Bipolar Junction Transistor (Bjt)

Total Page:16

File Type:pdf, Size:1020Kb

Bipolar Junction Transistor (Bjt) BIPOLAR JUNCTION TRANSISTOR (BJT) UNIT I / Microwave Engineering / Bipolar Junction Transistor 1 A bipolar junction transistor (bipolar transistor or BJT) is a type of transistor that uses both electrons and holes as charge carriers. Unipolar transistors, such as field-effect transistors, only use one kind of charge carrier. BJTs use two junctions between two semiconductor types, ◦ n-type ◦ p-type BJTs are manufactured in two types: ◦ NPN PNP NPN ◦ PNP Schematic Symbols are available as individual components, or fabricated in integrated circuits, often in large numbers. BJTs can be used as amplifiers or switches .This ability gives them many applications in electronic equipment such as computers, televisions, mobile phones, audio amplifiers, industrial control, and radio transmitters. UNIT I / Microwave Engineering / Bipolar Junction Transistor 2 STRUCTURE A BJT consists of three differently • The emitter is heavily doped doped semiconductor regions: the emitter region, the base region and the • The collector is lightly doped, allowing collector region. a large reverse bias voltage to be These regions are, respectively, p applied before the collector–base type, n type and p type in a PNP junction breaks down. transistor, and n type, p type and n type in an NPN transistor. • The base is physically located between Each semiconductor region is the emitter and the collector and is connected to a terminal, appropriately made from lightly doped, high- labeled: emitter (E), base (B) and resistivity material. collector (C). • The bipolar junction transistor, unlike other transistors, is usually not a symmetrical device. • This means that interchanging the collector and the emitter makes the transistor leave the forward active mode and start to operate in reverse mode. • Because the transistor's internal structure is usually optimized for forward-mode operation, interchanging the collector and the emitter makes the values of α and β in reverse operation much smaller than those in forward operation; often the α of the reverse mode is lower than 0.5. • Early transistors were made from germanium but most modern BJTs are made from siliconUNIT. A I significant / Microwave Engineering minority / areBipolar also now made from gallium arsenide, especially for very high speed applications Junction Transistor 3 BIPOLAR TRANSISTOR CONSTRUCTION UNIT I / Microwave Engineering / Bipolar Junction Transistor 4 FUNCTION Charge flow in a BJT is due to diffusion of charge carriers across a junction between two regions of different charge concentrations. The regions of a BJT are called emitter, base, and collector. A discrete transistor has three leads for connection to these regions. The emitter region is heavily doped compared to the other two layers. The collector is doped much lighter than the base (collector doping is typically ten times lighter than base doping ). By design, most of the BJT collector current is due to the flow of charge carriers (electrons or holes) injected from a heavily doped emitter into the base where they are minority carriers that diffuse toward the collector, and so BJTs are classified as minority-carrier devices. UNIT I / Microwave Engineering / Bipolar Junction Transistor 5 NPN PNP NPN consists of a layer of P-doped semiconductor PNP consists of a layer of N-doped semiconductor (the "base") between two N-doped layers. between two layers of P-doped material. A small current entering the base is amplified to A small current leaving the base is amplified in the produce a large collector and emitter current. collector output. That is, a PNP transistor is "on" That is, when there is a positive potential difference when its base is pulled low relative to the emitter. measured from the base of an NPN transistor to its In a PNP transistor, the emitter–base region is emitter as well as a positive potential difference forward biased, so holes are injected into the base measured from the collector to the emitter, the as minority carriers. transistor becomes active. The base is very thin, and most of the holes cross In this "on" state, current flows from the collector the reverse-biased base–collector junction to the to the emitter of the transistor. collector. Most of the current is carried by electrons moving The arrows in the NPN and PNP transistor symbols from emitter to collector as minority carriers in the indicate the PN junction between the base and P-type base region. emitter. To allow for greater current and faster operation, When the device is in forward active or forward most bipolar transistors used today are NPN saturated mode, the arrow, placed on the emitter because electron mobility is higher than hole leg, points in the direction of the conventional UNIT I / Microwave Engineering / Bipolar mobility. current. Junction Transistor 6 WORKING PRINCIPLE OF BJT The BE junction is a forward bias and the CB is a reverse bias junction. The width of the depletion region of the CB junction is higher than the BE junction. The forward bias at the BE junction