The Rado Graph and the Urysohn Space

Total Page:16

File Type:pdf, Size:1020Kb

The Rado Graph and the Urysohn Space The Rado graph and the Urysohn space Peter J. Cameron [email protected] Reading Combinatorics Conference, 18 May 2006 Rado’s graph Consider countable graphs following condition In 1964, Rado constructed a universal graph as (∗): follows: The vertex set is the set of natural num- bers (including zero). Given any two finite disjoint sets U and V of vertices, there is a vertex z joined to For i, j ∈ N, i < j, then i and j are joined if and every vertex in U and to no vertex in V. only if the ith digit in j (in base 2) is 1. (∗) Another construction: Clearly a graph satisfying is universal. A Let P denote the set of primes congruent to 1 “back-and-forth” argument shows that any two 1 (∗) mod 4. According to the Quadratic Reciprocity countable graphs satisfying are isomorphic, and a small modification shows that any such Law, for p, q ∈ P1, p is a square mod q if and only if q is a square mod p. Join p to q if this holds. graph is homogeneous. Thus, Rado’s graph is the unique countable This graph is isomorphic to Rado’s. graph (up to isomorphism) satisfying condition (∗). Universality and homogeneity Rado showed that R is universal: every finite or Measure and category countable graph can be embedded in R. There are two natural ways of saying that a set It is also true (though not really obvious) that R of countable graphs is “large”. is homogeneous: every isomorphism between finite Choose a fixed countable vertex set, and enu- subgraphs of R extends to an automorphism of R. merate the pairs of vertices: {x0, y0}, {x1, y1},... Exercise: Find an automorphism interchanging There is a probability measure on the set of 0 and 1. graphs, obtained by choosing independently with probability 1/2 whether xi and yi are joined, for all i. Now a set of graphs is “large” if it has probabil- Uniqueness ity 1. Rado’s graph is the unique (up to isomorphism) There is a complete metric on the set of graphs: graph which is countable, universal and homoge- the distance between two graphs is 1/2n if n is neous. minimal such that xn and yn are joined in one In fact, it suffices for this statement to assume graph but not the other. Now a set of graphs is universality for finite graphs (that is, every finite “large” if it is residual in the sense of Baire cate- graph can be embedded as an induced subgraph) gory, that is, contains a countable intersection of and homogeneity. open dense sets. Recognition Ubiquity 1 It is now quite easy to show that the set of count- Proof. Enumerate the edges of R: e1, e2, . .. Sup- 0 0 able graphs satisfying (∗) (that is, the set of graphs pose we have found disjoint subgraphs G1,..., Gn isomorphic to R) is “large” in both the senses just isomorphic to G1,..., Gn and containing e1,..., en. 0 0 described. Then R \ (G1 ∪ · · · ∪ Gn) is isomorphic to R, so 0 In fact, condition (∗) with fixed sets U and V contains a spanning subgraph Gn+1 isomorphic to is satisfied in an open dense set of graphs with Gn+1; moreover, since the automorphism group of full measure, and there are only countably many R is edge-transitive, we may assume that this sub- choices of the pair (U, V). graph contains en+1, if this edge is not already cov- 0 0 Thus, Rado’s graph is the countable random graph, ered by G1,..., Gn. as well as the generic countable graph. Automorphisms Indestructibility The automorphism group of R is a very interest- A number of operations can be applied to R ing group. Some of its properties: without changing its isomorphism type. These in- clude • Aut(R) has cardinality 2ℵ0 ; • deleting any finite set of vertices; • Aut(R) is simple; • adding or deleting any finite set of edges; • Aut(R) has the small index property, that is, • more generally, adding or deleting any set of any subgroup of index less than 2ℵ0 contains edges such that only finitely many are inci- the pointwise stabiliser of a finite set of ver- dent with each vertex; tices; • taking the complement. • Aut(R) contains a generic conjugacy class, one that is residual in the whole group; Pigeonhole property A countable graph G is said to have the pigeon- • Aut(R) contains a copy of every finite or hole property if, whenever the vertex set of G is par- countable group. titioned into two parts in any manner, the induced subgraph on one of these parts is isomorphic to G. Homomorphisms Rado’s graph has the pigeonhole property. A