Introduction to Bioinformatics

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Introduction to Bioinformatics Introduction to Bioinformatics Dr. rer. nat. Jing Gong Cancer Research center Medicine School of Shandong University 2011.9.14 1 Introduction to Bioinformatics Chapter 1 Introduction 2 Introduction to Bioinformatics About me • Dr. rer. nat. Jing Gong • Bachelor Degree in Marine Biology at the China Ocean University (former Qingdao Ocean University) • Bachelor, Master & Doctoral Degree in Bioinformatics at the Ludwig Maximilians Universität München, Germany • Affiliation: Cancer Research Center of SDU • Tel: 0531-88380202 • Email: [email protected] • Office: Dianjing Building, Rm.106, Baotuquan Campus 3 Introduction to Bioinformatics About this course • Schedule: 2011/9/14 - 2011/10/12, Mi. 14:00 - 18:00 • Locus: 8#, first floor, west, Computer Pool • Homepage: http://1.51.212.243/bioinfo.html • Table of Contents My name is Lampy. Chapter 1 : Introduction Chapter 2 : Databases Chapter 5 : Tree Chapter 3 : Alignment Chapter 4 : Structure 4 Introduction to Bioinformatics Literatures: 1. Bioinformatics - An Introduction, 2nd Edition, Jeremy Ramsden, 2009, Springer. 2. Bioinformatics For Dummies, 2nd Edition, Jean-Michel Claverie, Cedric Notredame, 2007, Wiley. 5 Introduction to Bioinformatics Information Page Vocabulary List Information Page Vocabulary Chapter 1, 2011/9/14 Chapter 1, 2011/9/14 Dr. rer. nat. Jing Gong Affiliation: Cancer Research Center of SDU FASTA FASTA Tel: 0531-88380202 FASTA (prounced FAST-Aye) FASTA (读作FAST-Aye) 代表 Email: [email protected] stands forFAST-ALL, reflecting FAST-ALL, 反映的实施是他能 Office: Dianjing Building, Rm.106, Baotuquan the fact that it canbe used for a 够用于快速的蛋白质比对或者快 Campus fast protein …… 组的核苷比对。该程序…… BLAST BLAST Schedule: 2011/9/14 - 2011/10/12, Mi. 14:00 - 18:00 Basic Local Alignment Search 基本局部比对搜索工具。以速度 Place: 8#, first floor, west, Computer Pool Tool. A sequence comparison 最优化算法为核心,搜索序列数 algorithm optimized for speed 据库得到最佳局部比对结果。用 Course Homepage: http://1.51.212.243/bioinfo.html used to search sequence 替代矩阵和查新序列…… dtabases …… Pubmed: http://www.ncbi.nlm.nih.gov/entrez/ Alignment ExPASy: http://expasy.org/ 比对 The result of a comparison of 两个甚至更多的基因或者蛋白质 NCBI: http://www.ncbi.nlm.nih.gov/ two or more gene or protein 序列进行比较的结果,用以计算 sequences in order to 他们碱基或者氨基酸的相似度。 PRI: http://pir.georgetown.edu determine their degree of base 序列比对用来决定两个甚至……. or amino acid……. 6 Introduction to Bioinformatics What is Bioinformatics? biophysics biohazards biometrics biomathematics biochemistry bioterrorism biopotato bioinformatics 7 Introduction to Bioinformatics What is Bioinformatics? Interdisciplinary a biology/medical researchers, just like you a professional in the pharmaceutical industry a policeman worrying about DNA testing a computer scientist developing bio-databases a consumer concerned about GMOs (Genetically Modified Organisms) …… 8 Introduction to Bioinformatics What is Bioinformatics? Definition: Bioinformatics – the science of collecting and analyzing complex biological data such as genetic codes. [Oxford Dictionary] Bioinformatics – the computational branch of molecular biology. [Bioinformatics for Dummies] Bioinformatics – the application of computer science and information technology to the field of biology and medicine. [Wikipedia] Bioinformatics – the science of how information is generated, transmitted, received, and interpreted in biological systems, i.e. the application of information science to biology. [Bioinformatics-An Introduction] A formel definition ? 9 Introduction to Bioinformatics History of Bioinformatics In 1809, French biologist Jean Baptiste Lamarck published “Philosophie Zoologique”. Lamarck stressed two main themes in his biological work: 1. The environment gives rise to changes in animals, i.e. changes through use and disuse. 2. Life was structured in an orderly manner and that many different parts of all bodies make it possible for the organic movements of animals. “blind as a mole” “show your teeth” “birds have no teeth?” Jean Baptiste Lamarck (1744-1829) 10 Introduction to Bioinformatics History of Bioinformatics In 1859, English naturalist Charles Darwin published “On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life”. Charles Darwin (1809-1882) 11 Introduction to Bioinformatics History of Bioinformatics In 1866, Austrian scientist Gregor Mendel demonstrated that the inheritance of certain traits in pea plants follows particular patterns, now referred to as the laws of Gregor J. Mendel (1822-1884) “Mendelian Inheritance”. 