Lecture 18: the Milky Way Galaxy

Total Page:16

File Type:pdf, Size:1020Kb

Lecture 18: the Milky Way Galaxy Lecture 18: The Milky Way Galaxy Simple Version of Milky Way Galaxy Disk (spiral arms) ~15 kpc Bulge Halo few hundred pc ~ 8 kpc Galactic Coordinate System optical IR Inventory 9 Disk : LB =19× 10 L! 9 Bulge : LB =2× 10 L! 9 Halo : LB =2× 10 L! 9 Total : LB =23× 10 L! Total number of stars ~ 2 × 1011 Galaxy rotates... −1 v0 =220kms −1 = 225 kpc Gyr R0 =8kpc 2πR0 P0 = =0.22 Gyr v0 sun has orbited ~20 times for stars & gas to be on stable circular orbits means v(R)2 GM(R) R = R2 so υ(R)2R M(R)= G connection between “rotation curve” and mass what’s going on here? M (R) ~ R stars near center have slower linear velocities, faster angular velocities υ(R)2R M(R)= G Local Stellar Motions radial velocity ∆λ v = c r λ correct for Earth’s motion around Sun (~ 30 km/sec) and for Earth’s rotation <~ 0.5 km/sec mostly even about zero one notable outlier (Kapteyn’s star, 3.9 pc, v_r ~ 250 km/s) without this star, rms v_r ~ 35 km/s what’s up with outlier? halo star, very close to us and high tangential velocity tangential velocity vt µ = d mu in radians per year, v_t in pc/yr, d in pc space velocity v v2 v2 1/2 =( r + t ) Local Standard of Rest actual (example) orbit of Sun need better reference frame for other stars’ motion imaginary star on circular orbit at Sun’s current position, LSR = mean motion of disk material in solar neighborhood Local Standard of Rest in Cylindrical Coordinates velocities vLSR =(Π0, Θ0,Z0) vLSR =(0, 220, 0) positions relative to LSR v! =(−10.4, 14.8, 7.3) what does this mean? Sun at position of LSR, but not at its speed Differential Rotation Oort analysis GM(R) 1/2 Θ(R)= orbital speed R ω(R)=Θ(R)/R angular velocity at Sun’s location, angular velocity = 220 km/s / 8 kpc 1) Keplerian rotation, 2) constant orbital speed, 3) rigid-body rotation: how do M, Theta, and w scale with radius? ◦ vr =Θcos α − Θ0 cos(90 − l)=Θcos α − Θ0 sin l eliminate alpha (which can’t be measured) using trig: Θ Θ0 vr =( − )R0 sin l or vr =(ω − ω0)R0 sin l R R0 vt =Θsin α − Θ0 cos l eliminate alpha using trig: vt =(ω − ω0)R0 cos l − ωd for d << R_0, simplify by Taylor expanding ω dω ω R ω R R R ( ) ≈ ( 0)+dR|R=R0 ( − 0) equations define Oort’s constants A & B dω v ≈ R R − R l r 0(dR)R=R0 ( 0) sin also R − R0 ≈−d cos l for d << R_0 local disk shear, or degree of non- rigid body rotation (from mean radial velocities) finally R dω v ≈ Ad sin 2l A ≡− 0 r where ( )R=R0 2 dR local rotation rate (or vorticity) from A and ratio of random motions along rotation and (larger) toward center vt ≈ d(A cos 2l + B) where B ≡ A − ω0 get local angular speed (A-B), therefore distance to Galaxy center, rotation period of nearby stars 1.5 kpc Cepheid radial velocities vs. l 3 kpc 0 180 Cepheid proper motions vs. l (R < 2 kpc) Period - Luminosity Relationship (Large Magellanic Cloud) early 1900’s 1960’s We can apply Oort’s equation to get rotation curve .... but there’s dust! use HI (neutral hydrogen) instead of stars 21 cm radiation (1420 MHz) ~ once every 10 million yrs. the electron flips its spin galactic center sun can also invert this to get distances 8 kpc Nucleus of Galaxy 8 kpc away 28 magnitudes of extinction in optical 2 magnitudes in near IR with adaptive optics n* ~ 10^7 pc^-3 locally, n* ~ 0.1 pc^-3 Sag A (20 cm observations) zoom in to Sag A West (6 cm) center of Sag A West is Sag A* (Sag A star) 6 AU size proper motion is Sun’s reflex motion X-ray source bolometric luminosity ~ 10^3 L_sun what is it? stellar orbits M_BH = 3.7 x 10^6 M_sun R_Sch = 0.07 AU The Halo globular clusters stars (distinguished by kinematics and/or chemical abundances) Satellite Galaxies Magellanic Clouds sagittarius dwarf draco.