homomorphism of a graph G is a map from G Indeed, there are just three countable graphs to G which maps edges to edges. The endomor- with the pigeonhole property: the complete graph, phisms of any graph G (the homomorphisms from the null graph, and Rado’s graph. G to G) form a monoid (a semigroup with identity). The endomorphism monoid of R contains a Spanning subgraphs copy of every finite or countable monoid. A countable graph G is a spanning subgraph of R if and only if, for any finite set W of vertices of G, there is a vertex Z joined to no vertex in W. Homomorphism-homogeneity In particular, any locally finite graph is a span- Recall that a graph G is homogeneous if every ning subgraph of R. isomorphism between finite subgraphs of G can be Dually, R is a spanning subgraph of G if and extended to an isomorphism from G to G. only if any finite set of vertices of G have a com- We obtain new classes of graphs by replac- mon neighbour. ing “isomorphism” by “homomorphism” (or “monomorphism”) in this definition. Factorisations What is known? Theorem 1. Let G1, G2,... be a sequence of locally fi- • Every graph containing R as a span- nite countable non-null graphs. Then R can be parti- ning subgraph is homomorphism- and tioned into subgraphs isomorphic to G1, G2,.... monomorphism-homogeneous. 2 • If a countable graph G has the property that for i, j = 1, . , n. every monomorphism between finite sub- Thus the possible distances are chosen from a graphs extends to a homomorphism of G, cone in Rn. then either G contains R as a spanning sub- graph, or there is a bound on the size of claws Ubiquity K in G. 1,n Thus we have both a measure and a metric on Apart from disjoint unions of complete graphs the set of countable metric spaces. For the mea- (which contain no K ), no homomorphism- sure, use any natural probability measure on the 1,2 n homogeneous graphs of bounded claw size are cone in R at each step, for example, the restric- known. tion of a Gaussian measure on the whole space. Anatoly Vershik showed that Polish spaces • the completion of a random countable metric There is a complete metric space with properties space is isometric to U with probability 1; remarkably similar to those of Rado’s graph. A complete metric space will not usually be • the set of countable metric spaces whose com- countable. Instead we require it to be separable, pletion is U is residual in the set of all count- that is, to have a countable dense subset. able metric spaces. A Polish space is a complete separable metric In other words, Urysohn space is the random Pol- space. ish space, and the generic Polish space. Thus, the completion of any countable metric Unfortunately we don’t have a simple direct space is a Polish space. (This is analogous to the construction of U. construction of R from Q.) Rado and Urysohn Urysohn space Any countable dense subset of U carries the In a posthumous paper published in 1927, structure of Rado’s graph R (in many different P. S. Urysohn showed: ways). Simply partition the set of distances which Theorem 2. There is a unique Polish space which is occur into two subsets E and N (satisfying some weak restrictions), and join x to y if d(x, y) ∈ E. • universal, that is, every Polish space can be iso- Hence, if a group G acts as an isometry group of metrically embedded into it; U with a countable dense orbit, then G acts as an automorphism group of R. • homogeneous, that is, every isometry between fi- nite subsets can be extended to an isometry of the whole space. Examples The Urysohn space admits an isometry all of We denote Urysohn space by U. whose orbits are dense. So the infinite cyclic group is an example of a group acting on R. (In fact, if we choose a “random countable circulant graph”, it is Constructing a Polish space isomorphic to R with probability 1. To construct a Polish space, build a countable The countable elementary abelian 2-group also metric space one point at a time and take its com- acts on U with dense orbits. pletion. The reverse implication is false. The countable Suppose that points a ,..., a have been con- 1 n elementary abelian 3-group acts on R but not on structed and their distances d(a , a ) specified. We i j U. want to add a new point an+1 with distances d(an+1, ai) = xi for i = 1, . , n. These distances must satisfy xi ≥ 0 for i = 1, . , n and Ramsey theory There is a close connection between homogene- |xi − xj| ≤ d(ai, aj) ≤ xi + xj ity and Ramsey theory.
