Search for New Bright Nearby M Dwarfs with Virtual Observatory Tools

Total Page:16

File Type:pdf, Size:1020Kb

Search for New Bright Nearby M Dwarfs with Virtual Observatory Tools M´asterUniversitario en Astrof´ısica Universidad Complutense de Madrid Trabajo de Fin de M´aster Search for new bright nearby M dwarfs with Virtual Observatory tools Alumno: Rub´en Fedriani Lopez´ I Directores: Enrique Solano II (CAB), Jos´eAntonio Caballero III (CAB) Tutores: David Montes IV (UCM), Rosario Lorente V (ESAC) Septiembre 2015 [email protected] [email protected] [email protected] [email protected] [email protected] Resumen: Contexto: Existen numerosas estrellas enanas M en el vecindario solar sin identificar. Estos objetos son muy impor- tantes para los siguientes surveys de velocidad radial en la b´usqueda de exoplanetas de baja masa en el infrarrojo cercano. La identificaci´onde estos exoplanetas es m´assencilla en enanas M, en comparaci´oncon otras estrellas, tales como G o K, debido a su favorable contraste en el cociente de radios planeta/estrella. Objetivos: En este Trabajo Fin de M´aster,buscamos estas nuevas estrellas enanas M. Preparamos una lista a partir de una muestra suficientemente testeada de candidatos a estrellas M. Adem´as,estimamos temperaturas efectivas, gravedades superficiales, distancias y tipos espectrales. M´etodos: Cruzando los cat´alogosde CMC15 y 2MASS elaboramos una tabla de objetos. Aplicamos numerosos filtros de movimiento propio, colores y magnitudes con herramientas de Observatorio Virtual con el objetivo de catalogar nuevas estrellas enanas M. Inspeccionamos visualmente cada estrella usando el programa Aladin sky atlas y estimamos par´ametrosastrof´ısicoscon VOSA. Usamos los lenguajes de programaci´onPython y R para estimar distancias y tipos espectrales usando datos fotom´etricosde trabajos previos. Por otro lado, tuvimos la oportunidad de ir al Centro Astron´omicoHispano Alem´an,gracias al M´asteren Astrof´ısica con la asignatura de T´ecnicasExperimentales en Astrof´ısica.All´ı,observamos espectroscopicamente con CAFOS en el telescopio de 2.2m seis de nuestros objetos. Resultados: Hemos elaborado un cat´alogode 1929 estrellas, de las cuales 849 son completamente nuevas y est´an presentes por primera vez en este trabajo, y hemos estimado sus temperaturas efectivas, gravedades superficiales, distancias y tipos espectrales. Casi 100 de nuestras estrellas pueden estar a menos de 25 pc, y otras cinco tienen tipos espectrales M6.0 V o m´astard´ıo. Adem´as,derivamos tipos espectrales de las seis estrellas observadas con CAFOS, que est´anentre M4.5−5.0 V, identificando bandas moleculares t´ıpicasy caracter´ısticasespectrales de enanas M. Los resultados obtenidos en la identificaci´onvisual se corresponden con los resultados estimados en nuestro estudio fotom´etrico,validando nuestro trabajo. Conclusiones: Este nuevo cat´alogode 849 candidatas a estrellas enanas M ayudar´aa estudios relacionados con la b´usquedade exoplanetas, estudios de estrellas fr´ıasen el vecindario solar y para surveys espectrosc´opicosen la identificaci´onde estrellas cercanas. Palabras clave: Herramientas de Observatorio Virtual | estrellas: actividad | estrellas: tipo tard´ıo| estrellas: baja masa | estrellas: enanas | estrellas: par´ametros fundamentales | Galaxia: vecindad | t´ecnicas:espectrocop´ıa Abstract: Context: There are several unidentified M-dwarf stars in the Solar neighbourhood. These objects are very important for next radial-velocity surveys of low-mass exoplanets in the near infrared. Their identification is easier than other kind of stars, such us G or K, because of their favourable planet/star contrast ratio radius. Aims: In this MSc thesis, we search for such new M-dwarf stars. We prepare a list from a well tested sample of M-dwarf candidates. In addition, we estimate effective temperatures, surface gravities, distances and spectral types. Methods: By cross-matching CMC15 and 2MASS catalogues, we prepared a list of M-dwarf candidates. We applied several proper-motion, colours and magnitude filters with Virtual Observatory tools in order to catalogue new M- dwarf stars. We visually inspected each target using the Aladin sky atlas and estimated astrophysical parameters with VOSA. We developed both Python and R scripts to estimate distances and spectral types using photometric data. On the other hand, we had the chance to go to the Centro Astron´omicoHispano Alem´an,within the Astrophysics Master degree framework of the subject T´ecnicasExperimentales en Astrof´ısica. There, we observed spectroscopically with CAFOS at the 2.2 m telescope five of our previously unknown objects plus a known object. Results: We computed a catalogue of 1929 stars, of which 849 are presented for the first time in this MSc thesis, and estimated their effective temperatures, surface gravities, distances and spectral types. Almost 100 of our stars could be at least than 25 pc, and another five have spectral types M6.0 V or later. Besides, we