decreases the barrier potential and produces electrons to flow from the emitter to the base and the base is a thin and lightly doped it has very few holes and less amount of electrons from the emitter about 2% it recombine in the base region with holes and from the base terminal it will flow out. This initiates the base current flow due to combination of electrons and holes. The left over large number of electrons will pass the reverse bias collector junction to initiate the collector current. By using KCL we can observe the mathematical equation IE = IB + IC The base current is very less as compared to emitter and collector current IE ~ IC UNIT I / Microwave Engineering / Bipolar Junction Transistor 7 WORKING PRINCIPLE OF BJT Here the operation of PNP transistor is same as the NPN transistor the only difference is only holes instead of electrons. The diagram shows the PNP transistor of the active mode region. UNIT I / Microwave Engineering / Bipolar Junction Transistor 8 REGIONS OF OPERATIONS Junction Applied Junction bias Mode type voltages B-E B-C Forward- E < B < C Forward Reverse active E < B > C Forward Forward Saturation NPN E > B < C Reverse Reverse Cut-off Reverse- E > B > C Reverse Forward active Reverse- E < B < C Reverse Forward active E < B > C Reverse Reverse Cut-off PNP E > B < C Forward Forward Saturation Forward-active: Base higher than emitter, collector higher than base (in this mode the collector current is proportional toForward base current- by ). E > B > C Forward Reverse Saturation: active Base higher than emitter, but collector is not higher than base. Cut-off: Base lower than emitter, but collector is higher than base. It means the transistor is not letting conventional current go through from collector to emitter. UNIT I / Microwave Engineering / Bipolar Junction Transistor 9 Reverse-active: Base lower than emitter, collector lower than base: reverse conventional current goes through transistor. BIPOLAR JUNCTION TRANSISTORS CHARACTERISTICS The three parts of a BJT are collector, emitter and base. Before knowing about the bipolar junction transistor characteristics, we have to know about the modes of operation for this type of transistors. The modes are Common Base (CB) mode Common Emitter (CE) mode Common Collector (CC) mode UNIT I / Microwave Engineering / Bipolar Junction Transistor 10 INPUTCOMMON CHARACTERISTICS BASE CHARACTERISTICSOUTPUT CHARACTERISTICS UNIT I / Microwave Engineering / Bipolar Junction Transistor 11 INPUTCOMMON CHARACTERISTICS EMITTER CHARACTERISTICSOUTPUT CHARACTERISTICS UNIT I / Microwave Engineering / Bipolar Junction Transistor 12 COMMON COLLECTOR CHARACTERISTICS UNIT I / Microwave Engineering / Bipolar Junction Transistor 13 EXAMPLES OF BIPOLAR JUNCTION TRANSISTORS •Grown-junction transistor – first bipolar junction transistor made. •Alloy-junction transistor – emitter and collector alloy beads fused to base. •Micro-alloy transistor (MAT) – high speed type of alloy junction transistor. •Micro-alloy diffused transistor (MADT) – high speed type of alloy junction transistor, speedier than MAT, a diffused-base transistor. •Post-alloy diffused transistor (PADT) – high speed type of alloy junction transistor, speedier than MAT, a diffused-base transistor. •Tetrode transistor – high speed variant of grown-junction transistor or alloy junction transistor with two connections to base. •Surface-barrier transistor – high-speed metal barrier junction transistor. •Drift-field transistor – high speed bipolar junction transistor. •Spacistor •Diffusion transistor – modern type bipolar junction transistor. •Diffused-base transistor – first implementation of diffusion transistor. •Mesa transistor •Planar transistor – the bipolar junction transistor that made mass-produced monolithic integrated circuits possible. •Epitaxial transistor– a bipolar junction transistor made using vapor phase deposition. See epitaxy. Allows very precise control of doping levels UNIT I / Microwave Engineering / Bipolar and gradients. Junction Transistor 14 ADVANTAGES OF BJT DISADVANTAGES OF BJT The bipolar junction transistor The bipolar junction transistor (BJT) has a large gain (BJT) more noise produced. bandwidth. The BJT are more effect by The BJT shows better performance at high frequency. radiation. The BJT has a better voltage BJT has a low thermal stability. gain. The switching frequency of BJT The BJT can be operated in low is low. or high power applications. It has a very complex base The BJT has high current control. So it may lead to density. confusion and requires a skillful There is low forward voltage handling. drop. UNIT I / Microwave Engineering / Bipolar Junction Transistor 15 APPLICATIONS OF BJT The bipolar junction transistor (BJT) is used in logic circuits. The BJT is used as an oscillator. It is used as an amplifier. It is used as a multivibrator. For wave shaping it is used in clipping circuits. Used as a detector or demodulator. It is also used as modulator. Used in timer and time delay circuits. It is used in electronics switch. It is used in switching circuits. UNIT I / Microwave Engineering / Bipolar Junction Transistor 16 .
