JNI – C++ Integration Made Easy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Jeannie: Granting Java Native Interface Developers Their Wishes
Jeannie: Granting Java Native Interface Developers Their Wishes Martin Hirzel Robert Grimm IBM Watson Research Center New York University [email protected] [email protected] Abstract higher-level languages and vice versa. For example, a Java Higher-level languages interface with lower-level languages project can reuse a high-performance C library for binary such as C to access platform functionality, reuse legacy li- decision diagrams (BDDs) through the Java Native Inter- braries, or improve performance. This raises the issue of face [38] (JNI), which is the standard FFI for Java. how to best integrate different languages while also recon- FFI designs aim for productivity, safety, portability, and ciling productivity, safety, portability, and efficiency. This efficiency. Unfortunately, these goals are often at odds. For paper presents Jeannie, a new language design for integrat- instance, Sun’s original FFI for Java, the Native Method In- ing Java with C. In Jeannie, both Java and C code are nested terface [52, 53] (NMI), directly exposed Java objects as C within each other in the same file and compile down to JNI, structs and thus provided simple and fast access to object the Java platform’s standard foreign function interface. By fields. However, this is unsafe, since C code can violate Java combining the two languages’ syntax and semantics, Jean- types, notably by storing an object of incompatible type in a nie eliminates verbose boiler-plate code, enables static error field. Furthermore, it constrains garbage collectors and just- detection across the language boundary, and simplifies dy- in-time compilers, since changes to the data representation namic resource management. -
ML Module Mania: a Type-Safe, Separately Compiled, Extensible Interpreter
ML Module Mania: A Type-Safe, Separately Compiled, Extensible Interpreter The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Ramsey, Norman. 2005. ML Module Mania: A Type-Safe, Separately Compiled, Extensible Interpreter. Harvard Computer Science Group Technical Report TR-11-05. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:25104737 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ¡¢ £¥¤§¦©¨ © ¥ ! " $# %& !'( *)+ %¨,.-/£102©¨ 3¤4#576¥)+ %&8+9©¨ :1)+ 3';&'( )< %' =?>A@CBEDAFHG7DABJILKM GPORQQSOUT3V N W >BYXZ*[CK\@7]_^\`aKbF!^\K/c@C>ZdX eDf@hgiDf@kjmlnF!`ogpKb@CIh`q[UM W DABsr!@k`ajdtKAu!vwDAIhIkDi^Rx_Z!ILK[h[SI ML Module Mania: A Type-Safe, Separately Compiled, Extensible Interpreter Norman Ramsey Division of Engineering and Applied Sciences Harvard University Abstract An application that uses an embedded interpreter is writ- ten in two languages: Most code is written in the original, The new embedded interpreter Lua-ML combines extensi- host language (e.g., C, C++, or ML), but key parts can be bility and separate compilation without compromising type written in the embedded language. This organization has safety. The interpreter’s types are extended by applying a several benefits: sum constructor to built-in types and to extensions, then • Complex command-line arguments aren’t needed; the tying a recursive knot using a two-level type; the sum con- embedded language can be used on the command line. -
Tierless Web Programming in ML Gabriel Radanne
Tierless Web programming in ML Gabriel Radanne To cite this version: Gabriel Radanne. Tierless Web programming in ML. Programming Languages [cs.PL]. Université Paris Diderot (Paris 7), 2017. English. tel-01788885 HAL Id: tel-01788885 https://hal.archives-ouvertes.fr/tel-01788885 Submitted on 9 May 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License Thèse de doctorat de l’Université Sorbonne Paris Cité Préparée à l’Université Paris Diderot au Laboratoire IRIF Ecole Doctorale 386 — Science Mathématiques De Paris Centre Tierless Web programming in ML par Gabriel Radanne Thèse de Doctorat d’informatique Dirigée par Roberto Di Cosmo et Jérôme Vouillon Thèse soutenue publiquement le 14 Novembre 2017 devant le jury constitué de Manuel Serrano Président du Jury Roberto Di Cosmo Directeur de thèse Jérôme Vouillon Co-Directeur de thèse Koen Claessen Rapporteur Jacques Garrigue Rapporteur Coen De Roover Examinateur Xavier Leroy Examinateur Jeremy Yallop Examinateur This work is licensed under a Creative Commons “Attribution- NonCommercial-ShareAlike 4.0 International” license. Abstract Eliom is a dialect of OCaml for Web programming in which server and client pieces of code can be mixed in the same file using syntactic annotations. -
Seaflow Language Reference Manual Rohan Arora, Junyang Jin, Ho Sanlok Lee, Sarah Seidman Ra3091, Jj3132, Hl3436, Ss5311
