 345 Photoelectrons, 193, 196, 197 Narrowband Saturn myriametric radiation (n-SMR), 345 Photolysis, 90–92, 97–100, 107, 493, 658, 661 Nearly isotropic comets (NICs), 625 Photosputtering, 492 Negative , 5 Physics and scaling laws, 619–621 Neukum lunar chronology, 618 Pickup acceleration Neutral loadings, 287 electron and ion plasma distributions, 314, 315 Neutral scattering, 288 Jupiter’s inner magnetosphere, 313 Newtonian, 420, 432, 435 pickup energization, 314 Nice model, 56–59, 62, 67, 70 Pickup energization, 286 Nice model chronology, 619 Pioneer, 55, 64, 334 Nitrogen (N2/, 684, 688, 710, 711, 715, 716, 720 observations, 209, 211, 221, 228, 246, 248 Nitrogen ions, 206, 219 Planetary magnetic field, 29–31 Non-local viscosity, 433 Planetary , 296, 297 Non-Newtonian, 421, 435 Planetary migration, 57–59 North polar spot, 115, 136, 141–143 Planetesimals, 57–62, 65, 67, 446 n-SKR. See Narrowband Saturn kilometric radiation (n-SKR) Plasma absorbing interactions n-SMR. See Narrowband Saturn myriametric radiation (n-SMR) cold plasma response, 290–291 802 Index

energetic particle response, 292–293 magnetopause, 207, 208, 247 magnetic field response, 291–292 X-line, 208 Rhea’s gravity, 293 Reflectivity, 483, 496, 497, 500 Plasma absorption Regolith, 417, 418, 429, 442, 447, 659–662, 664–666, 671 macrosignatures, 223 Regolith grain size, 475, 483–487, 497 microsignatures, 223, 224 Regolith radiative transfer, 483–485, 497, 500 Plasma diffusion, 221 Regular satellite system, 55, 60, 61, 66 Plasma drag, 449 Remote sensing, 162 Plasma transport, 238, 241 Resonance(s), 413, 436–439, 443–445, 449, 452 Plasma waves, 37–38 Restitution coefficient, 416, 417, 450 Plasmoid, 207, 208, 235, 236, 258, 268, 270–273 Resurfacing, 642, 650, 651 Plume, 639, 640, 650, 651, 656, 660, 663, 673, 684–686, 688, 690, Rhea, 4, 44, 69, 70 693, 698–700, 703–720 ISS basemaps, 766, 769 Pluto, 63, 65, 66, 68 VIMS composition map, 776–778 Poisson’s equation, 420, 422 Rhines scale, 148, 149, 153 Polar cap, 334, 347, 348, 363, 364, 366 Ribbon, 115, 134, 141, 144, 145 Polarization, 639, 663–666 Ring atmosphere Polar stratospheric haze, 2 composition, 492, 500 Polycyclic aromatic hydrocarbons (PAHs), 487, 488, 494, 497, 499, oxygen, 460, 487, 492–496, 500 500 Ring color, 474, 480, 481, 483, 487, 497 Porosity, 63, 64, 66 Ring current, 206, 211, 213, 225–231, 234, 239, 248, 264, 267, 268, Potential vorticity, 118, 128, 133–135, 140, 145, 150, 153 273, 274, 340, 351, 355, 360, 363 Poynting flux, 357 Ring darkening, 542, 544, 545, 548, 560, 570 Poynting-Robertson drag, 449 Ring ionosphere, 206 Precipitating electrons, 337, 358 Ring many-particle-thick models, 466, 483, 501 Pressure tensor, 418, 420, 421 Ring-moon interaction Probes, 758 Ring-, 436, 440, 442, 474 Production rate, 197 Ring optical depth, 460, 462, 463, 465, 467, 472, 473, 474, 475, Prograde rotation, 450 479–481, 486, 494, 496, 502, 503 , 375, 377, 381, 386, 391, 392, 397, 402–406, 436, 439, Ring parent body, 498 443, 448, 452 Ring particle albedo, 460, 479, 481–483, 496, 497, 500, 502 Ring particle composition, 459–503 Propane (C3H8/, 92, 94, 98, 100, 101, 104, 107 Propeller(s), 375, 377, 382–386, 403, 429, 436, 440–443, 445, 446, Ring particle maximum size, 461, 476 449, 451 Ring particle phase function, 461, 475, 484, 497, 500, 502 Propeller belt, 443 Ring particle regoliths, 478, 483–484, 486, 502 Propeller objects, 473–474 Ring particle size, 459–503 Protoplanet, 56, 57, 60 Ring particle size