12 Introduction to Bioinformatics History of Bioinformatics In 1869, Swiss physician and biologist Friedrich Miescher isolated DNA from the white blood cells at Felix Hoppe-Seyler's laboratory at the University of Tübingen, Germany. Nuclei Nuclein Nucleic acid DNA Friedrich Miescher (1844-1895) 13 Introduction to Bioinformatics History of Bioinformatics Thomas Hunt Morgan, American geneticist, famous for his experimental research with the fruit fly by which he established the chromosome theory of heredity. He showed that genes are linked in a series on chromosomes and are responsible for identifiable, hereditary traits. Morgan’s work played a key role in establishing the field of genetics. He received the Nobel Prize for Physiology or Medicine in 1933. Thomas H. Morgen (1866-1945) nobel prize 1933 14 Introduction to Bioinformatics History of Bioinformatics In 1944, American physician and medical researcher Oswald Avery and his co-workers Colin MacLeod and Maclyn McCarty demonstrated that DNA is the material of which genes and chromosomes are made. In his experiment he destroyed the lipids, ribonucleic acids, carbohydrates, and proteins. Transformation still occurred after this. Next he destroyed the deoxyribonucleic acid. Transformation did not occur. Oswald Avery Colin MacLeod Maclyn McCarty (1877-1955) (1909-1972) (1911-2005) 15 Introduction to Bioinformatics History of Bioinformatics In 1950, American biochemist Erwin Chargaff noticed a pattern in the amounts of the four bases: adenine (A) , thymine (T) , cytosine (C) , guanine (G). He discovered that the amounts of adenine (A) and thymine (T) in DNA were roughly the same, as were the amounts of cytosine (C) and guanine (G). This later became known as Chargaff's rule. %A = %T and %G = %C Erwin Chargaff (1905-2002) 16 Introduction to Bioinformatics History of Bioinformatics In 1953, James D. Watson and Francis Crick suggested the first correct double-helix model of DNA structure in the journal Nature. Their double- helix model of DNA was based on a single X-ray diffraction image taken by Rosalind Franklin and Maurice Wilkins in 1952. James Waston Francis Crick Maurice Wilkins Rosalind Franklin (1928-) (1916-2004) (1916-2004) (1920-1958) nobel prize 1962 nobel prize 1962 nobel prize 1962 17 Introduction to Bioinformatics History of Bioinformatics The sequence of 77 nucleotides of a yeast alanine tRNA was found by an American biochemist Robert W. Holley in 1965. Holley was awarded the 1968 Nobel Prize in Physiology or Medicine for describing the structure of this tRNA, linking DNA and protein synthesis. Robert W. Holley (1922-1993) nobel prize 1968 18 Introduction to Bioinformatics History of Bioinformatics In 1977, Frederick Sanger and Colleagues introduced the “dideoxy” chain-termination method for sequencing DNA molecules, also known as the “Sanger method”. Hence, in 1980, he shared Nobel Prize in chemistry with Walter Gilbert. The key principle of the Sanger method was the use of dideoxynucleotide triphosphates Frederick Sanger Walter Gilbert (ddNTPs), as DNA chain terminators. (1918-) (1932-) nobel prize 1980 nobel prize 1980 19 Introduction to Bioinformatics History of Bioinformatics Read protein sequence directly in the DNA sequence! Central dogma of molecular biology was first articulated by Francis Crick in 1958 and re-stated Francis Crick in a Nature paper published in 1970. (1916-2004) 20 Introduction to Bioinformatics History of Bioinformatics Marshall Warren Nirenberg shared a Nobel Prize in Physiology or Medicine in 1968 with Har Gobind Khorana and Robert W. Holley for "breaking the genetic code" and describing how it operates in protein synthesis. Marshall Warren Har Gobind Robert W. Holley Nirenberg Khorana (1922-) (1922-1993) (1927-2010) nobel prize 1968 nobel prize 1968 nobel prize 1968 21 Introduction to Bioinformatics English Courses for Graduate Students History of Bioinformatics Amino acids are the building blocks of protein. Protein is a nutrient needed by the human body for growth and maintenance. Amino acids are made of carbon, hydrogen, oxygen, nitrogen, and sulfur atoms. A protein = C1200H2400O600N300S100 22 Introduction to Bioinformatics English Courses for Graduate Students History of Bioinformatics insulin = ( # 1-letter 3-letter Nmae A given type of protein 30 glycines + 1 A Ala Alanine 44 alanines + 2 R Arg Arginine always contains the same 5 tyrosines + 3 N Asn Asparagine number of total amino acids 14 glutamines 4 D Asp Aspartic acid + . .) 5 C Cys Cysteine in the same proportion. 6 Q Gln Glutamine 7 E Glu Glutamic acid 8 G Gly Glycine Amino acids are linked 9 H His Histindine together as a chain. 10 I Ile Isoleucine The first amino acid 11 L Leu Leucine 12 K Lys Lysine sequence of a protein, 13 M Met Methionine Insulin, was determined 14 F Phe Phenylalanine Frederick Sanger (1918-) in 1951 by Dr. Sanger. nobel prize 1958 15 P Pro Proline 16 S Ser Serine 17 T Thr Threonine insulin = MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHL 18 W Trp Trytophan VEALYLVCGERGFFYTPKTRREAEDLQVGQVELGGGPGAGSLQPL
Recommended publications
  • Discovery of DNA Structure and Function: Watson and Crick By: Leslie A