Recommended publications
  • Navy Electricity and Electronics Training Series
    NONRESIDENT TRAINING COURSE SEPTEMBER 1998 Navy Electricity and Electronics Training Series Module 7—Introduction to Solid-State Devices and Power Supplies NAVEDTRA 14179 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. Although the words “he,” “him,” and “his” are used sparingly in this course to enhance communication, they are not intended to be gender driven or to affront or discriminate against anyone. DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. PREFACE By enrolling in this self-study course, you have demonstrated a desire to improve yourself and the Navy. Remember, however, this self-study course is only one part of the total Navy training program. Practical experience, schools, selected reading, and your desire to succeed are also necessary to successfully round out a fully meaningful training program. COURSE OVERVIEW: To introduce the student to the subject of Solid-State Devices and Power Supplies who needs such a background in accomplishing daily work and/or in preparing for further study. THE COURSE: This self-study course is organized into subject matter areas, each containing learning objectives to help you determine what you should learn along with text and illustrations to help you understand the information. The subject matter reflects day-to-day requirements and experiences of personnel in the rating or skill area. It also reflects guidance provided by Enlisted Community Managers (ECMs) and other senior personnel, technical references, instructions, etc., and either the occupational or naval standards, which are listed in the Manual of Navy Enlisted Manpower Personnel Classifications and Occupational Standards, NAVPERS 18068. THE QUESTIONS: The questions that appear in this course are designed to help you understand the material in the text.
    [Show full text]
  • Equivalent Circuit of Unsymmetrical Inductance Diode Using Linvill Lumped Model
    Scholars' Mine Masters Theses Student Theses and Dissertations 1965 Equivalent circuit of unsymmetrical inductance diode using Linvill lumped model Donald Lawrence Willyard Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Electrical and Computer Engineering Commons Department: Recommended Citation Willyard, Donald Lawrence, "Equivalent circuit of unsymmetrical inductance diode using Linvill lumped model" (1965). Masters Theses. 5235. https://scholarsmine.mst.edu/masters_theses/5235 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. EQUIV ALBNT CJ.RCUIT OF UNSYMMETRICAL INDUCTANCE DIODE USDJG LINVJLL LUMPED MODEL BY AP'/ r· ol~'- t'\.)J} - / OONALD L~ vJILLYARD J V~ ~~ :;> A THESIS submitted to the faculty of the UNIVERSITY OF MISSOURI AT ROLLA in partial fulfillment of the requirements for the ~gree of 1-W3TER OF SCIENCE IN ELECTRICAL ENGINEERING Rolla, Missouri 1965 Approved By ~/}/)/~~) ~~ ii ABSTRACT Integrated circuit techniques and applications are rapidJ.y changing the electronics industry. A problem common to both state­ of-the-art approaches to integrated circuit fabrication is that of miniaturizing and intGgrating inductors. It is found that, for a certain range of injection current levels, certain unsymmetrically doped junction diodes have an inductive small-signal impedance. This thesis discusses the theor,y of inductance diodes and applies finite difference equations and the Linvill lumped model to the differential equations that describe their carrier nov.r processes.
