SOOS Science Strategy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Investigating Drivers of Phytoplankton Blooms in the North Atlantic Ocean Using High-Resolution in Situ Glider Data
University of Southampton Research Repository Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are retained by the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. This thesis and the accompanying data cannot be reproduced or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The content of the thesis and accompanying research data (where applicable) must not be changed in any way or sold commercially in any format or medium without the formal permission of the copyright holder/s. When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g. Thesis: Author (Year of Submission) "Full thesis title", University of Southampton, name of the University Faculty or School or Department, PhD Thesis, pagination. Data: Author (Year) Title. URI [dataset] Resources to help Word to write your thesis can be found at: http://go.soton.ac.uk/thesispc http://go.soton.ac.uk/thesismac UNIVERSITY OF SOUTHAMPTON FACULTY OF NATURAL AND ENVIROMENTAL SCIENCES School of Ocean and Earth Sciences Investigating drivers of phytoplankton blooms in the North Atlantic Ocean using high-resolution in situ glider data by Anna Sergeevna Rumyantseva Thesis for the degree of Doctor of Philosophy October 2016 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES Ocean and Earth Sciences Thesis for the degree of Doctor of Philosophy INVESTIGATING DRIVERS OF PHYTOPLANKTON BLOOMS IN THE NORTH ATLANTIC OCEAN USING HIGH-RESOLUTION IN SITU GLIDER DATA Anna Sergeevna Rumyantseva Autonomous buoyancy-driven underwater gliders represent a powerful tool for studying marine phytoplankton dynamics due to their ability to obtain frequent depth-resolved profiles of bio- optical and physical properties over inter-seasonal time scales, even under challenging weather conditions and low light. -
Storm Waves Focusing and Steepening in the Agulhas Current: Satellite Observations and Modeling T ⁎ Y
Remote Sensing of Environment 216 (2018) 561–571 Contents lists available at ScienceDirect Remote Sensing of Environment journal homepage: www.elsevier.com/locate/rse Storm waves focusing and steepening in the Agulhas current: Satellite observations and modeling T ⁎ Y. Quilfena, , M. Yurovskayab,c, B. Chaprona,c, F. Ardhuina a IFREMER, Univ. Brest, CNRS, IRD, Laboratoire d'Océanographie Physique et Spatiale (LOPS), Brest, France b Marine Hydrophysical Institute RAS, Sebastopol, Russia c Russian State Hydrometeorological University, Saint Petersburg, Russia ARTICLE INFO ABSTRACT Keywords: Strong ocean currents can modify the height and shape of ocean waves, possibly causing extreme sea states in Extreme waves particular conditions. The risk of extreme waves is a known hazard in the shipping routes crossing some of the Wave-current interactions main current systems. Modeling surface current interactions in standard wave numerical models is an active area Satellite altimeter of research that benefits from the increased availability and accuracy of satellite observations. We report a SAR typical case of a swell system propagating in the Agulhas current, using wind and sea state measurements from several satellites, jointly with state of the art analytical and numerical modeling of wave-current interactions. In particular, Synthetic Aperture Radar and altimeter measurements are used to show the evolution of the swell train and resulting local extreme waves. A ray tracing analysis shows that the significant wave height variability at scales < ~100 km is well associated with the current vorticity patterns. Predictions of the WAVEWATCH III numerical model in a version that accounts for wave-current interactions are consistent with observations, al- though their effects are still under-predicted in the present configuration. -
Johann R.E. Lutjeharms the Agulhas Current
