Implementing a Portable Foreign Function Interface Through Dynamic C Code Generation

Total Page:16

File Type:pdf, Size:1020Kb

Implementing a Portable Foreign Function Interface Through Dynamic C Code Generation Implementing a Portable Foreign Function Interface through Dynamic C Code Generation Abstract mentation technique for programming languages, in particular scripting languages. They combine a Interpreters for various languages usually need to number of advantages: interface to arbitrary library functions that have a C interface. Unfortunately, C does not directly al- • simplicity low constructing calls to functions with arbitrary parameter lists at run-time. Various libraries (in • portability across architectures particular libffi and the ffcall libraries) have been • high startup speed developed to close this gap, but they have two dis- advantages: each foreign function call is slow, and One might think that calling C functions from these libraries are not available on all platforms. an interpreter written in C should be trivial, but In this paper we present a method for performing unfortunately in the general case this is not true: such foreign function calls by creating and com- One can call specific C functions easily; one can piling wrapper functions in C at run time, and also call C functions with a specific sequence of ar- then dynamically linking them. The technique is gument and return types indirectly; but calling a portable to all platforms that support dynamic function with a statically unknown sequence of ar- linking. Moreover, the wrapper functions are faster gument and return types is not supported by C. than foreign function calls through earlier libraries, The ffcall libraries1 and libffi2 have been devel- resulting in a speedup by a factor of 1.28 over libffi oped to fill that gap, but they introduce a signifi- on the DaCapo Jython benchmark. One disadvan- cant call overhead and they are not available on all tage is the higher startup cost from calling the C platforms. compiler at run time. We present and evaluate sev- In this paper we present and evaluate a for- eral methods to alleviate this problem: caching, eign function interface based on generating wrap- batching, and seeding. per functions in C at run-time, and then compiling and dynamically linking these functions. Some may 1 Introduction consider this idea obvious, but few people have used it (and even fewer have published about it), people Many languages support calling libraries written have invested significant effort in other approaches in other programming languages; this facility is (e.g., libffi and ffcall), and there have been no em- known as foreign function interface. More con- pirical evaluations of this approach; the present pa- cretely, many of the libraries of interest provide per fills this hole. C interfaces, so the foreign language of interest is Our main contributions in this paper are: usually C. Foreign function interfaces are particu- • larly popular in scripting languages such as Python We present an implementation of this idea in [Bea98], Perl, Tcl, and Ruby, but are also present a JVM interpreter (Section 3.2) and compare in other languages, e.g., Java [Lia99], Common the calling performance with libffi and ffcall Lisp, LuaML[Ram03], Haskell [FLMJ98], and vari- (Section 5.2). ous Forth implementations. 1http://www.haible.de/bruno/packages-ffcall.html Interpreters written in C are a popular imple- 2http://gcc.gnu.org/viewcvs/trunk/libffi/ • We also discuss the run-time cost of invoking microbenchmarks, but also on application bench- the C compiler (Section 4) and present and marks. evaluate several ways of alleviating this prob- The libffi interface is similar, but divides the lem: work into two stages: In the first stage you pass an array of parameter types to the macro – Using a faster compiler (Section 4.1, Sec- ffi_prep_cif, and libffi creates a call interface ob- tion 5.4) ject from that. In the second stage you create an – Caching of compiled wrapper functions array of pointers to the parameter values, and pass between runs (Section 4.2, Section 5.3) that to the calling macro ffi_call along with the – Compiling a batch of wrapper functions call interface object. at once (Section 4.3, Section 5.4) In the Cacao interpreter, we execute the first stage only once per foreign function, and the sec- – Seeding the cache with wrapper functions ond stage on every call. In theory, this two-stage for popular foreign functions (Section 4.4) arrangement can be more efficient than the ffcall in- terface, but in practice, the ffcall interface is faster We discuss the problem and its existing solutions on the platforms where we measured both.3 But in more depth in Section 2, and finally compare our even if the libffi interface was implemented opti- approach with related work (Section 6). mally, there would still be at least the overhead of constructing the array of parameter pointers. 