derived M4.5−5.0 V spectral types for the six stars observed with CAFOS, after identifying typical molecular bands and spectral features of M dwarfs. These results go in the same direction of our photometric study. Conclusions: This new catalogue of 849 new M-dwarf candidates serves for studies related with exoplanets hunting, for studies of cool dwarfs in the solar neighbourhood and for spectroscopic surveys aiming at the identification of nearby mid-late type M dwarfs. Keywords: Virtual Observatory tools | stars: activity | stars: late-type | stars: low-mass | stars: dwarfs | stars: fundamental parameters | Galaxy: neighbourhood | techniques: spectroscopy Index 1 Introduction 1 1.1 A brief introduction to M dwarfs . .1 1.2 Search for M dwarfs using astrometric and photometric catalogues . .3 1.3 Why M dwarfs? . .5 1.4 Objectives . .6 2 Analysis 7 2.1 Visual inspection . .9 2.2 Diagrams . 10 2.2.1 Colour-colour diagrams . 10 2.2.2 Colour-magnitude diagram . 11 2.2.3 Colour-reduced proper motion diagram . 11 2.2.4 Coordinates . 13 2.2.5 Histograms . 13 2.3 Spectral type estimation through photometric data . 15 2.4 Distance estimation through spectral type and MJ relationship . 16 2.5 Effective temperature and surface gravity estimation using VOSA . 17 3 Results and discussion 18 3.1 Spectral types and distances . 18 3.2 Teff and log g .................................................. 19 3.3 Top 20 stars . 19 3.3.1 Reddest . 20 3.3.2 Fastest . 21 3.3.3 Nearest . 22 3.3.4 Brightest . 23 3.4 Completeness and limiting for the CARMENES input catalogue . 23 3.5 Spectroscopy . 24 4 Conclusions and future research 25 Appendix A: Tables 28 Appendix B: Application for Observing Time 69 1 Introduction 1.1 A brief introduction to M dwarfs M dwarfs are the most common stars in the Solar neighbourhood, around 66%. Besides, the nearest star to the Sun, Proxima Centauri, is a red dwarf (M5.5 V). Red dwarfs are by far the most common type of star in the Milky Way, but they are not visible to the naked eye because of their low luminosity. The Research Consortium on Nearby Stars( RECONS1) studies the nature of the Sun's nearest stellar neighbours and according with its, the most common spectral type in the solar neighbourhood is M. The RECONS 25 Parsec Database (Henry et al. 2006) together with the RECONS Movie2 (Adric Riedel and the RECONS Team) allow us to know the statistic concerning the spectral types in the Sun's 25 pc neighbourhood, which is: Table 1: Statistics of the Spectral Type of Sun's 25 pc neighbourhood. SpT O B A F G K M Number 0 1 29 141 244 550 1093 Spectral classification is based on morphology where we notice regularities in the appearance and disappearance of particular spectral features. The traditional method of defining a spectral classification system is to take observations of a set of stars, ideally with known absolute magnitude and luminosity class (Reid & Hawley 2005). Identifying spectral features, strong enough to recognise in an easy way, provide us a correct classification. Particularly, M dwarfs are main-sequence stars whose spectra display bands of TiO (L´epine& Gaidos 2011), so the TiO bands which dominate spectra of M stars are a really good feature to be studied as a primary indicator of spectral type. The first Morgan & Keenan (MK) system was limited in M dwarfs classification because initially it was defined for stars with earlier type than M2 due to most photographic observations around 1940s were dominated to the blue region where the spectral features were saturated with low temperatures (intermediate and late type M). With the advent of larger telescopes and modern spectrographs and detectors, it became necessary to extend the classification to later types than M2, i.e., cooler stars. There were problems between different systems, such us Yerkes and Mount Wilson, because to the same stars they were classified as a different type. One of the problem in classifying M dwarfs using spectra located in the blue part of the electromagnetic spectrum is that those wavelengths lie far from the peak of the energy distribution. For this reason Boeshaar (1976) and Kirkpatrick et al. (1991), among others, extended the MK system by adding spectral features to redder wavelengths, designated KHM system which looked for features in the range 6300-9000 A.˚ There were several different systems to classify the luminosity class based on TiO or VO bands but the more widely used is the KHM system. Nowadays the best classification is given in Alonso-Floriano et al. (2015) and in a near future will be adopted a standardization for M. Figure 1 shows optical spectra of late-type K and M dwarfs covering the range 3800-9500 A.˚ In addition, it shows the principal spectral features. TiO is present, but weak, at K7, and grows in strength until type M6, where more bandheads saturate. Bands due to several metal hydrides, such us MgH, FeH and CaH, also become detectable among K7 stars and grow in prominence with later spectral type.