Recommended publications
  • Relaxation Time
    Today in Astronomy 142: the Milky Way’s disk More on stars as a gas: stellar relaxation time, equilibrium Differential rotation of the stars in the disk The local standard of rest Rotation curves and the distribution of mass The rotation curve of the Galaxy Figure: spiral structure in the first Galactic quadrant, deduced from CO observations. (Clemens, Sanders, Scoville 1988) 21 March 2013 Astronomy 142, Spring 2013 1 Stellar encounters: relaxation time of a stellar cluster In order to behave like a gas, as we assumed last time, stars have to collide elastically enough times for their random kinetic energy to be shared in a thermal fashion. But stellar encounters, even distant ones, are rare on human time scales. How long does it take a cluster of stars to thermalize? One characteristic time: the time between stellar elastic encounters, called the relaxation time. If a gravitationally bound cluster is a lot older than its relaxation time, then the stars will be describable as a gas (the star system has temperature, pressure, etc.). 21 March 2013 Astronomy 142, Spring 2013 2 Stellar encounters: relaxation time of a stellar cluster (continued) Suppose a star has a gravitational “sphere of influence” with radius r (>>R, the radius of the star), and moves at speed v between encounters, with its sphere of influence sweeping out a cylinder as it does: v V= π r2 vt r vt If the number density of stars (stars per unit volume) is n, then there will be exactly one star in the cylinder if 2 1 nV= nπ r vtcc =⇒=1 t Relaxation time nrvπ 2 21 March 2013 Astronomy 142, Spring 2013 3 Stellar encounters: relaxation time of a stellar cluster (continued) What is the appropriate radius, r? Choose that for which the gravitational potential energy is equal in magnitude to the average stellar kinetic energy.
    [Show full text]
  • In-Class Worksheet on the Galaxy
    Ay 20 / Fall Term 2014-2015 Hillenbrand In-Class Worksheet on The Galaxy Today is another collaborative learning day. As earlier in the term when working on blackbody radiation, divide yourselves into groups of 2-3 people. Then find a broad space at the white boards around the room. Work through the logic of the following two topics. Oort Constants. From the vantage point of the Sun within the plane of the Galaxy, we have managed to infer its structure by observing line-of-sight velocities as a function of galactic longitude. Let’s see why this works by considering basic geometry and observables. • Begin by drawing a picture. Consider the Sun at a distance Ro from the center of the Galaxy (a.k.a. the GC) on a circular orbit with velocity θ(Ro) = θo. Draw several concentric circles interior to the Sun’s orbit that represent the circular orbits of other stars or gas. Now consider some line of sight at a longitude l from the direction of the GC, that intersects one of your concentric circles at only one point. The circular velocity of an object on that (also circular) orbit at galactocentric distance R is θ(R); the direction of θ(R) forms an angle α with respect to the line of sight. You should also label the components of θ(R): they are vr along the line-of-sight, and vt tangential to the line-of-sight. If you need some assistance, Figure 18.14 of C/O shows the desired result. What we are aiming to do is derive formulae for vr and vt, which in principle are measureable, as a function of the distance d from us, the galactic longitude l, and some constants.
    [Show full text]
  • Lecture 10 Milky Way II
    Measuring Structure of the Galaxy • To invert the measured distribution of stars One needs to make a lot – A(m,l,b): # of stars at an of 'corrections' the biggest one apparent mag m, at galactic is due to extinction so one coordinates l,b per sq degree does not repeat Herschel's error! per unit mag. – N(m,l,b): cumulative # of stars with mag < m, at galactic coordinates l,b per sq degree per unit mag. N(m,l,b)=∫ A(m',l,b) dm Into a true 3-D structure 36 Need to Measure Extinction Accurately 37 APOGEE Results • Metallicity across the Milky Way • An example of the fine grain knowledge now being obtained. 38 Gaia Capability • Gaia will survey ~1/4 of the MW (Luri and Robin) 39 Early GAIA Results • Proper motions in the M67 star cluster-accuracies of ~5mas/year (5x10-9 radians/year or 4.3x10-5 pc/year (42 km/sec- 2.5x the speed of the earth around the sun) at distance of M67 ) 40 MW II • Use of gas (HI) to trace velocity field and thus mass of the disk (discuss a bit of the geometry details in the next lecture) – dependence on distance to center of MW • properties of MW (e.g. mass of components) • Cosmic Rays – only directly observable in MW • Start of dynamics 41 Timescales 7 • crossing time tc=2R/σ∼5x10 yrs (R10kpc/v200) • dynamical time td=sqrt(3π/16Gρ)- related to the orbital time; assumption homogenous sphere of density ρ • Relaxation time- the time for a system to 'forget' its initial conditions S+G (eq.