330 Subject index Johann R.E. Lutjeharms The Agulhas Current 330 SubjectJ.R.E. index Lutjeharms The Agulhas Current with 187 figures, 8 in colour 123 330 Subject index Professor Johann R.E. Lutjeharms Department of Oceanography University of Cape Town Rondebosch 7700 South Africa ISBN-10 3-540-42392-3 Springer Berlin Heidelberg New York ISBN-13 978-3-540-42392-8 Springer Berlin Heidelberg New York Library of Congress Control Number: 2006926927 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable to prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com © Springer-Verlag Berlin Heidelberg 2006 Printed in Germany The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Typesetting: Camera-ready by Marja Wren-Sargent, ADU, University of Cape Town Figures: Anne Westoby, Cape Town Satellite images: Tarron Lamont and Christo Whittle, MRSU, University of Cape Town Technical support: Rene Navarro, ADU, University of Cape Town Cover design: E. -
Global Ocean Surface Velocities from Drifters: Mean, Variance, El Nino–Southern~ Oscillation Response, and Seasonal Cycle Rick Lumpkin1 and Gregory C
JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS, VOL. 118, 2992–3006, doi:10.1002/jgrc.20210, 2013 Global ocean surface velocities from drifters: Mean, variance, El Nino–Southern~ Oscillation response, and seasonal cycle Rick Lumpkin1 and Gregory C. Johnson2 Received 24 September 2012; revised 18 April 2013; accepted 19 April 2013; published 14 June 2013. [1] Global near-surface currents are calculated from satellite-tracked drogued drifter velocities on a 0.5 Â 0.5 latitude-longitude grid using a new methodology. Data used at each grid point lie within a centered bin of set area with a shape defined by the variance ellipse of current fluctuations within that bin. The time-mean current, its annual harmonic, semiannual harmonic, correlation with the Southern Oscillation Index (SOI), spatial gradients, and residuals are estimated along with formal error bars for each component. The time-mean field resolves the major surface current systems of the world. The magnitude of the variance reveals enhanced eddy kinetic energy in the western boundary current systems, in equatorial regions, and along the Antarctic Circumpolar Current, as well as three large ‘‘eddy deserts,’’ two in the Pacific and one in the Atlantic. The SOI component is largest in the western and central tropical Pacific, but can also be seen in the Indian Ocean. Seasonal variations reveal details such as the gyre-scale shifts in the convergence centers of the subtropical gyres, and the seasonal evolution of tropical currents and eddies in the western tropical Pacific Ocean. The results of this study are available as a monthly climatology. Citation: Lumpkin, R., and G. -
Why Are There Agulhas Rings?
APRIL 1999 PICHEVIN ET AL. 693 Why Are There Agulhas Rings? THIERRY PICHEVIN SHOM/CMO, Brest, France DORON NOF Department of Oceanography and the Geophysical Fluid Dynamics Institute, The Florida State University, Tallahassee, Florida JOHANN LUTJEHARMS Department of Oceanography, University of Cape Town, Rondebosch, South Africa (Manuscript received 31 March 1997, in ®nal form 7 May 1998) ABSTRACT The recently proposed analytical theory of Nof and Pichevin describing the intimate relationship between retro¯ecting currents and the production of rings is examined numerically and applied to the Agulhas Current. Using a reduced-gravity 1½-layer primitive equation model of the Bleck and Boudra type the authors show that, as the theory suggests, the generation of rings from a retro¯ecting current is inevitable. The generation of rings is not due to an instability associated with the breakdown of a known steady solution but rather is due to the zonal momentum ¯ux (i.e., ¯ow force) of the Agulhas jet that curves back on itself. Numerical experiments demonstrate that, to compensate for this ¯ow force, several rings are produced each year. Since the slowly drifting rings need to balance the entire ¯ow force of the retro¯ecting jet, their length scale is considerably larger than the Rossby radius; that is, their scale is greater than that of their classical counterparts produced by instability. Recent observations suggest a correlation between the so-called ``Natal Pulse'' and the production of Agulhas rings. As a by-product of the more general retro¯ection experiments, the pulse issue is also examined numerically using two different representations for the pulses. -