Recommended publications
  • 100 Closest Stars Designation R.A
    100 closest stars Designation R.A. Dec. Mag. Common Name 1 Gliese+Jahreis 551 14h30m –62°40’ 11.09 Proxima Centauri Gliese+Jahreis 559 14h40m –60°50’ 0.01, 1.34 Alpha Centauri A,B 2 Gliese+Jahreis 699 17h58m 4°42’ 9.53 Barnard’s Star 3 Gliese+Jahreis 406 10h56m 7°01’ 13.44 Wolf 359 4 Gliese+Jahreis 411 11h03m 35°58’ 7.47 Lalande 21185 5 Gliese+Jahreis 244 6h45m –16°49’ -1.43, 8.44 Sirius A,B 6 Gliese+Jahreis 65 1h39m –17°57’ 12.54, 12.99 BL Ceti, UV Ceti 7 Gliese+Jahreis 729 18h50m –23°50’ 10.43 Ross 154 8 Gliese+Jahreis 905 23h45m 44°11’ 12.29 Ross 248 9 Gliese+Jahreis 144 3h33m –9°28’ 3.73 Epsilon Eridani 10 Gliese+Jahreis 887 23h06m –35°51’ 7.34 Lacaille 9352 11 Gliese+Jahreis 447 11h48m 0°48’ 11.13 Ross 128 12 Gliese+Jahreis 866 22h39m –15°18’ 13.33, 13.27, 14.03 EZ Aquarii A,B,C 13 Gliese+Jahreis 280 7h39m 5°14’ 10.7 Procyon A,B 14 Gliese+Jahreis 820 21h07m 38°45’ 5.21, 6.03 61 Cygni A,B 15 Gliese+Jahreis 725 18h43m 59°38’ 8.90, 9.69 16 Gliese+Jahreis 15 0h18m 44°01’ 8.08, 11.06 GX Andromedae, GQ Andromedae 17 Gliese+Jahreis 845 22h03m –56°47’ 4.69 Epsilon Indi A,B,C 18 Gliese+Jahreis 1111 8h30m 26°47’ 14.78 DX Cancri 19 Gliese+Jahreis 71 1h44m –15°56’ 3.49 Tau Ceti 20 Gliese+Jahreis 1061 3h36m –44°31’ 13.09 21 Gliese+Jahreis 54.1 1h13m –17°00’ 12.02 YZ Ceti 22 Gliese+Jahreis 273 7h27m 5°14’ 9.86 Luyten’s Star 23 SO 0253+1652 2h53m 16°53’ 15.14 24 SCR 1845-6357 18h45m –63°58’ 17.40J 25 Gliese+Jahreis 191 5h12m –45°01’ 8.84 Kapteyn’s Star 26 Gliese+Jahreis 825 21h17m –38°52’ 6.67 AX Microscopii 27 Gliese+Jahreis 860 22h28m 57°42’ 9.79,
    [Show full text]
  • RECONS Discoveries Within 10 Parsecs
    The Astronomical Journal, 155:265 (23pp), 2018 June https://doi.org/10.3847/1538-3881/aac262 © 2018. The American Astronomical Society. All rights reserved. The Solar Neighborhood XLIV: RECONS Discoveries within 10 parsecs Todd J. Henry1,8, Wei-Chun Jao2,8 , Jennifer G. Winters3,8 , Sergio B. Dieterich4,8, Charlie T. Finch5,8, Philip A. Ianna1,8, Adric R. Riedel6,8 , Michele L. Silverstein2,8 , John P. Subasavage7,8 , and Eliot Halley Vrijmoet2 1 RECONS Institute, Chambersburg, PA 17201, USA; [email protected], [email protected] 2 Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302, USA; [email protected], [email protected], [email protected] 3 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA; [email protected] 4 Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015, USA; [email protected] 5 Astrometry Department, U.S. Naval Observatory, Washington, DC 20392, USA; charlie.fi[email protected] 6 Space Telescope Science Institute, Baltimore, MD 21218, USA; [email protected] 7 United States Naval Observatory, Flagstaff, AZ 86001, USA; [email protected] Received 2018 April 12; revised 2018 April 27; accepted 2018 May 1; published 2018 June 4 Abstract We describe the 44 systems discovered to be within 10 pc of the Sun by the RECONS team, primarily via the long- term astrometry program at the CTIO/SMARTS 0.9 m that began in 1999. The systems—including 41 with red dwarf primaries, 2 white dwarfs, and 1 brown dwarf—have trigonometric parallaxes greater than 100 mas, with errors of 0.4–2.4 mas in all but one case.
    [Show full text]