    [Show full text]
  • High-Drag Interstellar Objects and Galactic Dynamical Streams
    Draft version March 25, 2019 Typeset using LATEX twocolumn style in AASTeX62 High-Drag Interstellar Objects And Galactic Dynamical Streams T.M. Eubanks1 1Space Initiatives Inc, Clifton, Virginia 20124 (Received; Revised March 25, 2019; Accepted) Submitted to ApJL ABSTRACT The nature of 1I/’Oumuamua (henceforth, 1I), the first interstellar object known to pass through the solar system, remains mysterious. Feng & Jones noted that the incoming 1I velocity vector “at infinity” (v∞) is close to the motion of the Pleiades dynamical stream (or Local Association), and suggested that 1I is a young object ejected from a star in that stream. Micheli et al. subsequently detected non-gravitational acceleration in the 1I trajectory; this acceleration would not be unusual in an active comet, but 1I observations failed to reveal any signs of activity. Bialy & Loeb hypothesized that the anomalous 1I acceleration was instead due to radiation pressure, which would require an extremely low mass-to-area ratio (or area density). Here I show that a low area density can also explain the very close kinematic association of 1I and the Pleiades stream, as it renders 1I subject to drag capture by interstellar gas clouds. This supports the radiation pressure hypothesis and suggests that there is a significant population of low area density ISOs in the Galaxy, leading, through gas drag, to enhanced ISO concentrations in the galactic dynamical streams. Any interstellar object entrained in a dynamical stream will have a predictable incoming v∞; targeted deep surveys using this information should be able to find dynamical stream objects months to as much as a year before their perihelion, providing the lead time needed for fast-response missions for the future in situ exploration of such objects.
    [Show full text]
  • Galactic Rotation in Gaia DR1
    Mon. Not. R. Astron. Soc. 000,1{6 (2017) Printed 10 February 2017 (MN LATEX style file v2.2) Galactic rotation in Gaia DR1 Jo Bovy? Department ofy Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON M5S 3H4, Canada and Center for Computational Astrophysics, Flatiron Institute, 162 5th Ave, New York, NY 10010, USA 30 January 2017 ABSTRACT The spatial variations of the velocity field of local stars provide direct evidence of Galactic differential rotation. The local divergence, shear, and vorticity of the velocity field—the traditional Oort constants|can be measured based purely on astrometric measurements and in particular depend linearly on proper motion and parallax. I use data for 304,267 main-sequence stars from the Gaia DR1 Tycho-Gaia Astrometric Solution to perform a local, precise measurement of the Oort constants at a typical heliocentric distance of 230 pc. The pattern of proper motions for these stars clearly displays the expected effects from differential rotation. I measure the Oort constants to be: A = 15:3 0:4 km s−1 kpc−1, B = 11:9 0:4 km s−1 kpc−1, C = 3:2 0:4 km s−1 kpc−1 ±and K = 3:3 0:6 km s−−1 kpc−1±, with no color trend over− a wide± range of stellar populations.− These± first confident measurements of C and K clearly demonstrate the importance of non-axisymmetry for the velocity field of local stars and they provide strong constraints on non-axisymmetric models of the Milky Way. Key words: Galaxy: disk | Galaxy: fundamental parameters | Galaxy: kinematics and dynamics | stars: kinematics and dynamics | solar neighborhood 1 INTRODUCTION use Cepheids to investigate the velocity field on large scales (> 1 kpc) with a kinematically-cold stellar tracer population Determining the rotation of the Milky Way's disk is diffi- (e.g., Feast & Whitelock 1997; Metzger et al.