Recommended publications
  • Connectivities and Diameters of Circulant Graphs
    CONNECTIVITIES AND DIAMETERS OF CIRCULANT GRAPHS Paul Theo Meijer B.Sc. (Honors), Simon Fraser University, 1987 THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE (MATHEMATICS) in the Department of Mathematics and Statistics @ Paul Theo Meijer 1991 SIMON FRASER UNIVERSITY December 1991 All rights reserved. This work may not be reproduced in whole or in part, by photocopy or other means, without permission of the author. Approval Name: Paul Theo Meijer Degree: Master of Science (Mathematics) Title of Thesis: Connectivities and Diameters of Circulant Graphs Examining Committee: Chairman: Dr. Alistair Lachlan Dr. grian Alspach, Professor ' Senior Supervisor Dr. Luis Goddyn, Assistant Professor - ph Aters, Associate Professor . Dr. Tom Brown, Professor External Examiner Date Approved: December 4 P 1991 PART IAL COPYH IGIiT L ICLNSI: . , I hereby grant to Sirnori Fraser- llr~ivorsitytho righl to lend my thesis, project or extended essay (tho title of which is shown below) to users of the Simon Frasor University Libr~ry,and to make part ial or single copies only for such users or in response to a request from the library of any other university, or other educational insfitution, on 'its own behalf or for one of its users. I further agree that percnission for multiple copying of this work for scholarly purposes may be granted by me or the Dean of Graduate Studies. It is understood that copying or publication of this work for financial gain shall not be allowed without my written permission. Title of Thesis/Project/Extended Essay (date) Abstract Let S = {al, az, .
    [Show full text]
  • Arxiv:1902.03126V3 [Math.CO] 23 Jan 2020
    The independence number of HH-homogeneous graphs and a classification of MB-homogeneous graphs Andr´esArandaa, David Hartmanb,c aInstitut f¨urAlgebra, Technische Universit¨atDresden, Zellescher Weg 12-14, Dresden. bComputer Science Institute of Charles University, Charles University, Malostransk´en´am. 25, Prague 1 cInstitute of Computer Science of the Czech Academy of Sciences, Pod Vod´arenskou vˇeˇz´ı 271/2, Prague 8 Abstract We show that the independence number of a countably infinite connected HH- homogeneous graph that does not contain the Rado graph as a spanning sub- graph is finite and present a classification of MB-homogeneous graphs up to bimorphism-equivalence as a consequence. Keywords: homomorphism-homogeneity, morphism-extension classes, HH-homogeneity, MB-homogeneity 2010 MSC: 03C15, 05C60, 05C63, 05C69, 05C75 1. Introduction The symmetry of graphs, or more generally relational structures, is usually measured by such numbers as the degree of transitivity or homogeneity of the natural action of their automorphism group. One of the strongest notions of symmetry is ultrahomogeneity, defined as the property that any isomorphism between two finite induced subgraphs can be extended to an automorphism. This notion was generalized by Cameron and Neˇsetˇril,in [1], to homomorphism- homogeneity, requiring that any local homomorphism (that is, a homomorphism between finite induced substructures) extends to an endomorphism of the am- bient structure. By specifying the type of local homomorphism and endomor- phism, several new morphism-extension classes were introduced by Lockett and arXiv:1902.03126v3 [math.CO] 23 Jan 2020 Truss (see [2]), each denoted by a pair of characters as XY and defined by the condition that any local X-morphism extends to a global Y -morphism.