    Discovery of DNA Structure and Function: Watson and Crick By: Leslie A

    01/08/2018 Discovery of DNA Double Helix: Watson and Crick | Learn Science at Scitable NUCLEIC ACID STRUCTURE AND FUNCTION | Lead Editor: Bob Moss Discovery of DNA Structure and Function: Watson and Crick By: Leslie A. Pray, Ph.D. © 2008 Nature Education Citation: Pray, L. (2008) Discovery of DNA structure and function: Watson and Crick. Nature Education 1(1):100 The landmark ideas of Watson and Crick relied heavily on the work of other scientists. What did the duo actually discover? Aa Aa Aa Many people believe that American biologist James Watson and English physicist Francis Crick discovered DNA in the 1950s. In reality, this is not the case. Rather, DNA was first identified in the late 1860s by Swiss chemist Friedrich Miescher. Then, in the decades following Miescher's discovery, other scientists--notably, Phoebus Levene and Erwin Chargaff--carried out a series of research efforts that revealed additional details about the DNA molecule, including its primary chemical components and the ways in which they joined with one another. Without the scientific foundation provided by these pioneers, Watson and Crick may never have reached their groundbreaking conclusion of 1953: that the DNA molecule exists in the form of a three-dimensional double helix. The First Piece of the Puzzle: Miescher Discovers DNA Although few people realize it, 1869 was a landmark year in genetic research, because it was the year in which Swiss physiological chemist Friedrich Miescher first identified what he called "nuclein" inside the nuclei of human white blood cells. (The term "nuclein" was later changed to "nucleic acid" and eventually to "deoxyribonucleic acid," or "DNA.") Miescher's plan was to isolate and characterize not the nuclein (which nobody at that time realized existed) but instead the protein components of leukocytes (white blood cells).
  • Biochemistrystanford00kornrich.Pdf