distribution, 459–503 Protoplanetary disk, 446 Ring radiative transfer models, 483, 485, 486, 497, 500 Ring “red bands,” 480 Rings, 55, 62, 64, 66, 69, 71 R Rings-age, 496, 500, 501, 545, 546, 548, 570 Radar, 116, 119, 120, 140, 154 Rings and KBOs, 498 Radau–Darwin relation, 75–76 Rings and satellites, 476, 477, 484, 488–492, 496–500 Radial diffusion coefficient, 303, 304 Ring’s density, 541, 544, 548, 552, 554, 555, 558 Radial diffusion equation, 303 Ring shadows, 194 Radiation, 660, 661, 672, 673 Rings-mass, 460, 474, 495–497, 501, 541–542, 545, 546, 548, 550, Radiation belts, 221–225 567, 570 Radiation pressure, 511, 518, 519, 529, 533 Rings-origin, 459, 489, 497–499, 538, 539, 547–548, 558, 559, Radiative heating, 177 566–571 Radiative recombination, 193 Rings-parent, 473–474, 489, 497, 498 Radiative time scale, 127 Ring spectrum, 477, 483, 486, 490 Radio and plasma wave science (RPWS), 339, 342–345, 348, 356 Ring surface mass densities, 459, 474, 496, 497 Radio and plasma wave science (RPWS) instrument, 259, 262, 273 Rings working group (RWG), 737 Radio and plasma wave spectrometer (RPWS), 206, 215, 216, 218, Ring system 221, 241 A and B rings, 36–37 Radio emissions, 339, 341–347, 369 Cassini-Huygens mission, 753–755 Radiogenic heating, 69, 70, 689, 693 C ring, 37–38 Radiogenic heat production, 643 E, F and G rings, 38 Radio occultation observations, 181, 188, 191, 196 Enke and Keeler gaps, 37 Radio occultations, 462, 466–473, 475, 477, 500 Equinox mission science objectives, 728–729 Radio science subsystem (RSS), 639 origin and evolution, 40–41 Ramps in optical depth, 435 particle size distribution, 38–39 Random walk, 440 ring particle composition, 39–40 Rayleigh scattering, 166–169, 177, 654–657, 673 voyager image, 36–37 Reconnection, 264, 267–270, 274, 275, 335, 336, 347, 348, 350, Ring temperature, 481–483, 486, 493 361–363, 365, 366, 368, 369 Ring thickness, 468, 473 Index 803

Ring UV absorber, 460, 476, 478, 480, 481, 486, 488, 497–500 Mimas, 638, 651 Ring UVIS spectra, 479 Paaliaq, 638 Ring vertical structure, 461, 472, 483 Pan, 638 Ring VIMS spectra, 476–481, 488 Pandora, 638, 652 Roche division, 375, 511, 517–518, 533 Phoebe, 638 Roche ellipsoids, 448 Prometheus, 638, 653 Roche limit, 446, 538–542, 553, 555, 556, 558, 559, 563–566 Rhea, 638, 669 Roche zone, 375, 377, 446–449 , 638, 652 Rock/ice fraction, 64–68 Tethys, 638 Rock-poor models, 599 , 638 Rock-rich models, 599 Saturn Kilometric Radiation (SKR), 3, 26, 117, 118, 123, 206, 209, Rock thermal conductivity, 595–596 210, 211, 227, 235, 247, 258, 261–265, 267, 269, 273, 274, 333, Rope structure, 440 334, 341, 343, 351, 361 Rossby number, 118, 142, 143, 149 Saturn longitude system (SLS), 263, 264 Rossby waves, 115, 128, 131, 134, 135, 140, 142, 143, 148, 150 Saturn Insertion (SOI), 474, 476, 480, 481, 492, 493, 495 Rotation, 686, 690 Saturnshine, 475, 476, 500 modulation, 261–267 Saturn’s ionosphere, 207, 214, 220, 234, 241 period, 117–118, 135, 141, 154 Saturn’s magnetosphere, fundamental plasma processes state and equations, 76–78 adiabatic acceleration and related processes, 310–313 Rotational degrees of freedom, 418 Cassini ultraviolet imaging spectrograph (UVIS) imaging, 282, 283 Rotational energy, 419 centrifugal interchange instability, 300–303 Rotational levels, 182, 185 corotation lag, 298–299 Rotational modulation, 341, 348 current generation, 316–318 Rotational period, 639 dominant particle populations, 282 Roughness, 661–663, 673 magnetopause