Seaflow Language Reference Manual Rohan Arora, Junyang Jin, Ho Sanlok Lee, Sarah Seidman ra3091, jj3132, hl3436, ss5311 1 Introduction 3 2 Lexical Conventions 3 2.1 Comments 3 2.2 Identifiers 3 2.3 Keywords 3 2.4 Literals 3 3 Expressions and Statements 3 3.1 Expressions 4 3.1.1 Primary Expressions 4 3.1.1 Operators 4 3.1.2 Conditional expression 4 3.4 Statements 5 3.4.1 Declaration 5 3.4.2 Immutability 5 3.4.3 Observable re-assignment 5 4 Functions Junyang 6 4.1 Declaration 6 4.2 Scope rules 6 4.3 Higher Order Functions 6 5 Observables 7 5.1 Declaration 7 5.2 Subscription 7 5.3 Methods 7 6 Conversions 9 1 Introduction Seaflow is an imperative language designed to address the asynchronous event conundrum by supporting some of the core principles of ReactiveX and reactive programming natively. Modern applications handle many asynchronous events, but it is difficult to model such applications using programming languages such as Java and JavaScript. One popular solution among the developers is to use ReactiveX implementations in their respective languages to architect event-driven reactive models. However, since Java and JavaScript are not designed for reactive programming, it leads to complex implementations where multiple programming styles are mixed-used. Our goals include: 1. All data types are immutable, with the exception being observables, no pointers 2. The creation of an observable should be simple 3. Natively support core principles in the ReactiveX specification 2 Lexical Conventions 2.1 Comments We use the characters /* to introduce a comment, which terminates with the characters */. -
Difference Between Method Declaration and Signature
Difference Between Method Declaration And Signature Asiatic and relaxed Dillon still terms his tacheometry namely. Is Tom dirt or hierarchal after Zyrian Nelson hasting so variously? Heterozygous Henrique instals terribly. Chapter 15 Functions. How junior you identify a function? There play an important difference between schedule two forms of code block seeing the. Subroutines in C and Java are always expressed as functions methods which may. Only one params keyword is permitted in a method declaration. Complex constant and so, where you declare checked exception parameters which case, it prompts the method declaration group the habit of control passes the positional. Overview of methods method parameters and method return values. A whole object has the cash public attributes and methods. Defining Methods. A constant only be unanimous a type explicitly by doing constant declaration or. As a stop rule using prototypes is the preferred method as it. C endif Class HelloJNI Method sayHello Signature V JNIEXPORT. Method signature It consists of the method name just a parameter list window of. As I breathe in the difference between static and dynamic binding static methods are. Most electronic signature solutions in the United States fall from this broad. DEPRECATED Method declarations with type constraints and per source filter. Methods and Method Declaration in Java dummies. Class Methods Apex Developer Guide Salesforce Developers. Using function signatures to remove a library method Function signatures are known important snapshot of searching for library functions The F libraries. Many different kinds of parameters with rather subtle semantic differences. For addition as real numbers the distinction is somewhat moot because is. -
Data Types Are Values
Data Types Are Values James Donahue Alan Demers Data Types Are Values James Donahue Xerox Corporation Palo Alto Research Center 3333 Coyote Hill Road Palo Alto, California 94304 Alan Demers Computer Science Department Cornell University Ithaca, New York 14853 CSL -83-5 March 1984 [P83-00005] © Copyright 1984 ACM. All rights reserved. Reprinted with permission. A bst ract: An important goal of programming language research is to isolate the fundamental concepts of languages, those basic ideas that allow us to understand the relationship among various language features. This paper examines one of these underlying notions, data type, with particular attention to the treatment of generic or polymorphic procedures and static type-checking. A version of this paper will appear in the ACM Transact~ons on Programming Languages and Systems. CR Categories and Subject Descriptors: 0.3 (Programming Languages), 0.3.1 (Formal Definitions and Theory), 0.3.3 (Language Constructs), F.3.2 (Semantics of Programming Languages) Additional Keywords and Phrases: data types, polymorphism XEROX Xerox Corporation Palo Alto Research Center 3333 Coyote Hill Road Palo Alto, California 94304 DATA TYPES ARE VALVES 1 1. Introduction An important goal of programming language research is to isolate the fundamental concepts of languages, those basic ideas that allow us to understand the relationship among various language features. This paper examines one of these underlying notions, data type, and presents a meaning for this term that allows us to: describe a simple treatment of generic or polymorphic procedures that preserves full static type-checking and allows unrestricted use of recursion; and give a precise meaning to the phrase strong typing, so that Language X is strongly typed can be interpreted as a critically important theorem about the semantics of the language. -
Exploring Languages with Interpreters and Functional Programming Chapter 22