    [Show full text]
  • Multivibrator Circuits
    Multivibrator Circuits Bistable multivibrators Multivibrators Circuits characterized by the existence of some well defined states, amongst which take place fast transitions, called switching processes. A switching process is a fast change in value of a current or a voltage, the fast process implying the existence of positive reaction loops, or negative resistances. The switching can be triggered from outside, by means of command signals, or from inside, by slow charge accumulation and the reaching of a critical state by certain electrical quantities in the circuit. Circuits have two, well defined states, which can be either stable or unstable A stable state is a state, in which the circuit, in absence of a driving signal, can remain for an unlimited period of time The circuit can remain in an unstable state only for a limited period of time, after which, in the absence of any exterior command signals, it switches into the other state. The multivibrator circuits can be grouped, according to their number of stable (steady) states, into: - flip-flops (bistable circuits) with both states being stable - monostable circuits , having a stable and an unstable state - astable circuits , with both states being unstable Flip-flop circuits The main feature of the flip-flop circuits is the existence of two stable states, in which the circuit may remain for a long time. The switching from one state to the other is triggered by command signals Flip flop: an example for a sequential circuit (a circuit with outputs that present logical values depending on a certain sequence of signals, that have previously existed in the circuit).
    [Show full text]
  • Npn Transistor Pnp Transistor
    ELL 100 - Introduction to Electrical Engineering LECTURE 23: BIPOLAR JUNCTION TRANSISTOR (BJT) 1 CONTENTS • Introduction • Construction & working principle of BJT • Common-base and common-emitter circuits 2 BJT INTRODUCTION • Bipolar: Both electrons and holes (positively charged quasi- particles, absence of electron) contribute to current flow • Junction: Consists of an n- (or p-) type silicon sandwiched between two p- (or n-) type silicon regions • Transistor: 3-terminal device (Base, Emitter, Collector) Two types: npn & pnp 3 Bipolar Junction Transistor (BJT) 4 Various Types of General-Purpose or Switching Transistors: (a) Low Power (b) Medium Power (c) Medium to high power 5 First Working Transistor, Invented in 1947. Earliest Raytheon Blue transistors, Replica of 1st device made by first appearing in 1955 Shockley, Bardeen & Brattain at Bell Labs 6 Applications: Transistor As Switch 7 Applications: Transistor As Relay (Switch) Single channel 5V relay breakout board 8 Applications: Transistor As Amplifier TDA7297 Power Amplifier & Audio amplifier Module 9 Applications: Transistors in Radio 10 Applications: Transistor in Oscillator Colpitts Oscillator 11 Applications: Transistor in Oscillator Astable Multivibrator 12 Transistors in Timer Circuits 13 Transistor As NOT Gate 14 Transistors in NAND Gate 15 Bipolar Junction Transistor (BJT) The three terminals of the BJT are called the Base (B), the Collector (C) and the Emitter (E). n p p n n p npn transistor pnp transistor 16 Bipolar Junction Transistor (BJT) npn pnp 17 p-n-p Transistor IE, IB, IC – Emitter, Base and Collector currents VEB, VCB, VCE – Emitter-Base, Collector-Base and Collector-Emitter voltages 18 n-p-n Transistor IE, IB, IC – Emitter, Base and Collector currents VEB, VCB, VCE – Emitter-Base, Collector-Base and Collector-Emitter voltages 19 BJT Construction 20 Bipolar Junction Transistor (BJT) Basic Principle The voltage between two terminals (B and E) controls the current through the third terminal (C).
    [Show full text]
  • Automatic Gain Control of Transistor Amplifiers
    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 1955 Automatic gain control of transistor amplifiers Bryan, William L. http://hdl.handle.net/10945/13960 M«nl«ey, California AUTOMATIC GAIN CONTROL OF TRANSISTOR AMPLIFIERS William L* Bxyan 1^ AUTOMATIC GAIN CONTROL OF TRANSISTOR AMPLIFIERS by William Littell Bryan Lieutenant, United States Navy Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN ENGINEERING ELECTRONICS United States Naval Postgraduate School Monterey, California 19 5 5 Tlicsls " •'-'»i;;.;„;'"''"^"'«j This work is accepted as fulfilling the thesis requirements for the degree of * MASTER OF SCIENCE IN ENGINEERING ELECTRONICS from th« United States Naval Postgraduate School PREFACE The rapid progress made in the field of semiconduc- tors since the invention of the transistor seven years ago has widely broadened our theoretical knowledge in the field and greatly increased the potentialities of these devices. Particularly our increasing ability to manxifac- ture reproducible transistors has brought us to the point of designing circuits for specific application to tran- sistors, not just to illustrate the application but rathei* •ngineered to rigid specifications. This paper treats Just such a design, that of obtaining automatic gain control of a transistor amplifier. There has been as yet little published about this difficult problem, and much of the work here presented is believed to be original* The majority of the experimental work connected with this thesis was performed during the author's Industrial Experience Tour while at Lenkurt Electric Company, San Carlos, California, and he is indebted to them for their cooperation and assistance.