reconnection, 305–307 RPWS. See Radio and plasma wave science (RPWS) magnetosphere–ionosphere coupling, 297–298 Rubble piles, 541, 565 moon–magnetosphere interactions, 290–295 Russell gaps, 394 neutral gas, 286–289 pickup acceleration, 313–314 S radial diffusion formalism, 303–304 Sample return, 720 rotational vs. solar-wind drivers, 296–297 Satellite accretion, 60–62 suprathermal ion composition and abundances, 283, 284 Satellite migration, 23 surfaces, 284–286 Satellite properties tail reconnection, 307–310 density, 579, 581 water dissociation and ionization, 284 gravitational field, 588–590 wave particle interactions, 318–323 physical and dynamical properties, 579–580 Saturn’s rings, 468, 469, 474–476, 485, 488, 490, 495, 498, 501–503 porosity, 581–582 S-band, 462, 463, 468 Rhea’s gravitational field, 583–585 Scale height, 181, 186, 190, 191, 199, 418, 433 rock composition, 583 Season, 86, 101–103 size and shape, 579, 581 Seasonality, 114, 129 volatile composition, 582–583 Secondary ionization, 197 Satellite system, 7 SEDs. See Saturn electrostatic discharges Saturn Selective instability, 433, 434 atmosphere, 2, 5–6 Self-gravity potential, 420 detailed evolutionary models, 79–80 Self-gravity wakes, 375, 377, 378, 380, 383–386, 388, 391–393, 407, evolution, 78–79 413, 421, 423–430, 433, 435, 438, 440–443, 452 interior, 16, 75–80 Semi-annual oscillation (SAO), 129, 132, 147 ring system, 3–4, 6–7, 36–41 Semi-major axis, 421, 437, 438 system prior, 1–2 Shear flow, 414, 436 Saturn electrostatic discharges (SEDs), 137, 192 Shear rate, 414, 424, 430, 435–436 Saturn Equinox (T52–T62), 738 Shear stress, 414–416, 430, 435 Saturn Equinox Mission (SEM), 275 Shear viscosity, 414–415, 420, 421, 430, 431, 433 Saturnian rings (E-, F-), 638, 639, 650, 653–656, 658–660, 663, 664, Shepherding, 443 666, 668, 670, 672, 673 Sidereal period, 638 Saturnian satellites Single scattering phase function, 661 Albiorix, 638 Size-frequency distribution (SFD) Atlas, 652, 653 comets, 624–625 , 652 crater statistics and interpretation, 627–630 Dione, 651, 665, 673 impactor populations, 616 Enceladus, 645, 649, 650 voyager, 614 Epimetheus, 638, 652, 653, 672 SKR. See Saturn kilometric radiation (SKR) , 638 SKR period, 342, 350, 351 Hyperion, 651, 652, 659 Slow rotators, 451 Iapetus, 638, 642, 651, 668 SLS3 longitude, 336, 342, 369 Janus, 638, 652 Smooth plains, 641, 642, 646, 651, 669 804 Index

Snow line, 65 grooves, 641, 669 Sodium, 688, 711, 712, 715 Tectonism, 694, 697, 701, 702 Solar composition, 57, 64–68, 84, 86, 87, 88, 106 Temperature Solar composition condensate, 66 electron, 193, 194, 197 Solar nebula, 56, 57, 64–66, 68, 70, 84 ion, 191, 197 Solar occultations, 188 ionospheric, 193–197 Solar system, 755–756 mesopause, 182, 183, 187, 190 , 257–259, 265–271, 273–275, 333–336, 338–340, 343, plasma, 191, 197 347–351, 361, 363, 365, 366, 368–370 polar, 189 dynamic pressure, 212, 228, 229, 237, 242, 243, 246, 247 thermospheric, 183–184, 188–190, 197 interaction, 206, 207, 234, 242 upper atmosphere, 188–191 Solar wind dynamic pressure, 334, 343, 348, 361, 365 Temperature knee, 129 Solar wind shock, 349 Temperature profile Solstice mission (SM), 275, 685 para/ortho-H2 ratio, 20–21 South polar region, 69, 70 spatial variations, 20 South polar vortex, 143–144 stratosphere, 22–23 Space telescope imaging spectrograph (STIS), 333–337, 339, 367 troposphere, 19–20 Spectrograms, 32–33 voyager, 20–21 Spokes, 511, 512, 514, 519–521, 532, 533 Tethys, 43–44, 