Exploring Languages with Interpreters and Functional Programming Chapter 22 H. Conrad Cunningham 5 November 2018 Contents 22 Overloading and Type Classes 2 22.1 Chapter Introduction . .2 22.2 Polymorphism in Haskell . .2 22.3 Why Overloading? . .2 22.4 Defining an Equality Class and Its Instances . .4 22.5 Type Class Laws . .5 22.6 Another Example Class Visible ..................5 22.7 Class Extension (Inheritance) . .6 22.8 Multiple Constraints . .7 22.9 Built-In Haskell Classes . .8 22.10Comparison to Other Languages . .8 22.11What Next? . .9 22.12Exercises . 10 22.13Acknowledgements . 10 22.14References . 11 22.15Terms and Concepts . 11 Copyright (C) 2017, 2018, H. Conrad Cunningham Professor of Computer and Information Science University of Mississippi 211 Weir Hall P.O. Box 1848 University, MS 38677 (662) 915-5358 Browser Advisory: The HTML version of this textbook requires use of a browser that supports the display of MathML. A good choice as of November 2018 is a recent version of Firefox from Mozilla. 1 22 Overloading and Type Classes 22.1 Chapter Introduction Chapter 5 introduced the concept of overloading. Chapters 13 and 21 introduced the related concepts of type classes and instances. The goal of this chapter and the next chapter is to explore these concepts in more detail. The concept of type class was introduced into Haskell to handle the problem of comparisons, but it has had a broader and more profound impact upon the development of the language than its original purpose. This Haskell feature has also had a significant impact upon the design of subsequent languages (e.g. -
T U M a Digital Wallet Implementation for Anonymous Cash
Technische Universität München Department of Informatics Bachelor’s Thesis in Information Systems A Digital Wallet Implementation for Anonymous Cash Oliver R. Broome Technische Universität München Department of Informatics Bachelor’s Thesis in Information Systems A Digital Wallet Implementation for Anonymous Cash Implementierung eines digitalen Wallets for anonyme Währungen Author Oliver R. Broome Supervisor Prof. Dr.-Ing. Georg Carle Advisor Sree Harsha Totakura, M. Sc. Date October 15, 2015 Informatik VIII Chair for Network Architectures and Services I conrm that this thesis is my own work and I have documented all sources and material used. Garching b. München, October 15, 2015 Signature Abstract GNU Taler is a novel approach to digital payments with which payments are performed with cryptographically generated representations of actual currencies. The main goal of GNU Taler is to allow taxable anonymous payments to non-anonymous merchants. This thesis documents the implementation of the Android version of the GNU Taler wallet, which allows users to create new Taler-based funds and perform payments with them. Zusammenfassung GNU Taler ist ein neuartiger Ansatz für digitales Bezahlen, bei dem Zahlungen mit kryptographischen Repräsentationen von echten Währungen getätigt werden. Das Hauptziel von GNU Taler ist es, versteuerbare, anonyme Zahlungen an nicht-anonyme Händler zu ermöglichen. Diese Arbeit dokumentiert die Implementation der Android-Version des Taler-Portemonnaies, der es Benutzern erlaubt, neues Taler-Guthaben zu erzeugen und mit ihnen Zahlungen zu tätigen. I Contents 1 Introduction 1 1.1 GNU Taler . .2 1.2 Goals of the thesis . .2 1.3 Outline . .3 2 Implementation prerequisites 5 2.1 Native libraries . .5 2.1.1 Libgcrypt . -
Cross-Platform Language Design
Cross-Platform Language Design THIS IS A TEMPORARY TITLE PAGE It will be replaced for the final print by a version provided by the service academique. Thèse n. 1234 2011 présentée le 11 Juin 2018 à la Faculté Informatique et Communications Laboratoire de Méthodes de Programmation 1 programme doctoral en Informatique et Communications École Polytechnique Fédérale de Lausanne pour l’obtention du grade de Docteur ès Sciences par Sébastien Doeraene acceptée sur proposition du jury: Prof James Larus, président du jury Prof Martin Odersky, directeur de thèse Prof Edouard Bugnion, rapporteur Dr Andreas Rossberg, rapporteur Prof Peter Van Roy, rapporteur Lausanne, EPFL, 2018 It is better to repent a sin than regret the loss of a pleasure. — Oscar Wilde Acknowledgments Although there is only one name written in a large font on the front page, there are many people without which this thesis would never have happened, or would not have been quite the same. Five years is a long time, during which I had the privilege to work, discuss, sing, learn and have fun with many people. I am afraid to make a list, for I am sure I will forget some. Nevertheless, I will try my best. First, I would like to thank my advisor, Martin Odersky, for giving me the opportunity to fulfill a dream, that of being part of the design and development team of my favorite programming language. Many thanks for letting me explore the design of Scala.js in my own way, while at the same time always being there when I needed him. -
Functional C