    [Show full text]
  • Low Noise Dual Gate Enhancement Mode MOSFET with Quantum Valve in the Channel
    Proceedings of the World Congress on Electrical Engineering and Computer Systems and Science (EECSS 2015) Barcelona, Spain, July 13-14, 2015 Paper No. 153 Low Noise Dual Gate Enhancement Mode MOSFET with Quantum Valve in the Channel Sam Halilov, Anass Dahany, Sam Mil’shtein University Ave 1, University of Massachusetts Department of Electrical and Computer Engineering Lowell, MA 01854, USA Abstract- A proposed Si-based series multi-gate E-MOSFET is discussed in terms of its design, static and dynamic transport properties and noise figure. In its simplest realization, the design involves two gates in series comprising an extra n(p)-doped junction in the p(n)-channel. The role of the nano-scale junction is twofold: to minimize the Miller effect in the enhancement mode to improve the frequency response and to create a quantum well to quench the current noise associated with the carrier velocity fluctuations. While dual-gate depletion structure results in a reduced carrier transition time along the entire channel path, the quantization effects serve as a current noise filter. Similar quantum valve can be realized in the form of a well both in n- and p-channel enhancement mode FET, whereas the majority carriers experience a tunneling through a similar shape barrier. Doping concentration and size of the middle junction are free parameters and can be adjusted to the required figures of merit. AC device simulations confirm the expectations based on the along-the-channel potential profile: enhanced cutoff frequency and higher saturation current are the signatures of the reduced transition and RC-time, whereas the minimum noise figure and transfer functions demonstrate noise filtering capabilities of the state quantization.
    [Show full text]
  • Chapter 3: Oscillators and Waveform-Shaping Circuits
    mywbut.com CHAPTER3:OSCILLATORSANDWAVEFORM-SHAPING CIRCUITS Inthedesignofelectronicsystems,theneed frequentlyarises forsignals havingprescribed standardwaveforms(e.g.,sinusoidal, square,triangle,pulse,etc).Thesewaveformsarecommonly usedincomputers,controlsystems,communicationsystemsandtestmeasurementsystems. Therearetwocommonwaysforgeneratingsinusoids: 1. Positivefeedbackloopwithnon-lineargainlimiting 2. Appropriatelyshapingotherwaveformssuchasatrianglewaves. Circuitsthatdirectlygeneratesquare,triangleandpulsewaveformsgenerallyemploycircuit blocksknownasmultivibrators.Threebasictypesarebistable,astableandmonostable. I.SINUSOIDALOSCILLATORS: Commonly referred to as linear sine-wave oscillators although some forms of non-linearity havetobeemployedtolimittheoutputamplitude.Analysisofthecircuitsismoredifficultass-plane analysis cannot be directly applied to the non-linear part of the circuit. The basic structure of a sinusoidal oscillator consists of an amplifier and a frequency selective network connected in a positivefeedbackloop. AmplifierA xS + Σ xO + xf Freq.Selective networkβ Figure1:Basicstructureofasinusoidaloscillator. Apositive-feedbackloopisformedbyanamplifierandafrequency-selectivenetwork.Inan actualoscillatorcircuit,noinputsignalwillbepresent;hereaninputsignalxsisemployedtohelp explaintheprincipleofoperation.NotethatthefeedbacksignalXFissummedwithapositivesign: A(s) A (s) = f 1− A(s) β (s) Theloopgainis: )s(L =A(s) β (s) Andthecharacteristicequationcanbewrittenas: 1-L(s)=0 If at a specific frequency
    [Show full text]
  • 900000 102 03.Pdf
    ELECTRONIC URCUlTS 0.WO.IM SEMICONDUCTOR SECTION 3 alphhtical list of oll letter syntnls used herein is GENERAL INFORMATION ON SEMICONDUCTOR CIRCUITS presented below for easy reference. Symbol D.Hmltion 3.1 DEFINITIONS OF LETTER SYMBOLS USED. a Current mnpllficotlon factor (common The letter symbols used in the diagrams ond discus- boa. current gain - Alpha) rims on semiomductor circuits throughout this technicul a FB, a FC, a FE Short-&cult forward current V-afsr manual me those proposed as standard for use in industry by rotlo, atottc volvs the Institute of Rodio Engineers, or ore speciai syrr~hla uib, riic, iio ~,=d!-&~d~h=rt-c!.~t?!