64, 523–526, 528 Sputtering, 639, 640, 658, 660, 668, 673, 704, 705, 710, 716 ISS basemaps, 766, 768, 774 Standing waves, 432 thermal evolution and internal structure, 604–605 Stellar occultations, 182–188, 190, 197, 466, 468–470, 473 Thermal equilibrium, 416, 428, 433 STIS. See Space telescope imaging spectrograph (STIS) Thermal evolution, 642, 643, 649, 668 Stratosphere, 84, 92, 94, 95, 98–101, 103–105, 107, 114–116, 119, Thermal evolution and internal structure 121–123, 125, 126, 128–130, 132, 134, 143, 153, 154 dynamical evolution, 598–603 Stratospheric composition geology, 578 hydrocarbons and photochemistry, 14–15 heat sources, 585–590 isotopic ratios, 15–16 ice thermal conductivity, 595 oxygen supply, 15 laboratory data, 605–606 Stratospheric haze, 127 midsize icy satellites, 578 Streamline(s), 437, 438, 440, 442–445 Mimas, Tethys and Dione, 604–605 String of pearls, 145, 146 modeling, 606 Structural evolution Phoebe, 603–604 melting and differentiation, 597 porosity effect, 596 porosity, 596–597 processes, 606 rock core, 597–598 rock thermal conductivity, 595–596 Subcorotation, 240–242, 258, 259, 260, 270 satellite properties, 579–585 Sublimation, 707 space, 605 Subnebula, 60, 61, 66, 67 structural evolution, 596–598 Substorm, 366 transfer, 590–595 Sulfur, 83, 88, 95, 97, 106 Thermal inertia, 451, 705 Surface ages, 690, 701, 705, 719 Thermal profile, 188 Surface friction, 418, 419, 447, 448, 450 Thermal radiation, 429, 451 Surface irregularities, 419 Thermal relaxation time, 451 Surface sticking, 555–557 Thermal stability, 415–416, 450 Surface temperature, 703, 705, 712 Thermal torques, 449 Swing amplification, 423 Thermal waves, 115, 141, 148 Synchronization, 445 Thermal wind, 124, 127–130, 133, 146, 147, 151, 152 Synchronous orbit, 435 Thermochemistry, 83, 95–96 System III, 123, 127, 135, 136, 141–143 Thermospheric dynamics, 338 Tholin, 476, 487–489, 494, 497–499 T Three-body problem, 446 Tail reconnection Tidal deformation, 643 circulation pattern, plasma, 307, 308 Tidal force(s), 421, 425, 435, 446 dipolarization, 308 Tidal heating, 685–693, 719 field geometry, 307 Tidally disrupted comet, 564–566 magnetic signatures, 308, 309 Tidally modified accretion, 554–555, 557 plasmoid formation, 308 Tidal migration, 547 Saturnian plasmoid, 310 Tiger stripes, 69, 671, 684, 685, 689, 693, 696, 698–707, 712, 713, 717 tail stretching and growth phase, 308 Time dependent model, 194 Tangential friction, 416, 450 Titan, 55, 63, 65–71, 357, 366, 399–401, 436, 443, 444 TEC, 193 Titan and Enceladus Mission (TANDEM), 720 Tectonic, 70 Titan groundtracks, 735, 737 Tectonic structures Toomre factor, 554 faults, 639, 668 Toomre parameter, 383, 423, 431 graben, 647, 669 Toomre wakes, 421, 423 Index 805

Topography, 640–651, 658, 670, 687, 688, 690, 700 Enceladus, 776, 778–779 Torque density, 439 Rhea, 776–778 Tour design and development process, 730–732 Visco-elastic dissipation, 417 Trajectory phases Viscosity, 413–415, 417, 418, 420–423, 425–433, 435, 437–439, 441, apoapsis and periapsis profiles, 733, 736 445, 452, 543, 549, 552, 559 ascending and descending node crossing profiles, 733, 736 Viscous cooling, 420, 421, 440 cassini extended mission encounters, 732–733 Viscous diffusion, 435, 440 8-day Pi-transfer (T51–T52), 738 Viscous instability, 417, 418, 431, 433–434, 436, 451 Enceladus flybys, 733 Viscous overstability, 387, 391, 407, 413, 430–433, 444, 452 equinox viewing phase, 737 Viscous relaxation, 638, 644, 694 high