    [Show full text]
  • Universality for and in Induced-Hereditary Graph Properties
    Discussiones Mathematicae Graph Theory 33 (2013) 33–47 doi:10.7151/dmgt.1671 Dedicated to Mieczys law Borowiecki on his 70th birthday UNIVERSALITY FOR AND IN INDUCED-HEREDITARY GRAPH PROPERTIES Izak Broere Department of Mathematics and Applied Mathematics University of Pretoria e-mail: [email protected] and Johannes Heidema Department of Mathematical Sciences University of South Africa e-mail: [email protected] Abstract The well-known Rado graph R is universal in the set of all countable graphs , since every countable graph is an induced subgraph of R. We I study universality in and, using R, show the existence of 2ℵ0 pairwise non-isomorphic graphsI which are universal in and denumerably many other universal graphs in with prescribed attributes.I Then we contrast universality for and universalityI in induced-hereditary properties of graphs and show that the overwhelming majority of induced-hereditary properties contain no universal graphs. This is made precise by showing that there are 2(2ℵ0 ) properties in the lattice K of induced-hereditary properties of which ≤ only at most 2ℵ0 contain universal graphs. In a final section we discuss the outlook on future work; in particular the question of characterizing those induced-hereditary properties for which there is a universal graph in the property. Keywords: countable graph, universal graph, induced-hereditary property. 2010 Mathematics Subject Classification: 05C63. 34 I.Broere and J. Heidema 1. Introduction and Motivation In this article a graph shall (with one illustrative exception) be simple, undirected, unlabelled, with a countable (i.e., finite or denumerably infinite) vertex set. For graph theoretical notions undefined here, we generally follow [14].
    [Show full text]
  • THE CRITICAL GROUP of a LINE GRAPH: the BIPARTITE CASE Contents 1. Introduction 2 2. Preliminaries 2 2.1. the Graph Laplacian 2
    THE CRITICAL GROUP OF A LINE GRAPH: THE BIPARTITE CASE JOHN MACHACEK Abstract. The critical group K(G) of a graph G is a finite abelian group whose order is the number of spanning forests of the graph. Here we investigate the relationship between the critical group of a regular bipartite graph G and its line graph line G. The relationship between the two is known completely for regular nonbipartite graphs. We compute the critical group of a graph closely related to the complete bipartite graph and the critical group of its line graph. We also discuss general theory for the critical group of regular bipartite graphs. We close with various examples demonstrating what we have observed through experimentation. The problem of classifying the the relationship between K(G) and K(line G) for regular bipartite graphs remains open. Contents 1. Introduction 2 2. Preliminaries 2 2.1. The graph Laplacian 2 2.2. Theory of lattices 3 2.3. The line graph and edge subdivision graph 3 2.4. Circulant graphs 5 2.5. Smith normal form and matrices 6 3. Matrix reductions 6 4. Some specific regular bipartite graphs 9 4.1. The almost complete bipartite graph 9 4.2. Bipartite circulant graphs 11 5. A few general results 11 5.1. The quotient group 11 5.2. Perfect matchings 12 6. Looking forward 13 6.1. Odd primes 13 6.2. The prime 2 14 6.3. Example exact sequences 15 References 17 Date: December 14, 2011. A special thanks to Dr. Victor Reiner for his guidance and suggestions in completing this work.
