Journal of Geophysical Research: Oceans RESEARCH ARTICLE Seasonal Phasing of Agulhas Current Transport Tied 10.1029/2018JC014319 to a Baroclinic Adjustment of Near-Field Winds Key Points: • A baroclinic adjustment to Indian Katherine Hutchinson1,2 , Lisa M. Beal3 , Pierrick Penven4 , Isabelle Ansorge1, and Ocean winds can explain the 1,2 Agulhas Current seasonal phasing, Juliet Hermes and a barotropic adjustment cannot 1 2 • Seasonal phasing is found to be Department of Oceanography, University of Cape Town, Cape Town, South Africa, South African Environmental 3 highly sensitive to reduced gravity Observations Network, SAEON Egagasini Node, Cape Town, South Africa, Rosenstiel School of Marine and Atmospheric values, which modify adjustment Science, University of Miami, Miami, FL, USA, 4Laboratoire d’Oceanographie Physique et Spatiale, University of Brest, times to wind forcing CNRS, IRD, Ifremer, IUEM, Brest, France • Near-field winds have a dominant influence on the seasonal cycle of the Agulhas Current as remote signals die out while crossing the basin Abstract The Agulhas Current plays a significant role in both local and global ocean circulation and climate regulation, yet the mechanisms that determine the seasonal cycle of the current remain unclear, with discrepancies between ocean models and observations. Observations from moorings across the Correspondence to: K. Hutchinson, current and a 22-year proxy of Agulhas Current volume transport reveal that the current is over 25%
[email protected] stronger in austral summer than in winter. We hypothesize that winds over the Southern Indian Ocean play a critical role in determining this seasonal phasing through barotropic and first baroclinic mode adjustments Citation: and communication to the western boundary via Rossby waves.