    [Show full text]
  • Galactic Rotation II
    1 Galactic Rotation • See SG 2.3, BM ch 3 B&T ch 2.6,2.7 B&T fig 1.3 and ch 6 • Coordinate system: define velocity vector by π,θ,z π radial velocity wrt galactic center θ motion tangential to GC with positive values in direct of galactic rotation z motion perpendicular to the plane, positive values toward North If the galaxy is axisymmetric galactic pole and in steady state then each pt • origin is the galactic center (center or in the plane has a velocity mass/rotation) corresponding to a circular • Local standard of rest (BM pg 536) velocity around center of mass • velocity of a test particle moving in of MW the plane of the MW on a closed orbit that passes thru the present position of (π,θ,z)LSR=(0,θ0,0) with 2 the sun θ0 =θ0(R) Coordinate Systems The stellar velocity vectors are z:velocity component perpendicular to plane z θ: motion tangential to GC with positive velocity in the direction of rotation radial velocity wrt to GC b π: GC π With respect to galactic coordinates l +π= (l=180,b=0) +θ= (l=30,b=0) +z= (b=90) θ 3 Local standard of rest: assume MW is axisymmetric and in steady state If this each true each point in the pane has a 'model' velocity corresponding to the circular velocity around of the center of mass. An imaginery point moving with that velocity at the position of the sun is defined to be the LSR (π,θ,z)LSR=(0,θ0,0);whereθ0 = θ0(R0) 4 Description of Galactic Rotation (S&G 2.3) • For circular motion: relative angles and velocities observing a distant point • T is the tangent point V =R sinl(V/R-V /R ) r 0 0 0 Vr Because V/R drops with R (rotation curve is ~flat); for value 0<l<90 or 270<l<360 reaches a maximum at T max So the process is to find Vr for each l and deduce V(R) =Vr+R0sinl For R>R0 : rotation curve from HI or CO is degenerate ; use masers, young stars with known distances 5 Galactic Rotation- S+G sec 2.3, B&T sec 3.2 • Consider a star in the midplane of the Galactic disk with Galactic longitude, l, at a distance d, from the Sun.
    [Show full text]
  • Measurement of the Epicycle Frequency in the Galactic Disc and Initial Velocities of Open Clusters
    Mon. Not. R. Astron. Soc. 386, 2081–2090 (2008) doi:10.1111/j.1365-2966.2008.13168.x Measurement of the epicycle frequency in the Galactic disc and initial velocities of open clusters J. R. D. Lepine,´ 1⋆ Wilton S. Dias2 and Yu. Mishurov3 1Instituto de Astronomia, Geof´ısica e Cienciasˆ Atmosfericas,´ Universidade de Sao˜ Paulo, Cidade Universitaria,´ Sao˜ Paulo SP, Brazil 2UNIFEI, Instituto de Cienciasˆ Exatas, Universidade Federal de Itajuba,´ Itajuba´ MG, Brazil 3South Federal University (Rostov State University), Rostov-on-Don, Russia Accepted 2008 February 28. Received 2008 February 27; in original form 2007 October 30 ABSTRACT A new method to measure the epicycle frequency κ in the Galactic disc is presented. We make use of the large data base on open clusters completed by our group to derive the observed velocity vector (amplitude and direction) of the clusters in the Galactic plane. In the epicycle approximation, this velocity is equal to the circular velocity given by the rotation curve, plus a residual or perturbation velocity, of which the direction rotates as a function of time with the frequency κ. Due to the non-random direction of the perturbation velocity at the birth time of the clusters, a plot of the present-day direction angle of this velocity as a function of the age of the clusters reveals systematic trends from which the epicycle frequency can be obtained. Our analysis considers that the Galactic potential is mainly axis-symmetric, or in other words, that the effect of the spiral arms on the Galactic orbits is small; in this sense, our results do not depend on any specific model of the spiral structure.