Upper-Level Circulation in the South Atlantic Ocean
Prog. Oceanog. Vol. 26, pp. 1-73, 1991. 0079 - 6611/91 $0.00 + .50 Printed in Great Britain. All fights reserved. © 1991 Pergamon Press pie Upper-level circulation in the South Atlantic Ocean RAY G. P~-rwtSON and LOTHAR Sa~AMMA lnstitut fiir Meereskunde an der Universitiit Kiel, Diisternbrooker Weg 20, 2300 Kiel 1, F.R.G. Abstract - In this paper we present a literature survey of the South Atlantic's climate and its oceanic upper-layer circulation and meridional beat transport. The opening section deals with climate and is focused upon those elements having greatest oceanic relevance, i.e., distributions of atmospheric sea level pressure, the wind fields they produce, and the net surface energy fluxes. The various geostrophic currents comprising the upper-level general circulation are then reviewed in a manner organized around the subtropical gyre, beginning off southern Africa with the Agulhas Current Retroflection and then progressing to the Benguela Current, the equatorial current system and circulation in the Angola Basin, the large-scale variability and interannual warmings at low latitudes, the Brazil Current, the South Atlantic Cmrent, and finally to the Antarctic Circumpolar Current system in which the Falkland (Malvinas) Current is included. A summary of estimates of the meridional heat transport at various latitudes in the South Atlantic ends the survey. CONTENTS 1. Introduction 2 2. Climatic Elements 2 3. Subtropical and Equatorial Circulation 11 3.1. Agulhas Current Retroflection 11 3.2. Benguela Cmrent 16 3.3. Equatorial Cttrrents 18 3.3.1. Components of the system 18 3.3.2. Angola Basin circulation 26 3.3.3. -
Between the Devil and the Deep Blue Sea: the Role of the Amundsen Sea Continental Shelf in Exchanges Between Ocean and Ice Shelves
OceTHE OFFICIALa MAGAZINEn ogOF THE OCEANOGRAPHYra SOCIETYphy CITATION Heywood, K.J., L.C. Biddle, L. Boehme, P. Dutrieux, M. Fedak, A. Jenkins, R.W. Jones, J. Kaiser, H. Mallett, A.C. Naveira Garabato, I.A. Renfrew, D.P. Stevens, and B.G.M. Webber. 2016. Between the devil and the deep blue sea: The role of the Amundsen Sea continental shelf in exchanges between ocean and ice shelves. Oceanography 29(4):118–129, https://doi.org/10.5670/oceanog.2016.104. DOI https://doi.org/10.5670/oceanog.2016.104 COPYRIGHT This article has been published in Oceanography, Volume 29, Number 4, a quarterly journal of The Oceanography Society. Copyright 2016 by The Oceanography Society. All rights reserved. USAGE Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: [email protected] or The Oceanography Society, PO Box 1931, Rockville, MD 20849-1931, USA. DOWNLOADED FROM HTTP://TOS.ORG/OCEANOGRAPHY SPECIAL ISSUE ON OCEAN-ICE INTERACTION Between the Devil and the Deep Blue Sea THE ROLE OF THE AMUNDSEN SEA CONTINENTAL SHELF IN EXCHANGES BETWEEN OCEAN AND ICE SHELVES By Karen J. Heywood, Louise C. Biddle, Lars Boehme, Pierre Dutrieux, Michael Fedak, Adrian Jenkins, Richard W. Jones, Jan Kaiser, Helen Mallett, Alberto C. Naveira Garabato, Ian A. Renfrew, David P. Stevens, and Benjamin G.M. Webber Release of a meteorolog- ical radiosonde balloon from RRS James Clark Ross in February 2014 to col- lect a profile of atmospheric properties adjacent to the Pine Island Ice Shelf. -
Wind Changes Above Warm Agulhas Current Eddies
Ocean Sci., 12, 495–506, 2016 www.ocean-sci.net/12/495/2016/ doi:10.5194/os-12-495-2016 © Author(s) 2016. CC Attribution 3.0 License. Wind changes above warm Agulhas Current eddies M. Rouault1,2, P. Verley3,6, and B. Backeberg2,4,5 1Department of Oceanography, Mare Institute, University of Cape Town, South Africa 2Nansen-Tutu Center for Marine Environmental Research, University of Cape Town, South Africa 3ICEMASA, IRD, Cape Town, South Africa 4Nansen Environmental and Remote Sensing Centre, Bergen, Norway 5NRE, CSIR, Stellenbosch, South Africa 6IRD, UMR AMAP, Montpellier, France Correspondence to: M. Rouault ([email protected]) Received: 8 September 2014 – Published in Ocean Sci. Discuss.: 21 October 2014 Revised: 