    Biochemistrystanford00kornrich.Pdf

    University of California Berkeley Regional Oral History Office University of California The Bancroft Library Berkeley, California Program in the History of the Biosciences and Biotechnology Arthur Kornberg, M.D. BIOCHEMISTRY AT STANFORD, BIOTECHNOLOGY AT DNAX With an Introduction by Joshua Lederberg Interviews Conducted by Sally Smith Hughes, Ph.D. in 1997 Copyright 1998 by The Regents of the University of California Since 1954 the Regional Oral History Office has been interviewing leading participants in or well-placed witnesses to major events in the development of Northern California, the West, and the Nation. Oral history is a method of collecting historical information through tape-recorded interviews between a narrator with firsthand knowledge of historically significant events and a well- informed interviewer, with the goal of preserving substantive additions to the historical record. The tape recording is transcribed, lightly edited for continuity and clarity, and reviewed by the interviewee. The corrected manuscript is indexed, bound with photographs and illustrative materials, and placed in The Bancroft Library at the University of California, Berkeley, and in other research collections for scholarly use. Because it is primary material, oral history is not intended to present the final, verified, or complete narrative of events. It is a spoken account, offered by the interviewee in response to questioning, and as such it is reflective, partisan, deeply involved, and irreplaceable. ************************************ All uses of this manuscript are covered by a legal agreement between The Regents of the University of California and Arthur Kornberg, M.D., dated June 18, 1997. The manuscript is thereby made available for research purposes. All literary rights in the manuscript, including the right to publish, are reserved to The Bancroft Library of the University of California, Berkeley.
  • 1 History for Canonical and Non-Canonical Structures of Nucleic Acids

    1 History for Canonical and Non-Canonical Structures of Nucleic Acids

    1 1 History for Canonical and Non-canonical Structures of Nucleic Acids The main points of the learning: Understand canonical and non-canonical structures of nucleic acids and think of historical scientists in the research field of nucleic acids. 1.1 Introduction This book is to interpret the non-canonical structures and their stabilities of nucleic acids from the viewpoint of the chemistry and study their biological significances. There is more than 60 years’ history after the discovery of the double helix DNA structure by James Dewey Watson and Francis Harry Compton Crick in 1953, and chemical biology of nucleic acids is facing a new aspect today. Through this book, I expect that readers understand how the uncommon structure of nucleic acids became one of the common structures that fascinate us now. In this chapter, I introduce the history of nucleic acid structures and the perspective of research for non-canonical nucleic acid structures (see also Chapter 15). 1.2 History of Duplex The opening of the history of genetics was mainly done by three researchers. Charles Robert Darwin, who was a scientist of natural science, pioneered genetics. The proposition of genetic concept is indicated in his book On the Origin of Species published in 1859. He indicated the theory of biological evolution, which is the basic scientific hypothesis of natural diversity. In other words, he proposed biological evolution, which changed among individuals by adapting to the environment and be passed on to the next generation. However, that was still a primitive idea for the genetic concept. After that, Gregor Johann Mendel, who was a priest in Brno, Czech Republic, confirmed the mechanism of gene evolution by using “factor” inherited from parent to children using pea plant in 1865.
  • DNA: the Timeline and Evidence of Discovery

    DNA: the Timeline and Evidence of Discovery

    1/19/2017 DNA: The Timeline and Evidence of Discovery Interactive Click and Learn (Ann Brokaw Rocky River High School) Introduction For almost a century, many scientists paved the way to the ultimate discovery of DNA and its double helix structure. Without the work of these pioneering scientists, Watson and Crick may never have made their ground-breaking double helix model, published in 1953. The knowledge of how genetic material is stored and copied in this molecule gave rise to a new way of looking at and manipulating biological processes, called molecular biology. The breakthrough changed the face of biology and our lives forever. Watch The Double Helix short film (approximately 15 minutes) – hyperlinked here. 1 1/19/2017 1865 The Garden Pea 1865 The Garden Pea In 1865, Gregor Mendel established the foundation of genetics by unraveling the basic principles of heredity, though his work would not be recognized as “revolutionary” until after his death. By studying the common garden pea plant, Mendel demonstrated the inheritance of “discrete units” and introduced the idea that the inheritance of these units from generation to generation follows particular patterns. These patterns are now referred to as the “Laws of Mendelian Inheritance.” 2 1/19/2017 1869 The Isolation of “Nuclein” 1869 Isolated Nuclein Friedrich Miescher, a Swiss researcher, noticed an unknown precipitate in his work with white blood cells. Upon isolating the material, he noted that it resisted protein-digesting enzymes. Why is it important that the material was not digested by the enzymes? Further work led him to the discovery that the substance contained carbon, hydrogen, nitrogen and large amounts of phosphorus with no sulfur.
  • Structure of DNA &