    [Show full text]
  • Tile Letfers and PAPERS of JAN HENDRIK OORT AS ARCHIVED in the UNIVERSITY LIBRARY, LEIDEN ASTROPHYSICS and SPACE SCIENCE LIBRARY
    TIlE LETfERS AND PAPERS OF JAN HENDRIK OORT AS ARCHIVED IN THE UNIVERSITY LIBRARY, LEIDEN ASTROPHYSICS AND SPACE SCIENCE LIBRARY VOLUME 213 Executive Committee W. B. BURTON, Sterrewacht, Leiden, The Netherlands J. M. E. KmJPERS, Faculty 0/ Science, Nijmegen, The Netherlands E. P. J. VAN DEN HEUVEL, Astronomical Institute, University 0/Amsterdam, The Netherlands H. VAN DER LAAN, Astronomical Institute, University o/Utrecht, The Netherlands Editorial Board I. APPENZELLER, Landessternwarte Heidelberg-Konigstuhl, Germany J. N. BAHCALL, The Institute/or Advanced Study, Princeton, U.S.A. F. BERTOLA, Universitii di Padova, Italy W. B. BURTON, Sterrewacht, Leiden, The Netherlands J. P. CASSINELLI, University o/Wisconsin, Madison, U.S.A. C. J. CESARSKY, Centre d'Etudes de Saclay, Gi/-sur-Yvette Cedex, France O. ENGVOLD, Institute o/Theoretical Astrophysics, University 0/ Oslo, Norway J. M. E. KmJPERS, Faculty 0/ Science, Nijmegen, The Netherlands R. McCRAY, University 0/Colorado, JILA, Boulder, U.S.A. P. G. MURDIN, Royal Greenwich Observatory, Cambridge, U.K. F. PACINI, Istituto Astronomia Arcetri, Firenze, Italy V. RADHAKRISHNAN, Raman Research Institute, Bangalore, India F. H. SHU, University o/California, Berkeley, U.S.A. B. V. SOMOV, Astronomical Institute, Moscow State University, Russia R. A. SUNYAEV, Space Research 'nstitute, Moscow, Russia S. TREMAINE: CIT).; University o/Toronto, Canada Y. TANAKA, Institute 0/ Space & Astronautical Science, Kanagawa, Japan E. P. J. VAN DEN HEUVEL, Astronomical Institute, University 0/Amsterdam, The Netherlands H. VAN DER LAAN, Astronomical Institute, University 0/ Utrecht, The Netherlands N. O. WEISS, University o/Cambridge, UK THE LETTERS AND PAPERS of JAN HENDRIK OORT AS ARCHIVED IN THE UNIVERSITY LIBRARY, LEIDEN by J.
    [Show full text]
  • Rotation and Mass in the Milky Way and Spiral Galaxies
    Publ. Astron. Soc. Japan (2014) 00(0), 1–34 1 doi: 10.1093/pasj/xxx000 Rotation and Mass in the Milky Way and Spiral Galaxies Yoshiaki SOFUE1 1Institute of Astronomy, The University of Tokyo, Mitaka, 181-0015 Tokyo ∗E-mail: [email protected] Received ; Accepted Abstract Rotation curves are the basic tool for deriving the distribution of mass in spiral galaxies. In this review, we describe various methods to measure rotation curves in the Milky Way and spiral galaxies. We then describe two major methods to calculate the mass distribution using the rotation curve. By the direct method, the mass is calculated from rotation velocities without employing mass models. By the decomposition method, the rotation curve is deconvolved into multiple mass components by model fitting assuming a black hole, bulge, exponential disk and dark halo. The decomposition is useful for statistical correlation analyses among the dynamical parameters of the mass components. We also review recent observations and derived results. Full resolution copy is available at URL: http://www.ioa.s.u-tokyo.ac.jp/∼sofue/htdocs/PASJreview2016/ Key words: Galaxy: fundamental parameters – Galaxy: kinematics and dynamics – Galaxy: structure – galaxies: fundamental parameters – galaxies: kinematics and dynamics – galaxies: structure – dark matter 1 INTRODUCTION rotation curves of the Milky Way and spiral galaxies, respec- tively, and describe the general characteristics of observed rota- tion curves. The progress in the rotation curve studies will be Rotation of spiral galaxies is measured by spectroscopic ob- also reviewed briefly. In section 4 we review the methods to de- arXiv:1608.08350v1 [astro-ph.GA] 30 Aug 2016 servations of emission lines such as Hα, HI and CO lines from termine the mass distributions in disk galaxies using the rotation disk objects, namely population I objects and interstellar gases.
    [Show full text]
  • Lecture 7 24 Sep 2010 Outline
    Astronomy 330 Lecture 7 24 Sep 2010 Outline Review Counts: A(m), Euclidean slope, Olbers’ paradox Stellar Luminosity Function: Φ(M,S) Structure of the Milky Way: disk, bulge, halo Milky Way kinematics Rotation and Oort’s constants Euclidean slope = Solar motion 0.6m Disk vs halo ) What would A(m An example this imply? log m Review: Galactic structure Stellar Luminosity Function: Φ What does it look like? How do you measure it? What’s Malmquist Bias? Modeling the MW Exponential disk: ρdisk ~ ρ0exp(-z/z0-R/hR) (radially/vertically) -3 Halo – ρhalo ~ ρ0r (RR Lyrae stars, globular clusters) See handout – Benjamin et al. (2005) Galactic Center/Bar Galactic Model: disk component 10 Ldisk = 2 x 10 L (B band) hR = 3 kpc (scale length) z0 = (scale height) round numbers! = 150 pc (extreme Pop I) = 350 pc (Pop I) = 1 kpc (Pop II) Rmax = 12 kpc Rmin = 3 kpc Inside 3 kpc, the Galaxy is a mess, with a bar, expanding shell, etc… Galactic Bar Lots of other disk galaxies have a central bar (elongated structure). Does the Milky Way? Photometry – what does the stellar distribution in the center of the Galaxy look like? 2 2 2 2 2 2 2 Bar-like distribution: N = N0 exp (-0.5r ), where r = (x +y )/R + z /z0 Observe A(m) as a function of Galactic coordinates (l,b) Use N as an estimate of your source distribution: counts A(m,l,b) appear bar-like Sevenster (1990s) found overabundance of OH/IR stars in 1stquadrant. Asymmetry is also seen in RR Lyrae distribution.