    [Show full text]
  • Generating Infinite Random Graphs
    GENERATING INFINITE RANDOM GRAPHS CSABA BIRO´ AND UDAYAN B. DARJI Abstract. We define a growing model of random graphs. Given a sequence ∞ of nonnegative integers {dn}n=0 with the property that di ≤ i, we construct a random graph on countably infinitely many vertices v0, v1 ... by the following process: vertex vi is connected to a subset of {v0,...,vi−1} of cardinality di chosen uniformly at random. We study the resulting probability space. In particular, we give a new characterization of random graph and we also give probabilistic methods for constructing infinite random trees. 1. Introduction Consider the vertex set N. Let 0 <p< 1 be fixed. For each pair of distinct integers n,m N, put an edge between n and m with probability p. Let G be the resulting graph∈ on N. A classical 1963 Erd˝os–R´enyi theorem [10] states that with probability one, any two such graphs are isomorphic, i.e., there is essentially one random graph on N. In 1964 Rado [15] gave an explicit construction of a graph R which is universal for the collection of all countable graphs. More precisely, he showed that if G and H are any countable graphs and φ : G H a graph homomorphism, then there → are embeddings eG : G R, eH : H R and a graph homomorphism ψ : R R −1 → → → such that eH ψ eG = φ, i.e., R contains a copy of every countable graph and every graph homomorphism◦ ◦ between countable graphs can be lifted to a graph homomorphism of R. The constructions of Erd˝os–R´enyi and Rado seem very different but they result in the same graph.
    [Show full text]
  • Arxiv:1802.04921V2 [Math.CO]
    STABILITY OF CIRCULANT GRAPHS YAN-LI QIN, BINZHOU XIA, AND SANMING ZHOU Abstract. The canonical double cover D(Γ) of a graph Γ is the direct product of Γ and K2. If Aut(D(Γ)) = Aut(Γ) × Z2 then Γ is called stable; otherwise Γ is called unstable. An unstable graph is nontrivially unstable if it is connected, non-bipartite and distinct vertices have different neighborhoods. In this paper we prove that every circulant graph of odd prime order is stable and there is no arc- transitive nontrivially unstable circulant graph. The latter answers a question of Wilson in 2008. We also give infinitely many counterexamples to a conjecture of Maruˇsiˇc, Scapellato and Zagaglia Salvi in 1989 by constructing a family of stable circulant graphs with compatible adjacency matrices. Key words: circulant graph; stable graph; compatible adjacency matrix 1. Introduction We study the stability of circulant graphs. Among others we answer a question of Wilson [14] and give infinitely many counterexamples to a conjecture of Maruˇsiˇc, Scapellato and Zagaglia Salvi [9]. All graphs considered in the paper are finite, simple and undirected. As usual, for a graph Γ we use V (Γ), E(Γ) and Aut(Γ) to denote its vertex set, edge set and automorphism group, respectively. For an integer n > 1, we use nΓ to denote the graph consisting of n vertex-disjoint copies of Γ. The complete graph on n > 1 vertices is denoted by Kn, and the cycle of length n > 3 is denoted by Cn. In this paper, we assume that each symbol representing a group or a graph actually represents the isomorphism class of the same.
    [Show full text]
  • Arxiv:2107.01710V2 [Math.CO] 9 Jul 2021
    Infinite Ramsey-minimal graphs for star forests Fawwaz Fakhrurrozi Hadiputra, Valentino Vito Department of Mathematics, Universitas Indonesia, Depok 16424, Indonesia Abstract For graphs F , G, and H, we write F → (G, H) if every red-blue coloring of the edges of F produces a red copy of G or a blue copy of H. The graph F is said to be (G, H)-minimal if it is subgraph-minimal with respect to this property. The characterization problem for Ramsey-minimal graphs is classically done for finite graphs. In 2021, Barrett and the second author generalized this problem to infinite graphs. They asked which pairs (G, H) admit a Ramsey-minimal graph and which ones do not. We show that any pair of star forests such that at least one of them involves an infinite-star component admits no Ramsey- minimal graph. Also, we construct a Ramsey-minimal graph for a finite star forest versus a subdivision graph. This paper builds upon the results of Burr et al. in 1981 on Ramsey-minimal graphs for finite star forests. Key words: Ramsey-minimal graph, infinite graph, graph embedding, star forest, subdivision graph 2020 MSC: 05C55, 05C63, 05C35, 05C60, 05D10 1. Introduction All our graphs are simple and undirected. We start by stating basic def- initions. For graphs F , G and H, we write F → (G, H) if every red-blue coloring of the edges of F produces a red copy of G or a blue copy of H. A red-blue coloring of F is (G, H)-good if it produces neither a red G nor a blue H.