2 Previous work Another issue with the approach taken by these libraries is that they require additional effort for In this section we describe using the ffcall libraries every architecture and calling convention. While and libffi for calling foreign functions, and the dis- the maintainers of these libraries have done an ad- advantages of this approach. mirable job at supporting a wide variety of archi- You can use the ffcall interface for calling a for- tectures and calling conventions, they are not com- eign function (avcall) as follows: For each param- plete: e.g., at the time of writing the Win64 calling eter, you call a type-specific macro (e.g., av_int), convention for the x86-64 (aka x64) architecture is and pass the actual parameter. These macros con- supported by neither library. So, an approach that struct an av_list data structure, that you eventu- does not require extra work for every architecture ally use in the av_call macro to call the function. and calling convention would be preferable for com- The overhead of using this interface for a foreign pleteness as well as for reducing the total amount function call in an interpreter consists of several of effort. components: • The interpreter has to interpret a description 3 Dynamically Generated C of the foreign function, and use that to call the appropriate ffcall macros in the appropri- Wrapper Functions ate order. In this section we describe the basic idea and two • The macros construct a data structure. implementations of our approach. We present im- provements and optimizations beyond the basic ap- • Finally, av_call has to interpret that data proach in Section 4, and timing results in Section 5. structure, then move the parameters to the right locations according to the calling conven- tion, then perform the call, and finally store 3.1 Basic Idea the result in the right location. The C compiler already knows the architecture and It is easy to see that this is quite a bit more the calling convention of the platform, so we should expensive than a regular function call. How- 3 In our experience, libffi still has one significant practical ever, we were still surprised when we saw signif- advantage over ffcall for interpreter developers: gdb back- icant speedups from our new method not just on tracing works across libffi calls, but not across ffcalls. 2 make use of this knowledge instead of reimplement- 2. The function is for a static class method, ing it from scratch (as is done in ffcall and libffi). so the second parameter has to be the class Unfortunately, the C language does not give us pointer. We pass this pointer through a vari- a way to use this knowledge directly, e.g., through able, and assign the class pointer to the vari- a run-time code generation interface. But we can able when we dynamically link the wrapper perform run-time code generation indirectly: gen- function (and the variable). We have one such erate C source code at run-time, then invoke the C variable per static class function; sharing the compiler at run-time, and finally link the resulting variables for the same class would be possible object file dynamically. but more complex. In an earlier version we What is the C code that we need to generate dy- passed the class pointer as a literal number, namically if we want to call arbitrary functions? It but we changed it to the current scheme in needs to be a C function, and we will call this the order to implement caching (Section 4.2), be- wrapper function. It must be callable from ordi- cause different runs may require different lit- nary C code, so it needs pre-determined parameter eral addresses for the same class (e.g., due to and return types, typically the same for all wrap- address-space randomization). per functions. The wrapper function needs to call the foreign function, and pass the parameters to 3. The rest of the parameters are the parame- it. It has to read these parameters from the lo- ters passed to the method at the JVM level. cations where the interpreter has put them; in a In this example the called function has one stack-based virtual machine (VM), it will typically pointer parameter. The parameters reside read the parameters from the VM stack. And the on the JVM stack and are accessed through wrapper function has to store the result of the for- the stack pointer. The offsets from the stack eign function in a place where the interpreter ex- pointer (0 in this case) are hard-coded into the pects it; again, this will usually be the stack in wrapper function. The type of the parameter a stack-based VM. The wrapper may also update is also hard-coded, in the form of a cast of the the VM state (in particular, the VM stack pointer). pointer type before the access; in the exam- Figure 1 shows and Section 3.2 explains an example ple, the type of the parameter is a pointer, so of such a wrapper function.