  • The Solar Neighborhood XLIV: RECONS Discoveries Within 10 Parsecs
    The Astronomical Journal, 155:265 (23pp), 2018 June https://doi.org/10.3847/1538-3881/aac262 © 2018. The American Astronomical Society. All rights reserved. The Solar Neighborhood XLIV: RECONS Discoveries within 10 parsecs Todd J. Henry1,8, Wei-Chun Jao2,8 , Jennifer G. Winters3,8 , Sergio B. Dieterich4,8, Charlie T. Finch5,8, Philip A. Ianna1,8, Adric R. Riedel6,8 , Michele L. Silverstein2,8 , John P. Subasavage7,8 , and Eliot Halley Vrijmoet2 1 RECONS Institute, Chambersburg, PA 17201, USA; [email protected], [email protected] 2 Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302, USA; [email protected], [email protected], [email protected] 3 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA; [email protected] 4 Department of Terrestrial Magnetism, Carnegie Institution for Science, Washington, DC 20015, USA; [email protected] 5 Astrometry Department, U.S. Naval Observatory, Washington, DC 20392, USA; charlie.fi[email protected] 6 Space Telescope Science Institute, Baltimore, MD 21218, USA; [email protected] 7 United States Naval Observatory, Flagstaff, AZ 86001, USA; [email protected] Received 2018 April 12; revised 2018 April 27; accepted 2018 May 1; published 2018 June 4 Abstract We describe the 44 systems discovered to be within 10 pc of the Sun by the RECONS team, primarily via the long- term astrometry program at the CTIO/SMARTS 0.9 m that began in 1999. The systems—including 41 with red dwarf primaries, 2 white dwarfs, and 1 brown dwarf—have trigonometric parallaxes greater than 100 mas, with errors of 0.4–2.4 mas in all but one case.
    [Show full text]
  • 20 NEW MEMBERS of the RECONS 10 PARSEC SAMPLE Todd J
    THE SOLAR NEIGHBORHOOD. XVII. PARALLAX RESULTS FROM THE CTIOPI 0.9 m PROGRAM: 20 NEW MEMBERS OF THE RECONS 10 PARSEC SAMPLE Todd J. Henry,1 Wei-Chun Jao,1 John P. Subasavage,1 and Thomas D. Beaulieu1 Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302-4106; [email protected], [email protected], [email protected], [email protected] Philip A. Ianna1 Department of Physics and Astronomy, University of Virginia, Charlottesville, VA 22903; [email protected] and Edgardo Costa1 and Rene´ A. Me´ndez1 Departamento de Astronom«õa, Universidad de Chile, Santiago, Chile; [email protected], [email protected] ABSTRACT Astrometric measurements for 25 red dwarf systems are presented, including the first definitive trigonometric par- allaxes for 20 systems within 10 pc of the Sun, the horizon of the RECONS sample. The three nearest systems that had no previous trigonometric parallaxes (other than perhaps rough preliminary efforts) are SO 0253+1652 (3:84 Æ 0:04 pc, the 23rd nearest system), SCR 1845À6357 AB (3:85 Æ 0:02 pc, 24th nearest), and LHS 1723 (5:32 Æ 0:04 pc, 56th nearest). In total, seven of the systems reported here rank among the nearest 100 stellar systems. Sup- porting photometric and spectroscopic observations have been made to provide full characterization of the systems, including complete VRIJHKs photometry and spectral types. A study of the variability of 27 targets reveals six ob- vious variable stars, including GJ 1207, for which we observed a flare event in the V band that caused it to brighten by 1.7 mag.