    [Show full text]
  • Cores of Vertex-Transitive Graphs
    Cores of Vertex-Transitive Graphs Ricky Rotheram Submitted in total fulfilment of the requirements of the degree of Master of Philosophy October 2013 Department of Mathematics and Statistics The University of Melbourne Parkville, VIC 3010, Australia Produced on archival quality paper Abstract The core of a graph Γ is the smallest graph Γ∗ for which there exist graph homomor- phisms Γ ! Γ∗ and Γ∗ ! Γ. Thus cores are fundamental to our understanding of general graph homomorphisms. It is known that for a vertex-transitive graph Γ, Γ∗ is vertex-transitive, and that jV (Γ∗)j divides jV (Γ)j. The purpose of this thesis is to determine the cores of various families of vertex-transitive and symmetric graphs. We focus primarily on finding the cores of imprimitive symmetric graphs of order pq, where p < q are primes. We choose to investigate these graphs because their cores must be symmetric graphs with jV (Γ∗)j = p or q. These graphs have been completely classified, and are split into three broad families, namely the circulants, the incidence graphs and the Maruˇsiˇc-Scapellato graphs. We use this classification to determine the cores of all imprimitive symmetric graphs of order pq, using differ- ent approaches for the circulants, the incidence graphs and the Maruˇsiˇc-Scapellato graphs. Circulant graphs are examples of Cayley graphs of abelian groups. Thus, we generalise the approach used to determine the cores of the symmetric circulants of order pq, and apply it to other Cayley graphs of abelian groups. Doing this, we show that if Γ is a Cayley graph of an abelian group, then Aut(Γ∗) contains a transitive subgroup generated by semiregular automorphisms, and either Γ∗ is an odd cycle or girth(Γ∗) ≤ 4.
    [Show full text]
  • Integral Circulant Graphsଁ Wasin So
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 306 (2005) 153–158 www.elsevier.com/locate/disc Note Integral circulant graphsଁ Wasin So Department of Mathematics, San Jose State University, San Jose, CA 95192-0103, USA Received 10 September 2003; received in revised form 6 September 2005; accepted 17 November 2005 Available online 4 January 2006 Abstract − In this note we characterize integral graphs among circulant graphs. It is conjectured that there are exactly 2(n) 1 non-isomorphic integral circulant graphs on n vertices, where (n) is the number of divisors of n. © 2005 Elsevier B.V. All rights reserved. Keywords: Integral graph; Circulant graph; Graph spectrum 1. Graph spectra Let G be a simple graph which is a graph without loop, multi-edge, and orientation. Denote A(G) the adjacency matrix of G with respect to a given labeling of its vertices. Note that A(G) is a symmetric (0, 1)-matrix with zero diagonal entries. Adjacency matrices with respect to different labeling are permutationally similar. The spectrum of G, sp(G), is defined as the spectrum of A(G), which is the set of all eigenvalues of A(G) including multiplicity. Since the spectrum of a matrix is invariant under permutation similarity, sp(G) is independent of the labeling used in A(G). Because A(G) is a real symmetric matrix, sp(G) contains real eigenvalues only. Moreover, A(G) is an integral matrix and so its characteristic polynomial is monic and integral, hence its rational roots are integers.