Recommended publications
  • Libffi This Manual Is for Libffi, a Portable Foreign-Function Interface Library
    Libffi This manual is for Libffi, a portable foreign-function interface library. Copyright c 2008, 2010, 2011 Red Hat, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. A copy of the license is included in the section entitled \GNU General Public License". Chapter 2: Using libffi 1 1 What is libffi? Compilers for high level languages generate code that follow certain conventions. These conventions are necessary, in part, for separate compilation to work. One such convention is the calling convention. The calling convention is a set of assumptions made by the compiler about where function arguments will be found on entry to a function. A calling convention also specifies where the return value for a function is found. The calling convention isalso sometimes called the ABI or Application Binary Interface. Some programs may not know at the time of compilation what arguments are to be passed to a function. For instance, an interpreter may be told at run-time about the number and types of arguments used to call a given function. `Libffi' can be used in such programs to provide a bridge from the interpreter program to compiled code. The `libffi' library provides a portable, high level programming interface to various calling conventions. This allows a programmer to call any function specified by a call interface description at run time. FFI stands for Foreign Function Interface. A foreign function interface is the popular name for the interface that allows code written in one language to call code written in another language.
    [Show full text]
  • Jeannie: Granting Java Native Interface Developers Their Wishes
    Jeannie: Granting Java Native Interface Developers Their Wishes Martin Hirzel Robert Grimm IBM Watson Research Center New York University [email protected] [email protected] Abstract higher-level languages and vice versa. For example, a Java Higher-level languages interface with lower-level languages project can reuse a high-performance C library for binary such as C to access platform functionality, reuse legacy li- decision diagrams (BDDs) through the Java Native Inter- braries, or improve performance. This raises the issue of face [38] (JNI), which is the standard FFI for Java. how to best integrate different languages while also recon- FFI designs aim for productivity, safety, portability, and ciling productivity, safety, portability, and efficiency. This efficiency. Unfortunately, these goals are often at odds. For paper presents Jeannie, a new language design for integrat- instance, Sun’s original FFI for Java, the Native Method In- ing Java with C. In Jeannie, both Java and C code are nested terface [52, 53] (NMI), directly exposed Java objects as C within each other in the same file and compile down to JNI, structs and thus provided simple and fast access to object the Java platform’s standard foreign function interface. By fields. However, this is unsafe, since C code can violate Java combining the two languages’ syntax and semantics, Jean- types, notably by storing an object of incompatible type in a nie eliminates verbose boiler-plate code, enables static error field. Furthermore, it constrains garbage collectors and just- detection across the language boundary, and simplifies dy- in-time compilers, since changes to the data representation namic resource management.
    [Show full text]
  • The Shogun Machine Learning Toolbox
    The Shogun Machine Learning Toolbox Heiko Strathmann, Gatsby Unit, UCL London Open Machine Learning Workshop, MSR, NY August 22, 2014 A bit about Shogun I Open-Source tools for ML problems I Started 1999 by SÖren Sonnenburg & GUNnar Rätsch, made public in 2004 I Currently 8 core-developers + 20 regular contributors I Purely open-source community driven I In Google Summer of Code since 2010 (29 projects!) Ohloh - Summary Ohloh - Code Supervised Learning Given: x y n , want: y ∗ x ∗ I f( i ; i )gi=1 j I Classication: y discrete I Support Vector Machine I Gaussian Processes I Logistic Regression I Decision Trees I Nearest Neighbours I Naive Bayes I Regression: y continuous I Gaussian Processes I Support Vector Regression I (Kernel) Ridge Regression I (Group) LASSO Unsupervised Learning Given: x n , want notion of p x I f i gi=1 ( ) I Clustering: I K-Means I (Gaussian) Mixture Models I Hierarchical clustering I Latent Models I (K) PCA I Latent Discriminant Analysis I Independent Component Analysis I Dimension reduction I (K) Locally Linear Embeddings I Many more... And many more I Multiple Kernel Learning I Structured Output I Metric Learning I Variational Inference I Kernel hypothesis testing I Deep Learning (whooo!) I ... I Bindings to: LibLinear, VowpalWabbit, etc.. http://www.shogun-toolbox.org/page/documentation/ notebook Some Large-Scale Applications I Splice Site prediction: 50m examples of 200m dimensions I Face recognition: 20k examples of 750k dimensions ML in Practice I Modular data represetation I Dense, Sparse, Strings, Streams, ... I Multiple types: 8-128 bit word size I Preprocessing tools I Evaluation I Cross-Validation I Accuracy, ROC, MSE, ..