+ forwmd not included in the stmdmd. Since some of these symbols currsnc rrrrnsior rviio chmqe from time to time, md new symbols are develop2 to AG AvoUoble qoln cover new devices as the mt changes, m alphabetical Al Current gal- listing of the symbols used herein is wesmted below. It AP Power Goln is rwmmended that this listing be used to obtain the Av Voltoqa goln proper definitions of the symbols employed in this manuol, B ar b Base electrode I"!!?? thcm to assume on erroneous meming. vR common-amlttsr cunent qah - Beta 3.1.1 Con.nuola of symbls. Semiconductm synSc!s ZL' or 'Jbn ~reakdownvoltaqe are made up of c basic letter with subscripts, either lformarly PIE or TIV) alphabetical or numbericol, or bath, in accordmcc with BZ ~m~ss~gnczlbreakdown impedance the fo!!owinq rules: br snnll-algnd breakdown impedance o. A capitol (upper case) letter designates enemoi C or c CO,I.CtOl siocrrcde or curaiiiii circuit wrameters and compcnents, largesignal aevlce CB, CC, CE common boa-, coliecloi, m.2 em:??=:.
    [Show full text]
  • Experiment No: 14 ASTABLE MULTIVIBRATOR USING IC
    Experiment No: 14 ASTABLE MULTIVIBRATOR USING IC 555 AIM To design and set up astable multivibrator of 1000 Hz frequency and 60% duty cycle using IC 555 THEORY IC 555 timer is an analog IC used for generating accurate time delay or oscillations. The entire circuit is usually housed in an 8-pin package as specified in figures 1 & 2 below. A series connection of three resistors inside the IC sets the reference voltage levels to the two 2 1 comparators at V and V , the output of these comparators setting or resetting the flip- 3 CC 3 CC flop unit. The output of the flip-flop circuit is then brought out through an output buffer stage. In the stable state the 푄 output of the flip-flop is high (ie Q low). This makes the output (pin 3) low because of the buffer which basically is an inverter.The flip-flop circuit also operates a transistor inside the IC, the transistor collector usually being driven low to discharge a timing capacitor connected at pin 7. The description of each pin s described below, Pin 1: (Ground): Supply ground is connected to this pin. Pin 2: (Trigger): This pin is used to give the trigger input in monostable multivibrator. When trigger of amplitude greater than (1/3)Vcc is applied to this terminal circuit switches to quasi-stable state. Pin 3: (Output) Pin 4 (Reset): This pin is used to reset the output irrespective of input. A logic low at this pin will reset output. For normal operation pin 4 is connected to Vcc.
    [Show full text]
  • An Electronic Switch ?Or Transient Studies
    AN ELECTRONIC SWITCH ?OR TRANSIENT STUDIES A THESIS Presented to the Faculty of the Division of Graduate Studies Georgia Institute of Technology In Partial Fulfillment of the Requirements for the Degree Master of Science in Slectrical Engineering by Marshall Joseph McCann September 1949 107545 ii AN ELECTRONIC SWITCH FOR TRANSIENT STUDIES Approved: zf r ~~v Bate Approved by Chairman A up. d±, f^4f ACKNOWLEDGMENTS I wish to express my sincerest thanks to Prof. M. A. Honnell for his patient guidance and assistance, which were an immense aid in the prosecution of this work. I am also indebted to the Photographic and Repro­ duction Laboratory at the State Engineering Experiment Station of the Georgia Institute of Technology for their splendid cooperation with the photographic work herein. iv TABLE 0? CONTENTS PAGE Acknowledgments iii List of figures vi I- Introduction 1 II- A Survey of the Literature 3 Mechanical Systems.. • 3 Electronic Systems 4 III- Design Considerations for an Electronic Switch 8 General , , 8 Possible Approaches 8 IV- The Switch 12 V- The Square Wave Generator 16 Design Requirement s 16 Symmetrical Multivibrator 16 Improvement of Waveform 22 VI- The Synchronizing Section 37 General 37 Phase Shifting 27 Amplification and V/ave shaping 29 Synchronization of the Multivibrator 39 Summary of the Synchronizing Action 31 VII- Operation 34 VIII- Siamples of Operation 37 Lumped Constant Circuits 37 V P-4GE VIII- Examples of Operation (continued) Transmission Line Transients 41 IX- Summary • 46 appendix I, Analysis of Plate-Inductance Compensation of the Multivibrator 47 appendix II, Scaling of Circuits for A-C Transients 50 appendix III, Parts List 55 Bibliography ...