inclination phase (T45–T51), 733–734, 737–738 Viscous spreading, 537, 542–543, 545, 547, 548, 559 high northern Titan groundtracks (T68–T70), 740 Viscous stirring, 418 icy satellites and Ansa-to-Ansa occultations (T62–T68), 738–739 Viscous torque, 439 Visual and infrared mapping spectrometer (VIMS), 90, 91, 99, 100, plume penetration passes, 733–734 107, 116, 119–124, 128–130, 136, 138–146, 152, 338–341, 639, Saturn Equinox (T52–T62), 738 640, 651–654, 657–659, 661, 663, 665, 666, 673, 763–779 Titan groundtracks, 735, 737 Volatiles, 650, 657–660, 671 Transmission spectra, 182, 183 Vortices, 135–136, 142, 143, 145, 149 Transport coefficients, 419, 420 Voyager, 55, 62, 64, 69, 84–87, 89, 92, 94, 96, 99, 100, 101, 106, Traveling waves, 432 114–119, 123–125, 127–129, 135–137, 140–146, 333, 334, 341, , 63, 65, 67, 68 343, 344, 352, 361, 363, 462, 465, 467–473, 475, 479–481, 483, Trojans, 615 487, 497, 501, 503, 511, 512, 514–517, 519–521, 524, 525, 528, Tropopause, 90, 97, 98 529, 533, 683, 686, 693, 694, 697, 705 Troposphere, 84, 86, 88–92, 95–98, 104, 107 aerosol structure, 16–19 Tropospheric composition atmosphere, 2 ammonia,water and hydrogen sulfide, 11–12 icy satellites, 42–43 disequilibrium species, 13–14 impact cratering and age determination, 613–615 Tropospheric haze, 116, 121, 123, 137, 140, 146, 154 magnetospheric plasma environment, 31–32 Troughs, 194 observations, 210, 214, 217, 219, 224 Type III migration, 443 temperature profile, 20–21

W U Wakes, 539, 541–543, 554 Ultraviolet (UV), 333–335, 337–340, 347, 349–351, 358, 364, 365, Water, 11–12, 84, 88, 94–96, 100, 104–106, 162, 163 369 Water group ions, 206, 214–218, 221, 232, 240, 242, 2445 Ultraviolet aurora (UV aurora), 333–335, 337, 338, 340, 343, 346–350, Water ice (H2O), 638, 639, 650–658, 660, 661, 663, 664, 667, 671, 672 352, 358, 359, 360, 369 Water ice band depths, 480–482, 484–486, 491, 496, 497 Ultraviolet auroral observations, 26–27 Water ice laboratory spectra, 460, 484 Ultraviolet imaging spectrograph (UVIS), 86, 94, 99–101, 106, 107, Water influx, 191, 194–196 337, 339–340, 350, 352, 639, 640, 653, 658 Wave activity, 191 United Kingdom infrared telescope (UKIRT), 339 Wavelet transform, 438 Upper hybrid resonance (UHR) emissions, 319, 322 Wave particle interactions Upper troposphere, 114–116, 118, 119, 121–123, 125–129, 133–136, ECH, UHR, and narrowband radio emissions, 319–321 140–142, 145, 146, 151–154 Langmuir waves, 319 Upstream ions, 204, 243 miscellaneous plasma waves, 323 UV. See Ultraviolet (UV) resonant energy exchange, 318 UV aurora. See Ultraviolet aurora (UV aurora) whistler-mode emissions, 322–323 UVIS. See Ultraviolet imaging spectrograph (UVIS) Whistler mode, 354, 357 UV spectrometer (UVIS), 181–188, 190, 197–199 Winds, 86, 99, 103, 104, 106 anticyclonic/cyclonic shear, 145 meridional circulation, 127 V vertical shear, 127 Vapor transport, 713 vertical velocity, 127 Vasyliunas cycle, 207, 208, 249, 336, 361–363, 370, zonal jets, 127 Velocity dispersion, 414, 416–418, 420, 422–425, 428, 431–433, 438–440, 450, 452 X Velocity dispersion tensor, 419 X-band, 462, 467, 470 Velocity distribution function, 418 “X” line, 258 Vertical density distributions, 182 Vibrational excitation, 196, 197 Y Vibrational populations, 182, 193 Yarkovsky effect, 449 Vibrational temperatures, 191, 193–196, 199 Yarkovsky-Schach effect, 449 VIMS. See Visual and infrared mapping spectrometer (VIMS) VIMS composition map Z Dione, 771, 776, 777 Zonostrophic regime, 148