    [Show full text]
  • Oort Constants! • Using a Bit of Trig !
    Dynamics and how to use the orbits of stars to do interesting things ! chapter 3 of S+G- parts of ch 2 of B&T and parts of Ch 11 of MWB ! 1! Galactic Rotation- Oort Constants! • using a bit of trig ! R(cos α)= R0sin(l)! R(sin α)= R0cos(l)-d! so! Vobservered,radial=(ω- ω0) R0sin(l)! Vobservered,tang=(ω- ω0) R0cos(l)-ωd! ! then following the text expand (ω- ω0) around R0 and using the fact that most of the velocities are local e.g. R-R0 is small and d is smaller than R or R0 (not TRUE for HI) and some more trig ! get ! ω# Vobservered,radial=Adsin(2l);Vobs,tang=Adcos(2l)+Bd! Where ! A=-1/2 R0 (dω/dr) at R0! B=-1/2 (d /dr – R0 ω ω)! 2! Galactic Rotation Curve- sec 2.3.1 S+G! Assume gas/star has! a perfectly circular orbit! ! At a radius R0 orbit with velocity V0 ; another star/ parcel of gas at radius R has a orbital speed V(R)! ! 1)! since the angular speed V/R 2)! drops with radius, V(R) is positive for nearby objects with galactic longitude l 0<l<90 etc etc (pg 91 •Convert to angular velocity ω# bottom) ! •V observered,radial=ωR(cos α)- ω0R0sin(l)! •V observered,tang=ωR(sin α)- ω0R0cos(l)! 3! In terms of Angular Velocity! • model Galactic motion as circular motion with monotonically decreasing angular rate with distance from center. ! • Simplest physics: if the mass of the Galaxy is all at center angular velocity ω at R is ω=M1/2G1/2R-3/2! • If looking through the Galaxy at an angle l from the center, velocity at radius R projected along the line of site minus the velocity of the sun projected on the same line is! (1) V = ω R sin d - ωoRo
    [Show full text]
  • 1970Aj 75. . 602H the Astronomical Journal
    602H . 75. THE ASTRONOMICAL JOURNAL VOLUME 75, NUMBER 5 JUNE 19 70 The Space Distribution and Kinematics of Supergiants 1970AJ Roberta M. Humphreys *f University of Michigan, Ann Arbor, Michigan (Received 15 January 1970; revised 1 April 1970) The distribution and kinematics of the supergiants of all spectral types are investigated with special emphasis on the correlation of these young stars and the interstellar gas. The stars used for this study are included as a catalogue of supergiants. Sixty percent of these supergiants occur in stellar groups. Least- squares solutions for the Galactic rotation constants yield 14 km sec-1 kpc-1 for Oort’s constant and a meaningful result for the second-order coefficient of —0.6 km sec-1 kpc-2. A detailed comparison of the stellar and gas velocities in the same regions shows good agreement, and these luminous stars occur in relatively dense gas. The velocity residuals for the stars also indicate noncircular group motions. In the Carina-Centaurus region, systematic motions of 10 km/sec were found between the two sides of the arm in agreement with Lin’s density-wave theory. The velocity residuals in the Perseus arm may also be due in part to these shearing motions. I. INTRODUCTION II. THE CATALOGUE OF SUPERGIANTS SINCE the pioneering work of Morgan et al. (1952) The observational data required for this study were on the distances of Galactic H 11 regions, many largely obtained from the literature. Use of a card file investigators have studied the space distribution of compiled by Dr. W. P. Bidelman was very helpful in various Population I objects, the optical tracers of this regard.
    [Show full text]