    [Show full text]
  • Detectability of Atmospheric Features of Earth-Like Planets in the Habitable
    Astronomy & Astrophysics manuscript no. Wunderlich_etal_2019_arxiv c ESO 2019 May 8, 2019 Detectability of atmospheric features of Earth-like planets in the habitable zone around M dwarfs Fabian Wunderlich1, Mareike Godolt1, John Lee Grenfell2, Steffen Städt3, Alexis M. S. Smith2, Stefanie Gebauer2, Franz Schreier3, Pascal Hedelt3, and Heike Rauer1; 2; 4 1 Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin, Germany e-mail: [email protected] 2 Institut für Planetenforschung, Deutsches Zentrum für Luft- und Raumfahrt, Rutherfordstraße 2, 12489 Berlin, Germany 3 Institut für Methodik der Fernerkundung, Deutsches Zentrum für Luft- und Raumfahrt, 82234 Oberpfaffenhofen, Germany 4 Institut für Geologische Wissenschaften, Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin, Germany ABSTRACT Context. The characterisation of the atmosphere of exoplanets is one of the main goals of exoplanet science in the coming decades. Aims. We investigate the detectability of atmospheric spectral features of Earth-like planets in the habitable zone (HZ) around M dwarfs with the future James Webb Space Telescope (JWST). Methods. We used a coupled 1D climate-chemistry-model to simulate the influence of a range of observed and modelled M-dwarf spectra on Earth-like planets. The simulated atmospheres served as input for the calculation of the transmission spectra of the hy- pothetical planets, using a line-by-line spectral radiative transfer model. To investigate the spectroscopic detectability of absorption bands with JWST we further developed a signal-to-noise ratio (S/N) model and applied it to our transmission spectra. Results. High abundances of methane (CH4) and water (H2O) in the atmosphere of Earth-like planets around mid to late M dwarfs increase the detectability of the corresponding spectral features compared to early M-dwarf planets.
    [Show full text]
  • Further Defining Spectral Type" Y" and Exploring the Low-Mass End of The
    Submitted to The Astrophysical Journal Further Defining Spectral Type “Y” and Exploring the Low-mass End of the Field Brown Dwarf Mass Function J. Davy Kirkpatricka, Christopher R. Gelinoa, Michael C. Cushingb, Gregory N. Macec Roger L. Griffitha, Michael F. Skrutskied, Kenneth A. Marsha, Edward L. Wrightc, Peter R. Eisenhardte, Ian S. McLeanc, Amanda K. Mainzere, Adam J. Burgasserf , C. G. Tinneyg, Stephen Parkerg, Graeme Salterg ABSTRACT We present the discovery of another seven Y dwarfs from the Wide-field In- frared Survey Explorer (WISE). Using these objects, as well as the first six WISE Y dwarf discoveries from Cushing et al., we further explore the transition between spectral types T and Y. We find that the T/Y boundary roughly coincides with the spot where the J − H colors of brown dwarfs, as predicted by models, turn back to the red. Moreover, we use preliminary trigonometric parallax measure- ments to show that the T/Y boundary may also correspond to the point at which the absolute H (1.6 µm) and W2 (4.6 µm) magnitudes plummet. We use these discoveries and their preliminary distances to place them in the larger context of the Solar Neighborhood. We present a table that updates the entire stellar and substellar constinuency within 8 parsecs of the Sun, and we show that the cur- rent census has hydrogen-burning stars outnumbering brown dwarfs by roughly a factor of six. This factor will decrease with time as more brown dwarfs are iden- tified within this volume, but unless there is a vast reservoir of cold brown dwarfs arXiv:1205.2122v1 [astro-ph.SR] 9 May 2012 aInfrared Processing and Analysis Center, MS 100-22, California Institute of Technology, Pasadena, CA 91125; [email protected] bDepartment of Physics and Astronomy, MS 111, University of Toledo, 2801 W.