    [Show full text]
  • Dell Wyse Management Suite Version 2.1 Third Party Licenses
    Dell Wyse Management Suite Version 2.1 Third Party Licenses October 2020 Rev. A01 Notes, cautions, and warnings NOTE: A NOTE indicates important information that helps you make better use of your product. CAUTION: A CAUTION indicates either potential damage to hardware or loss of data and tells you how to avoid the problem. WARNING: A WARNING indicates a potential for property damage, personal injury, or death. © 2020 Dell Inc. or its subsidiaries. All rights reserved. Dell, EMC, and other trademarks are trademarks of Dell Inc. or its subsidiaries. Other trademarks may be trademarks of their respective owners. Contents Chapter 1: Third party licenses...................................................................................................... 4 Contents 3 1 Third party licenses The table provides the details about third party licenses for Wyse Management Suite 2.1. Table 1. Third party licenses Component name License type jdk1.8.0_112 Oracle Binary Code License jre11.0.5 Oracle Binary Code License bootstrap-2.3.2 Apache License, Version 2.0 backbone-1.3.3 MIT MIT aopalliance-1.0.jar Public Domain aspectjweaver-1.7.2.jar Eclipse Public licenses- v 1.0 bcprov-jdk16-1.46.jar MIT commons-codec-1.9.jar Apache License, Version 2.0 commons-logging-1.1.1.jar Apache License, Version 2.0 hamcrest-core-1.3.jar BSD-3 Clause jackson-annotations.2.10.2.jar Apache License, Version 2.0 The Apache Software License, Version 2.0 jackson-core.2.10.2.jar Apache License, Version 2.0 The Apache Software License, Version 2.0 jackson-databind.2.10.2.jar Apache License, Version 2.0 The Apache Software License, Version 2.0 log4j-1.2.17.jar Apache License, Version 2.0 mosquitto-3.1 Eclipse Public licenses- v 1.0 Gradle Wrapper 2.14 Apache 2.0 License Gradle Wrapper 3.3 Apache 2.0 License HockeySDK-Ios3.7.0 MIT Relayrides / pushy - v0.9.3 MIT zlib-1.2.8 zlib license yaml-cpp-0.5.1 MIT libssl.dll (1.1.1c) Open SSL License 4 Third party licenses Table 1.