    Structure of DNA &

    Structure Of DNA & RNA By Himanshu Dev VMMC & SJH DNA DNA Deoxyribonucleic acid DNA - a polymer of deoxyribo- nucleotides. Usually double stranded. And have double-helix structure. found in chromosomes, mitochondria and chloroplasts. It acts as the genetic material in most of the organisms. Carries the genetic information A Few Key Events Led to the Discovery of the Structure of DNA DNA as an acidic substance present in nucleus was first identified by Friedrich Meischer in 1868. He named it as ‘Nuclein’. Friedrich Meischer In 1953 , James Watson and Francis Crick, described a very simple but famous Double Helix model for the structure of DNA. FRANCIS CRICK AND JAMES WATSON The scientific framework for their breakthrough was provided by other scientists including Linus Pauling Rosalind Franklin and Maurice Wilkins Erwin Chargaff Rosalind Franklin She worked in same laboratory as Maurice Wilkins. She study X-ray diffraction to study wet fibers of DNA. X-ray diffraction of wet DNA fibers The diffraction pattern is interpreted X Ray (using mathematical theory) Crystallography This can ultimately provide Rosalind information concerning the structure Franklin’s photo of the molecule She made marked advances in X-ray diffraction techniques with DNA The diffraction pattern she obtained suggested several structural features of DNA Helical More than one strand 10 base pairs per complete turn Rosalind Franklin Maurice Wilkins DNA Structure DNA structure is often divided into four different levels primary, secondary, tertiary
  • Reflections on the Historiography of Molecular Biology

    Reflections on the Historiography of Molecular Biology

    Reflections on the Historiography of Molecular Biology HORACE FREELAND JUDSON SURELY the time has come to stop applying the word revolution to the rise of new scientific research programmes. Our century has seen many upheavals in scientific ideas--so many and so varied that the notion of scientific revolution has been stretched out of shape and can no longer be made to cover the processes of change characteristic of most sciences these past hundred years. By general consent, two great research pro- grammes arising in this century stand om from the others. The first, of course, was the one in physics that began at the turn of the century with quantum theory and relativity and ran through the working out, by about 1930, of quantum mechanics in its relativistic form. The trans- formation in physics appears to be thoroughly documented. Memoirs and biographies of the physicists have been written. Interviewswith survivors have been recorded and transcribed. The history has been told at every level of detail and difficulty. The second great programme is the one in biology that had its origins in the mid-1930s and that by 1970 had reached, if not a conclusion, a kind of cadence--a pause to regroup. This is the transformation that created molecular biology and latter-day biochemistry. The writing of its history has only recently started and is beset with problems. Accounting for the rise of molecular biology began with brief, partial, fugitive essays by participants. Biographies have been written of two, of the less understood figures in the science, who died even as the field was ripening, Oswald Avery and Rosalind Franklin; other scientists have wri:tten their memoirs.
  • Erwin Chargaff 1905–2002

    Erwin Chargaff 1905–2002

    NATIONAL ACADEMY OF SCIENCES ERWIN CHARGAFF 1 9 0 5 – 2 0 0 2 A Biographical Memoir by SEYMOUR S. COHEN with selected bibliography by ROBERT LEHMAN Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir 2010 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. ERWIN CHARGAFF August 11, 1905–June 20, 2002 BY SEYMOUR S . COHEN 1 AND ROBERT LEHMAN N 1944, AS VARIOUS ARMIES WERE planning to invade central IEurope, the recently naturalized U.S. citizen and Columbia University biochemist had learned of the report of O. T. Avery and his colleagues that the deoxyribonucleic acid (DNA) of a specific strain of pneumococcus constituted the genetically specific hereditary determinant of that bacterium. Almost alone among the scientists of the time, Chargaff accepted the unusual Avery report and concluded that genetic differ- ences among DNAs must be reflected in chemical differences among these substances. He was actually the first biochemist to reorganize his laboratory to test this hypothesis, which he went on to prove by 1949. His results and the subsequent work on the nature of DNA and heredity transformed biomedical research and training for the next fifty years at least, and established potentialities for the development of biology, which have created economic entities and opportunities, as well as major ethical and political controversies. Trained as an analytical chemist, Chargaff had never imagined that he would help to solve a major cytological problem. Reprinted with the permission from Proceedings of the American Philosophical Society (vol.
  • Front Matter (PDF)

    Front Matter (PDF)

    COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY VOLUME XXVI COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY Founded in 1933 by REGINALD G. HARRIS Director o/ the Biological Laboratory 1924 to 1936 The Symposia were organized and managed by Dr. Harris until his death. Their continued use- /ulness is a tribute to the soundness o/ his vision. The Symposium volumes are published by the Long Island Biological Association as a part of the work of the Biological Laboratory Cold Spring Harbor, L.I., New York COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY VOLUME XXVI Cellular Regulatory Mechanisms THE BIOLOGICAL LABORATORY COLD SPRING HARBOR, L.I., NEW YORK 1961 COPYRIGHT 1962 BY THE BIOLOGICAL LABORATORY LONG ISLAND BIOLOGICAL ASSOCIATION, INC. Library of Congress Catalog Number: 34-8174 All rights reserved. This book may not be reproduced in whole or in part except by reviewers for the public press without written permission from the publisher PRINTED BY WAVERLY PRESS, INC., BALTIMORE,MARYLAND, U.S.A. FOREWORD During the past twenty years, research in genetics and biochemistry, while superficially directed toward an understanding of different aspects of cell behavior, has been moving to a union which appears to have been completed in the presen- tations at this symposium on Cell Regulatory Mechanisms. Sessions were devoted to the role of the genetic material as an information code in protein synthesis and the mechanism of information transfer from DNA to the site of synthesis. Major attention was devoted to cellular mechanisms governing the rates of enzyme ac- tivity and enzyme synthesis. While most of the research presented dealt with microorganisms, the significance of these efforts for questions of normal and ab- normal growth and development in multicellular forms is quite apparent.
  • Samuel H. Barondes 1

    Samuel H. Barondes 1

    EDITORIAL ADVISORY COMMITTEE Giovanni Berlucchi Mary B. Bunge Robert E. Burke Larry E Cahill Stanley Finger Bernice Grafstein Russell A. Johnson Ronald W. Oppenheim Thomas A. Woolsey (Chairperson) The History of Neuroscience in" Autob~ograp" by VOLUME 5 Edited by Larry R. Squire AMSTERDAM 9BOSTON 9HEIDELBERG 9LONDON NEW YORK 9OXFORD ~ PARIS 9SAN DIEGO SAN FRANCISCO 9SINGAPORE 9SYDNEY 9TOKYO ELSEVIER Academic Press is an imprint of Elsevier Elsevier Academic Press 30 Corporate Drive, Suite 400, Burlington, Massachusetts 01803, USA 525 B Street, Suite 1900, San Diego, California 92101-4495, USA 84 Theobald's Road, London WC1X 8RR, UK This book is printed on acid-free paper. O Copyright 92006 by the Society for Neuroscience. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the publisher. Permissions may be sought directly from Elsevier's Science & Technology Rights Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333, E-mail: [email protected]. You may also complete your request on-line via the Elsevier homepage (http://elsevier.com), by selecting "Support & Contact" then "Copyright and Permission" and then "Obtaining Permissions." Library of Congress Catalog Card Number: 2003 111249 British Library Cataloguing in Publication Data A catalogue record for this book is available from the British Library ISBN 13:978-0-12-370514-3 ISBN 10:0-12-370514-2 For all information on all Elsevier Academic Press publications visit our Web site at www.books.elsevier.com Printed in the United States of America 06 07 08 09 10 11 9 8 7 6 5 4 3 2 1 Working together to grow libraries in developing countries www.elsevier.com ] ww.bookaid.org ] www.sabre.org ER BOOK AID ,~StbFC" " " =LSEVI lnt .....
  • Dnai DVD and the Dnai Teacher Guide Dnai

    Dnai DVD and the Dnai Teacher Guide Dnai

    DNAi DVD 1 DNAi DVD and the DNAi Teacher Guide The DNA Interactive (DNAi) DVD carries approximately four hours of video interviews with 11 Nobel Laureates and more than 50 other scientists, clinicians, and patients. It also holds the complete set of 3-dimensional animations produced for the DNA TV series and DNAi project. The following pages list video clips and animations from the DVD that would be appropriate to show with specific activities in the DNAi Teacher Guide. The clips and animations are listed under “themes” and “additional animations.” The “themes” listing includes relevant interviews and animations that can be accessed from the “themes” section of the DVD. The “additional animations” are best accessed from “animations” button in the DVD main menu. You can access the DNAi Teacher Guide by registering at www.dnai.org/teacher. Activity 1: DNAi Timeline: a scavenger hunt THEMES • DNA MOLECULE • Discovery of DNA A pre-1953 notion _ biology prior to discovery of the double helix . François Jacob DNA is the genetic material _ the experiment that identified DNA as the genetic material . Maclyn McCarty Chargaff's ratios _ the DNA base ratio rules . Erwin Chargaff The answer _ the X-ray diffraction picture that revealed the helix . Maurice Wilkins DNA: the key to understanding _ why the discovery of DNA's structure was so important . Francis Crick Structure of DNA The correct model _ Meselson and Franklin Stahl's experiment to determine the correct DNA replication mode . Matthew Meselson • DNA IN ACTION • The genetic code Defining the gene _ matching the gene to protein sequence .
  • Dna Learning Center