    [Show full text]
  • On the Generalized Θ-Number and Related Problems for Highly Symmetric Graphs
    On the generalized #-number and related problems for highly symmetric graphs Lennart Sinjorgo ∗ Renata Sotirov y Abstract This paper is an in-depth analysis of the generalized #-number of a graph. The generalized #-number, #k(G), serves as a bound for both the k-multichromatic number of a graph and the maximum k-colorable subgraph problem. We present various properties of #k(G), such as that the series (#k(G))k is increasing and bounded above by the order of the graph G. We study #k(G) when G is the graph strong, disjunction and Cartesian product of two graphs. We provide closed form expressions for the generalized #-number on several classes of graphs including the Kneser graphs, cycle graphs, strongly regular graphs and orthogonality graphs. Our paper provides bounds on the product and sum of the k-multichromatic number of a graph and its complement graph, as well as lower bounds for the k-multichromatic number on several graph classes including the Hamming and Johnson graphs. Keywords k{multicoloring, k-colorable subgraph problem, generalized #-number, Johnson graphs, Hamming graphs, strongly regular graphs. AMS subject classifications. 90C22, 05C15, 90C35 1 Introduction The k{multicoloring of a graph is to assign k distinct colors to each vertex in the graph such that two adjacent vertices are assigned disjoint sets of colors. The k-multicoloring is also known as k-fold coloring, n-tuple coloring or simply multicoloring. We denote by χk(G) the minimum number of colors needed for a valid k{multicoloring of a graph G, and refer to it as the k-th chromatic number of G or the multichromatic number of G.
    [Show full text]
  • The Rado Graph and the Urysohn Space
    The Rado graph and the Urysohn space Peter J. Cameron Abstract Rado’s graph was published in 1964; Urysohn’s Polish space in 1927. There are many similarities between these two objects. These have led to new discoveries (with Anatoly Vershik) about the isometry group of Urysohn space. In this article, I describe the two objects and point out some analo- gies, especially regarding regular group actions. 1 The Rado graph In 1964, Rado [8] defined a (simple, undirected) graph R as follows. The ver- tices are the natural numbers (including zero), For x < y, the vertices x and y are adjacent if and only if, when y is written in base 2, the xth digit is 1. Rado showed that (1) R is universal; that is, any finite or countable graph is embeddable in R (as an induced subgraph). The key to the many remarkable properties of Rado’s graph is the following property: ( ) For any finite disjoint sets U, V of R, there exists a vertex z joined to all u U ∗ and to no v V. 2 2 ∑ u y This is easily seen by taking z = u U 2 + 2 , where y > max(U V). Condition ( ) is equivalent to the2 assertion [ ∗ (2) If A and B are graphs with B = A +1, then every embedding A R can be extended to an embeddingj Bj jRj. ! ! 1 From this, the universality follows by an easy induction. Also, using ( ) in con- junction with a back-and-forth argument, we see that any two countable∗ graphs satisfying ( ) are isomorphic.
    [Show full text]
  • Which Subsets of an Infinite Random Graph Look Random? 3
    WHICH SUBSETS OF AN INFINITE RANDOM GRAPH LOOK RANDOM? WILL BRIAN Abstract. Given a countable graph, we say a set A of its vertices is universal if it contains every countable graph as an induced subgraph, and A is weakly universal if it contains every finite graph as an induced subgraph. We show that, for almost every graph on N, (1) every set of positive upper density is universal, and (2) every set with divergent reciprocal sums is weakly universal. We show that the second result is sharp (i.e., a random graph on N will almost surely contain non-universal sets with divergent reciprocal sums) and, more generally, that neither of these two results holds for a large class of partition regular families. 1. Introduction All the graphs considered here are simple and undirected, and N denotes the natural numbers (without 0). This paper is about random graphs on N. One may imagine form- ing a graph on N by a random process whereby each possible edge is included or excluded, independently of the others, with probability 1/2. This process was considered by Erd˝os and R´enyi in [1], where they proved that it almost surely results in the same graph every time (up to isomorphism). This graph is in various places called the Erd˝os-R´enyi graph, the countable random graph, or the Rado graph (it was studied arXiv:1609.00744v2 [math.CO] 22 Feb 2017 by Richard Rado early on in [5]). This graph has been thoroughly studied, as has the analogous random process for finite graphs.
    [Show full text]