    [Show full text]
  • System Calls
    System Calls What are they? ● Standard interface to allow the kernel to safely handle user requests – Read from hardware – Spawn a new process – Get current time – Create shared memory ● Message passing technique between – OS kernel (server) – User (client) Executing System Calls ● User program issues call ● Core kernel looks up call in syscall table ● Kernel module handles syscall action ● Module returns result of system call ● Core kernel forwards result to user Module is not Loaded... ● User program issues call ● Core kernel looks up call in syscall table ● Kernel module isn't loaded to handle action ● ... ● Where does call go? System Call Wrappers ● Wrapper calls system call if loaded – Otherwise returns an error ● Needs to be in a separate location so that the function can actually be called – Uses function pointer to point to kernel module implementation Adding System Calls ● You'll need to add and implement: – int start_elevator(void); – int issue_request(int, int, int); – int stop_elevator(void); ● As an example, let's add a call to printk an argument passed in: – int test_call(int); Adding System Calls ● Files to add (project files): – /usr/src/test_kernel/hello_world/test_call.c – /usr/src/test_kernel/hello_world/hello.c – /usr/src/test_kernel/hello_world/Makefile ● Files to modify (core kernel): – /usr/src/test_kernel/arch/x86/entry/syscalls/syscall_64.tbl – /usr/src/test_kernel/include/linux/syscalls.h – /usr/src/test_kernel/Makefile hello_world/test_call.c ● #include <linux/linkage.h> ● #include <linux/kernel.h> ● #include
    [Show full text]
  • JNI – C++ Integration Made Easy
    JNI – C++ integration made easy Evgeniy Gabrilovich Lev Finkelstein [email protected] [email protected] Abstract The Java Native Interface (JNI) [1] provides interoperation between Java code running on a Java Virtual Machine and code written in other programming languages (e.g., C++ or assembly). The JNI is useful when existing libraries need to be integrated into Java code, or when portions of the code are implemented in other languages for improved performance. The Java Native Interface is extremely flexible, allowing Java methods to invoke native methods and vice versa, as well as allowing native functions to manipulate Java objects. However, this flexibility comes at the expense of extra effort for the native language programmer, who has to explicitly specify how to connect to various Java objects (and later to disconnect from them, to avoid resource leak). We suggest a template-based framework that relieves the C++ programmer from most of this burden. In particular, the proposed technique provides automatic selection of the right functions to access Java objects based on their types, automatic release of previously acquired resources when they are no longer necessary, and overall simpler interface through grouping of auxiliary functions. Introduction The Java Native Interface1 is a powerful framework for seamless integration between Java and other programming languages (called “native languages” in the JNI terminology). A common case of using the JNI is when a system architect wants to benefit from both worlds, implementing communication protocols in Java and computationally expensive algorithmic parts in C++ (the latter are usually compiled into a dynamic library, which is then invoked from the Java code).
    [Show full text]
  • T U M a Digital Wallet Implementation for Anonymous Cash
    Technische Universität München Department of Informatics Bachelor’s Thesis in Information Systems A Digital Wallet Implementation for Anonymous Cash Oliver R. Broome Technische Universität München Department of Informatics Bachelor’s Thesis in Information Systems A Digital Wallet Implementation for Anonymous Cash Implementierung eines digitalen Wallets for anonyme Währungen Author Oliver R. Broome Supervisor Prof. Dr.-Ing. Georg Carle Advisor Sree Harsha Totakura, M. Sc. Date October 15, 2015 Informatik VIII Chair for Network Architectures and Services I conrm that this thesis is my own work and I have documented all sources and material used. Garching b. München, October 15, 2015 Signature Abstract GNU Taler is a novel approach to digital payments with which payments are performed with cryptographically generated representations of actual currencies. The main goal of GNU Taler is to allow taxable anonymous payments to non-anonymous merchants. This thesis documents the implementation of the Android version of the GNU Taler wallet, which allows users to create new Taler-based funds and perform payments with them. Zusammenfassung GNU Taler ist ein neuartiger Ansatz für digitales Bezahlen, bei dem Zahlungen mit kryptographischen Repräsentationen von echten Währungen getätigt werden. Das Hauptziel von GNU Taler ist es, versteuerbare, anonyme Zahlungen an nicht-anonyme Händler zu ermöglichen. Diese Arbeit dokumentiert die Implementation der Android-Version des Taler-Portemonnaies, der es Benutzern erlaubt, neues Taler-Guthaben zu erzeugen und mit ihnen Zahlungen zu tätigen. I Contents 1 Introduction 1 1.1 GNU Taler . .2 1.2 Goals of the thesis . .2 1.3 Outline . .3 2 Implementation prerequisites 5 2.1 Native libraries . .5 2.1.1 Libgcrypt .