    Dna Learning Center

    DNA LEARNING CENTER DNA LEARNING CENTER ADMINISTRATION INSTRUCTION MULTIMEDIA David Micklos Scott Bronson Susan Lauter Judy Cumella-Korabik Amanda McBrien Shirley Chan Nancy Daidola Danielle Sixsmith Chun-hua Yang Vin Torti Veronique Bourdeau Susan Conova Elna Carrasco Uwe Hilgert Maureen Cowan We stand at the threshold of a new century with the whole human genome stretched out before us. Messages from science and the popular media suggest a world of seemingly limitless opportunities to improve human health and productivity. Yet, at the turn of the last century, science and society faced a similar rush to exploit human genetics. The story of eugenics—humankind’s first venture into a “gene age”—holds a cautionary lesson for our current preoccupation with genes. Eugenics was the effort to apply principles of genetics to improve the human race. Most people equate eugenics with the atrocities committed for the sake of racial purity in Nazi Germany. Most are unaware of the “positive” eugenics movement, exemplified in England, which advocated voluntary efforts by families to improve their own heredity. Fewer still realize that a coercive, “negative” eugenics movement flourished in the United States, that it involved numerous prominent scientists and civic lead- ers, and that it made its intellectual home at the forerunner of the now prestigious Cold Spring Harbor Laboratory. During the first decade of the 20th century, eugenics was organized as a scientific field by the con- fluence of Mendelian genetics and experimental breeding. This synthesis was embodied by Charles Benedict Davenport, who is considered the father of the American eugenics movement. When Charles Da v e n p o r t arrived at Cold Spring Harbor in 1898, he assumed the directorship of The Biological La b o r a t o r y, a prog r essive, if somewhat sleepy, “summer camp” for the study of evolution.
  • Discovery of the Secrets of Life Timeline

    Discovery of the Secrets of Life Timeline

    Discovery of the Secrets of Life Timeline: A Chronological Selection of Discoveries, Publications and Historical Notes Pertaining to the Development of Molecular Biology. Copyright 2010 Jeremy M. Norman. Date Discovery or Publication References Crystals of plant and animal products do not typically occur naturally. F. Lesk, Protein L. Hünefeld accidentally observes the first protein crystals— those of Structure, 36;Tanford 1840 hemoglobin—in a sample of dried menstrual blood pressed between glass & Reynolds, Nature’s plates. Hunefeld, Der Chemismus in der thierischen Organisation, Robots, 22.; Judson, Leipzig: Brockhaus, 1840, 158-63. 489 In his dissertation Louis Pasteur begins a series of “investigations into the relation between optical activity, crystalline structure, and chemical composition in organic compounds, particularly tartaric and paratartaric acids. This work focused attention on the relationship between optical activity and life, and provided much inspiration and several of the most 1847 HFN 1652; Lesk 36 important techniques for an entirely new approach to the study of chemical structure and composition. In essence, Pasteur opened the way to a consideration of the disposition of atoms in space.” (DSB) Pasteur, Thèses de Physique et de Chimie, Presentées à la Faculté des Sciences de Paris. Paris: Bachelier, 1847. Otto Funcke (1828-1879) publishes illustrations of crystalline 1853 hemoglobin of horse, humans and other species in his Atlas der G-M 684 physiologischen Chemie, Leizpig: W. Englemann, 1853. Charles Darwin and Alfred Russel Wallace publish the first exposition of the theory of natural selection. Darwin and Wallace, “On the Tendency of 1858 Species to Form Varieties, and on the Perpetuation of Varieties and G-M 219 Species by Natural Means of Selection,” J.