7 March 2016 – Accepted: 9 March 2016 – Published: 5 April 2016 Abstract. Sea surface temperature (SST) estimated from higher wind speeds and occurred during a cold front associ- the Advanced Microwave Scanning Radiometer E onboard ated with intense cyclonic low-pressure systems, suggesting the Aqua satellite and altimetry-derived sea level anomalies certain synoptic conditions need to be met to allow for the de- are used south of the Agulhas Current to identify warm- velopment of wind speed anomalies over warm-core ocean core mesoscale eddies presenting a distinct SST perturbation eddies. In many cases, change in wind speed above eddies greater than to 1 ◦C to the surrounding ocean. The analysis was masked by a large-scale synoptic wind speed decelera- of twice daily instantaneous charts of equivalent stability- tion/acceleration affecting parts of the eddies. neutral wind speed estimates from the SeaWinds scatterom- eter onboard the QuikScat satellite collocated with SST for six identified eddies shows stronger wind speed above the warm eddies than the surrounding water in all wind direc- 1 Introduction tions, if averaged over the lifespan of the eddies, as was found in previous studies. -
Seasonal Phasing of Agulhas Current Transport Tied to a Baroclinic
Journal of Geophysical Research: Oceans RESEARCH ARTICLE Seasonal Phasing of Agulhas Current Transport Tied 10.1029/2018JC014319 to a Baroclinic Adjustment of Near-Field Winds Key Points: • A baroclinic adjustment to Indian Katherine Hutchinson1,2 , Lisa M. Beal3 , Pierrick Penven4 , Isabelle Ansorge1, and Ocean winds can explain the 1,2 Agulhas Current seasonal phasing, Juliet Hermes and a barotropic adjustment cannot 1 2 • Seasonal phasing is found to be Department of Oceanography, University of Cape Town, Cape Town, South Africa, South African Environmental 3 highly sensitive to reduced gravity Observations Network, SAEON Egagasini Node, Cape Town, South Africa, Rosenstiel School of Marine and Atmospheric values, which modify adjustment Science, University of Miami, Miami, FL, USA, 4Laboratoire d’Oceanographie Physique et Spatiale, University of Brest, times to wind forcing CNRS, IRD, Ifremer, IUEM, Brest, France • Near-field winds have a dominant influence on the seasonal cycle of the Agulhas Current as remote signals die out while crossing the basin Abstract The Agulhas Current plays a significant role in both local and global ocean circulation and climate regulation, yet the mechanisms that determine the seasonal cycle of the current remain unclear, with discrepancies between ocean models and observations. Observations from moorings across the Correspondence to: K. Hutchinson, current and a 22-year proxy of Agulhas Current volume transport reveal that the current is over 25% [email protected] stronger in austral summer than in winter. We hypothesize that winds over the Southern Indian Ocean play a critical role in determining this seasonal phasing through barotropic and first baroclinic mode adjustments Citation: and communication to the western boundary via Rossby waves. -
Western Boundary Currents
ISBN: 978-0-12-391851-2 "Ocean Circulation and Climate, 2nd Ed. A 21st century perspective" (Eds.): Siedler, G., Griffies, S., Gould, J. and Church, J. Academic Press, 2013 Chapter 13 Western Boundary Currents Shiro Imawaki * Amy S. Bower† Lisa Beal‡ Bo Qiu§ *Japan Agency for Marine–Earth Science and Technology, Yokohama, Japan †Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA ‡Rosenstiel School of Marine and Atmospheric Science, University of Mi ami, Miami, Florida, USA §School of Ocean and Earth Science and Technology, University of Hawaii , Honolulu, Hawaii, USA 1 Abstract Strong, persistent currents along the western boundaries of the world’s major ocean basins are called "western boundary currents" (WBCs). This chapter describes the structure and dynamics of WBCs, their roles in basin-scale circulation, regional variability, and their influence on atmosphere and climate. WBCs are largely a manifestation of wind-driven circulation; they compensate the meridional Sverdrup transport induced by the winds over the ocean interior. Some