    [Show full text]
  • Programming Project 5: User-Level Processes
    Project 5 Operating Systems Programming Project 5: User-Level Processes Due Date: ______________________________ Project Duration: One week Overview and Goal In this project, you will explore user-level processes. You will create a single process, running in its own address space. When this user-level process executes, the CPU will be in “user mode.” The user-level process will make system calls to the kernel, which will cause the CPU to switch into “system mode.” Upon completion, the CPU will switch back to user mode before resuming execution of the user-level process. The user-level process will execute in its own “logical address space.” Its address space will be broken into a number of “pages” and each page will be stored in a frame in memory. The pages will be resident (i.e., stored in frames in physical memory) at all times and will not be swapped out to disk in this project. (Contrast this with “virtual” memory, in which some pages may not be resident in memory.) The kernel will be entirely protected from the user-level program; nothing the user-level program does can crash the kernel. Download New Files The files for this project are available in: http://www.cs.pdx.edu/~harry/Blitz/OSProject/p5/ Please retain your old files from previous projects and don’t modify them once you submit them. You should get the following files: Switch.s Runtime.s System.h System.c Page 1 Project 5 Operating Systems List.h List.c BitMap.h BitMap.c makefile FileStuff.h FileStuff.c Main.h Main.c DISK UserRuntime.s UserSystem.h UserSystem.c MyProgram.h MyProgram.c TestProgram1.h TestProgram1.c TestProgram2.h TestProgram2.c The following files are unchanged from the last project and you should not modify them: Switch.s Runtime.s System.h System.c -- except HEAP_SIZE has been modified List.h List.c BitMap.h BitMap.c The following files are not provided; instead you will modify what you created in the last project.
    [Show full text]
  • CFFI Documentation Release 0.8.6
    CFFI Documentation Release 0.8.6 Armin Rigo, Maciej Fijalkowski May 19, 2015 Contents 1 Installation and Status 3 1.1 Platform-specific instructions......................................4 2 Examples 5 2.1 Simple example (ABI level).......................................5 2.2 Real example (API level).........................................5 2.3 Struct/Array Example..........................................6 2.4 What actually happened?.........................................6 3 Distributing modules using CFFI7 3.1 Cleaning up the __pycache__ directory.................................7 4 Reference 9 4.1 Declaring types and functions......................................9 4.2 Loading libraries............................................. 10 4.3 The verification step........................................... 10 4.4 Working with pointers, structures and arrays.............................. 12 4.5 Python 3 support............................................. 14 4.6 An example of calling a main-like thing................................. 15 4.7 Function calls............................................... 15 4.8 Variadic function calls.......................................... 16 4.9 Callbacks................................................. 17 4.10 Misc methods on ffi........................................... 18 4.11 Unimplemented features......................................... 20 4.12 Debugging dlopen’ed C libraries..................................... 20 4.13 Reference: conversions.......................................... 21 4.14 Reference:
    [Show full text]
  • SWIG and Ruby
    SWIG and Ruby David Grayson Las Vegas Ruby Meetup 2014-09-10 SWIG ● SWIG stands for: Simplified Wrapper and Interface Generator ● SWIG helps you access C or C++ code from 22 different languages, including Ruby SWIG inputs and outputs Ruby C extension SWIG interface file (.i) source (.c or .cxx) Simple C++ example libdavid.h: libdavid.i #include <stdio.h> %module "david" class David %{ { #include <libdavid.h> public: %} David(int x) { class David this->x = x; { } public: David(int x); void announce() void announce(); { int x; }; printf("David %d\n", x); } int x; }; Compiling Simple C++ example extconf.rb require 'mkmf' system('swig -c++ -ruby libdavid.i') or abort create_makefile('david') Commands to run: $ ruby extconf.rb # create libdavid_wrap.cxx and Makefile $ make # compile david.so $ irb -r./david # try it out irb(main):001:0> d = David::David.new(4) => #<David::David:0x007f40090a5280 @__swigtype__="_p_David"> irb(main):002:0> d.announce David 4 => nil (This example worked for me with SWIG 3.0.2 and Ruby 2.1.2.) That example was pretty simple ● All code was in a .h file ● No external libraries ● Simple data types ● No consideration of deployment ...but SWIG has tons of features C: C++: ● All ISO C datatypes ● All C++ datatypes ● Global functions ● References ● Global variables, constants ● Pointers to members ● Structures and unions ● Classes ● Pointers ● (Multiple) inheritance ● (Multidimensional) arrays ● Overloaded functions ● Pointers to functions ● Overloaded methods ● Variable length arguments ● Overloaded operators ● Typedefs ● Static members ● Enums ● Namespaces ● Templates ● Nested classes ... SWIG Typemaps ● Define custom ways to map between scripting- language types and C++ types. ● Can be used to add and remove parameters from of exposed functions.