    [Show full text]
  • The Transistor
    Chapter 1 The Transistor The searchfor solid-stateamplification led to the inventionof the transistor. It was immediatelyrecognized that majorefforts would be neededto understand transistorphenomena and to bring a developedsemiconductor technology to the marketplace.There followed a periodof intenseresearch and development, duringwhich manyproblems of devicedesign and fabrication, impurity control, reliability,cost, and manufacturabilitywere solved.An electronicsrevolution resulted,ushering in the eraof transistorradios and economicdigital computers, alongwith telecommunicationssystems that hadgreatly improved performance and that were lower in cost. The revolutioncaused by the transistoralso laid the foundationfor the next stage of electronicstechnology-that of silicon integratedcircuits, which promised to makeavailable to a massmarket infinitely more complexmemory and logicfunctions that could be organizedwith the aid of softwareinto powerfulcommunications systems. I. INVENTION OF THE TRANSISTOR 1.1 Research Leading to the Invention As World War II was drawing to an end, the research management of Bell Laboratories, led by then Vice President M. J. Kelly (later president of Bell Laboratories), was formulating plans for organizing its postwar basic research activities. Solid-state physics, physical electronics, and mi­ crowave high-frequency physics were especially to be emphasized. Within the solid-state domain, the decision was made to commit major research talent to semiconductors. The purpose of this research activity, according
    [Show full text]
  • How to Configure a 555 Timer IC 555 Timer Tutorial
    How To Configure a 555 Timer IC 555 Timer Tutorial By Philip Kane The 555 timer was introduced over 40 years ago. Due to its relative simplicity, ease of use and low cost it has been used in literally thousands of applications and is still widely available. Here we describe how to configure a standard 555 IC to perform two of its most common functions - as a timer in monostable mode and as a square wave oscillator in astable mode. 555 Timer Tutorial Bundle Includes: Qty. Description Manufacturer P/N 1 Standard Timer Single 8-Pin Plastic Dip Tube NE555P 1 400-Point Solderless Breadboard 3.3"L x 2.1"W WBU-301-R 10 Resistor Carbon Film 10kΩ CF1/4W103JRC 1 9V Alkaline Battery ALK 9V 522 1 9V Battery Snap with 6" 26AWG Leads BC6-R 2 3-Pin SPDT Slide Switch SS-12E17 2 Radial Capacitor 0.01µF 2.54mm Bulk SS-12E17 1 Radial Capacitor 4.7µF 2.5mm Bulk TAP475K025SCS-VP 10 Resistor Carbon Film 1.0MΩ 1/4 Watt 5% CF1/4W105JRC 10 Resistor Carbon Film 220Ω 1/4 Watt 5% CF1/4W221JRC 10 LED Uni-Color Red 660nm 2-Pin T-1¾ Box UT1871-81-M1-R 100 Resistor Carbon Film 3kΩ 1/4 Watt 5% CF1/4W302JRC 10 Resistor Carbon Film 330kΩ 1/4 Watt 5% CF1/4W334JRC 1 Radial Capacitor 1µF 25 Volt 2.5mm Bulk TAP105K025SCS-VP 555 Signals and Pinout (8 pin DIP) Figure 1 shows the input and output signals of the 555 timer as they are arranged around a standard 8 pin dual inline package (DIP).
    [Show full text]