Functional C Pieter Hartel Henk Muller January 3, 1999 i Functional C Pieter Hartel Henk Muller University of Southampton University of Bristol Revision: 6.7 ii To Marijke Pieter To my family and other sources of inspiration Henk Revision: 6.7 c 1995,1996 Pieter Hartel & Henk Muller, all rights reserved. Preface The Computer Science Departments of many universities teach a functional lan- guage as the first programming language. Using a functional language with its high level of abstraction helps to emphasize the principles of programming. Func- tional programming is only one of the paradigms with which a student should be acquainted. Imperative, Concurrent, Object-Oriented, and Logic programming are also important. Depending on the problem to be solved, one of the paradigms will be chosen as the most natural paradigm for that problem. This book is the course material to teach a second paradigm: imperative pro- gramming, using C as the programming language. The book has been written so that it builds on the knowledge that the students have acquired during their first course on functional programming, using SML. The prerequisite of this book is that the principles of programming are already understood; this book does not specifically aim to teach `problem solving' or `programming'. This book aims to: ¡ Familiarise the reader with imperative programming as another way of imple- menting programs. The aim is to preserve the programming style, that is, the programmer thinks functionally while implementing an imperative pro- gram. ¡ Provide understanding of the differences between functional and imperative pro- gramming. Functional programming is a high level activity. -
Nacldroid: Native Code Isolation for Android Applications
NaClDroid: Native Code Isolation for Android Applications Elias Athanasopoulos1, Vasileios P. Kemerlis2, Georgios Portokalidis3, and Angelos D. Keromytis4 1 Vrije Universiteit Amsterdam, The Netherlands [email protected] 2 Brown University, Providence, RI, USA [email protected] 3 Stevens Institute of Technology, Hoboken, NJ, USA [email protected] 4 Columbia University, New York, NY, USA [email protected] Abstract. Android apps frequently incorporate third-party libraries that contain native code; this not only facilitates rapid application develop- ment and distribution, but also provides new ways to generate revenue. As a matter of fact, one in two apps in Google Play are linked with a library providing ad network services. However, linking applications with third-party code can have severe security implications: malicious libraries written in native code can exfiltrate sensitive information from a running app, or completely modify the execution runtime, since all native code is mapped inside the same address space with the execution environment, namely the Dalvik/ART VM. We propose NaClDroid, a framework that addresses these problems, while still allowing apps to include third-party code. NaClDroid prevents malicious native-code libraries from hijacking Android applications using Software Fault Isolation. More specifically, we place all native code in a Native Client sandbox that prevents uncon- strained reads, or writes, inside the process address space. NaClDroid has little overhead; for native code running inside the NaCl sandbox the slowdown is less than 10% on average. Keywords: SFI, NaCl, Android 1 Introduction Android is undoubtedly the most rapidly growing platform for mobile devices, with estimates predicting one billion Android-based smartphones shipping in 2017 [12]. -
Developing and Benchmarking Native Linux Applications on Android
Developing and Benchmarking Native Linux Applications on Android Leonid Batyuk, Aubrey-Derrick Schmidt, Hans-Gunther Schmidt, Ahmet Camtepe, and Sahin Albayrak Technische Universit¨at Berlin, 10587 Berlin, Germany {aubrey.schmidt,leonid.batyuk,hans-gunther.schmidt,ahmet.camtepe, sahin.albayrak}@dai-labor.de http://www.dai-labor.de Abstract. Smartphones get increasingly popular where more and more smartphone platforms emerge. Special attention was gained by the open source platform Android which was presented by the Open Handset Al- liance (OHA) hosting members like Google, Motorola, and HTC. An- droid uses a Linux kernel and a stripped-down userland with a custom Java VM set on top. The resulting system joins the advantages of both environments, while third-parties are intended to develop only Java ap- plications at the moment. In this work, we present the benefit of using native applications in Android. Android includes a fully functional Linux, and using it for heavy computational tasks when developing applications can bring in substantional performance increase. We present how to develop native applications and software components, as well as how to let Linux appli- cations and components communicate with Java programs. Additionally, we present performance measurements of native and Java applications executing identical tasks. The results show that native C applications can be up to 30 times as fast as an identical algorithm running in Dalvik VM. Java applications can become a speed-up of up to 10 times if utilizing JNI. Keywords: software, performance, smartphones, android, C, Java. 1 Introduction With the growing customer interest in smartphones the number of available platforms increases steadily.