    [Show full text]
  • Compiler Fuzzing: How Much Does It Matter?
    Compiler Fuzzing: How Much Does It Matter? MICHAËL MARCOZZI∗, QIYI TANG∗, ALASTAIR F. DONALDSON, and CRISTIAN CADAR, Imperial College London, United Kingdom Despite much recent interest in randomised testing (fuzzing) of compilers, the practical impact of fuzzer-found compiler bugs on real-world applications has barely been assessed. We present the first quantitative and qualitative study of the tangible impact of miscompilation bugs in a mature compiler. We follow a rigorous methodology where the bug impact over the compiled application is evaluated based on (1) whether the bug appears to trigger during compilation; (2) the extent to which generated assembly code changes syntactically due to triggering of the bug; and (3) whether such changes cause regression test suite failures, or whether we can manually find application inputs that trigger execution divergence due to such changes. Thestudy is conducted with respect to the compilation of more than 10 million lines of C/C++ code from 309 Debian 155 packages, using 12% of the historical and now fixed miscompilation bugs found by four state-of-the-art fuzzers in the Clang/LLVM compiler, as well as 18 bugs found by human users compiling real code or as a by-product of formal verification efforts. The results show that almost half of the fuzzer-found bugs propagate tothe generated binaries for at least one package, in which case only a very small part of the binary is typically affected, yet causing two failures when running the test suites of all the impacted packages. User-reported and formal verification bugs do not exhibit a higher impact, with a lower rate of triggered bugs andonetest failure.
    [Show full text]
  • PHP Beyond the Web Shell Scripts, Desktop Software, System Daemons and More
    PHP Beyond the web Shell scripts, desktop software, system daemons and more Rob Aley This book is for sale at http://leanpub.com/php This version was published on 2013-11-25 This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and many iterations to get reader feedback, pivot until you have the right book and build traction once you do. ©2012 - 2013 Rob Aley Tweet This Book! Please help Rob Aley by spreading the word about this book on Twitter! The suggested hashtag for this book is #phpbeyondtheweb. Find out what other people are saying about the book by clicking on this link to search for this hashtag on Twitter: https://twitter.com/search?q=#phpbeyondtheweb Contents Welcome ............................................ i About the author ...................................... i Acknowledgements ..................................... ii 1 Introduction ........................................ 1 1.1 “Use PHP? We’re not building a website, you know!”. ............... 1 1.2 Are you new to PHP? ................................. 2 1.3 Reader prerequisites. Or, what this book isn’t .................... 3 1.4 An important note for Windows and Mac users ................... 3 1.5 About the sample code ................................ 4 1.6 External resources ................................... 4 1.7 Book formats/versions available, and access to updates ............... 5 1.8 English. The Real English. .............................. 5 2 Getting away from the Web - the basics ......................... 6 2.1 PHP without a web server .............................. 6 2.2 PHP versions - what’s yours? ............................. 7 2.3 A few good reasons NOT to do it in PHP ...................... 8 2.4 Thinking about security ...............................
    [Show full text]