WBCs also play a role in the global thermohaline circulation, through inter-gyre and inter-basin water exchanges. After separation from the boundary, most WBCs have zonal extensions, which exhibit high eddy kinetic energy due to flow instabilities, and large surface fluxes of heat and carbon dioxide. The WBCs described here in detail are the Gulf Stream, Brazil and Malvinas Currents in the Atlantic, the Somali and Agulhas Currents in the Indian, and the Kuroshio and East Australian Current in the Pacific Ocean. Keywords Western boundary current, Gulf Stream, Brazil Current, Agulhas Current, Kuroshio, East Australian Current, Subtropical gyre, Wind-driven circulation, Thermohaline circulation, Recirculation, Transport 2 1. -
Spatio-Temporal Characteristics of the Agulhas Current Retroflection
Deep Sea Research Part I: Oceanographic Research Papers November 2010, Volume 57, Issue 11, Pages 1392-1405 Archimer http://dx.doi.org/10.1016/j.dsr.2010.07.004 http://archimer.ifremer.fr © 2010 Elsevier Ltd All rights reserved. ailable on the publisher Web site Spatio-temporal characteristics of the Agulhas Current retroflection Guillaume Dencaussea, Michel Arhana, * and Sabrina Speicha a Laboratoire de Physique des Océans, CNRS/IFREMER/IRD/UBO, Brest, IFREMER/Centre de Brest, B.P. 70, 29280 Plouzané, France blisher-authenticated version is av * Corresponding author : M. Arhan, Tel.: +33 298224285; fax: +33 298224496, email address : [email protected] Abstract: A 12.7-year series of weekly absolute sea surface height (SSH) data in the region south of Africa is used for a statistical characterization of the location of the Agulhas Current retroflection and its variations at periods up to 2 years. The highest probability of presence of the retroflection point is at 39.5°S/18–20°E. The longitudinal probability density is negatively skewed. A sharp eastward decrease at 22°E is related to detachments of the Agulhas Current from the continental slope at this longitude. The asymmetry in the central part of the distribution might reflect a westward increase of the zonal velocity of the retroflection point during its east–west pulsations. The western tail of the distribution reveals larger residence times of the retroflection at 14°E–15°E, possibly related to a slowing down of its westward motion by seamounts. While the averaged zonal velocity component of the retroflection point increases westward, its modulus exhibits an opposite trend, the result of southward velocity components more intense in the northeastern Agulhas Basin than farther west. -
Karen Heywood (UEA) Andrew Thompson (U
Abigail Nye (UEA) Karen Heywood (UEA) Andrew Thompson (U. Camb.) Sally Thorpe (BAS) Angelika Renner (BAS) Antarctic Peninsula Falkland Is. Chile South Georgia South Sandwich Is. South Orkney South Is. Southern Ocean Shetland Is. Joinville Is. Weddell Sea Antarctic Peninsula Deployment positions (Feb 2007) • 40 surface drifters drogued at 15m Weddell-Scotia Confluence South Orkney Islands Powell Bransfield Basin Strait Joinville Ridge Weddell Sea Deployment positions (Feb 2007) • 40 surface drifters drogued at 15m • 4 Argo floats in Weddell Sea – Weddell-Scotia parking depth of Confluence 1000m South Orkney Islands Powell Bransfield Basin Strait Joinville Ridge Weddell Sea Deployment positions (Feb 2007) • 40 surface drifters drogued at 15m • 4 Argo floats in Weddell Sea – Weddell-Scotia parking depth of Confluence 1000m South Orkney Islands Powell • 4 Argo floats in Bransfield Basin Strait Drake Passage Joinville Ridge Weddell Sea Argo and drifter trajectories • 40 surface drifters drogued at 15m • 4 Argo floats in Weddell Sea – parking depth of 1000m • 4 Argo floats in Drake Passage Argo and drifter trajectories • 40 surface drifters drogued at 15m • 4 Argo floats in Weddell Sea – parking depth of 1000m • 4 Argo floats in Drake Passage Ship ADCP Lowered ADCP • Argo floats faster than drifters in reaching ridge • Antarctic Slope Front stronger with depth Argo and drifter trajectories • 40 surface drifters drogued at 15m • 4 Argo floats in Weddell Sea – parking depth of 1000m • 4 Argo floats in Drake Passage Argo and drifter trajectories