    [Show full text]
  • The Solar Neighborhood. Xxviii. the Multiplicity Fraction of Nearby Stars from 5 to 70 Au and the Brown Dwarf Desert Around M Dwarfs
    The Astronomical Journal, 144:64 (19pp), 2012 August doi:10.1088/0004-6256/144/2/64 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. THE SOLAR NEIGHBORHOOD. XXVIII. THE MULTIPLICITY FRACTION OF NEARBY STARS FROM 5 TO 70 AU AND THE BROWN DWARF DESERT AROUND M DWARFS Sergio B. Dieterich1, Todd J. Henry1, David A. Golimowski2,JohnE.Krist3, and Angelle M. Tanner4 1 Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302-4106, USA; [email protected] 2 Space Telescope Science Institute, Baltimore, MD 21218, USA 3 Jet Propulsion Laboratory, Pasadena, CA 91109, USA 4 Department of Physics and Astronomy, Mississippi State University, Starkville, MS 39762, USA Received 2012 February 13; accepted 2012 May 29; published 2012 July 16 ABSTRACT We report on our analysis of Hubble Space Telescope/NICMOS snapshot high-resolution images of 255 stars in 201 systems within ∼10 pc of the Sun. Photometry was obtained through filters F110W, F180M, F207M, and F222M using NICMOS Camera 2. These filters were selected to permit clear identification of cool brown dwarfs through methane contrast imaging. With a plate scale of 76 mas pixel−1, NICMOS can easily resolve binaries with subarcsecond separations in the 19.5×19.5 field of view. We previously reported five companions to nearby M and L dwarfs from this search. No new companions were discovered during the second phase of data analysis presented here, confirming that stellar/substellar binaries are rare. We establish magnitude and separation limits for which companions can be ruled out for each star in the sample, and then perform a comprehensive sensitivity and completeness analysis for the subsample of 138 M dwarfs in 126 systems.
    [Show full text]
  • Theoretical Astroparticle Physics
    Theoretical Astroparticle Physics Contents 1. Topics 1339 2. Participants 1341 2.1. ICRANetparticipants. 1341 2.2. Pastcollaborators . 1341 2.3. Ongoingcollaborations. 1342 2.4. Students ............................... 1342 3. Brief description 1343 3.1. Electron-positronplasma. 1343 3.1.1. Thermalization of mildly relativistic plasma with pro- tonloading ......................... 1343 3.1.2. Pairplasmarelaxationtimescales. 1344 3.1.3. HydrodynamicphaseofGRBsources . 1345 3.2. Neutrinosincosmology . 1345 3.2.1. Massive neutrino and structure formation . 1347 3.2.2. CellularstructureoftheUniverse . 1347 3.2.3. LeptonasymmetryoftheUniverse . 1348 3.2.4. MassVaryingNeutrinos . 1348 3.3. IndirectDetectionofDarkMatter . 1349 3.4. AlternativeCosmologicalModels. 1350 4. Publications 1353 4.1. Publicationsbefore2005 . 1353 4.2. Publications(2005-2008) . 1356 4.3. Publications(2009) . 1362 4.4. Invitedtalksatinternationalconferences . 1365 5. APPENDICES 1369 A. Pair plasma relaxation timescales 1371 B.HydrodynamicphaseofGRBsources 1379 B.1. Introduction ............................. 1379 B.2. Kineticandhydrodynamicalphases . 1381 B.3. Physicalevolution. 1383 1335 Contents B.4. Results ................................ 1385 B.4.1. Constant baryonic distribution profile . 1385 B.4.2. c)Hybridprofile . 1387 B.5. Conclusions ............................. 1389 B.6. Numericalapproach . 1390 B.6.1. Finitedifferenceformofequations . 1392 B.6.2. Numericalissues . 1393 B.7. test .................................. 1395 B.7.1. a)Piran’sprofile . 1395 C. Cosmological
    [Show full text]
  • Filling the Brown Dwarf Census of the Solar Neighbourhood
    201: Milky Way and the Local Volume Filling the brown dwarf census of the Solar neighbourhood Ralf-Dieter Scholz, Gabriel Bihain, Jesper Storm, Olivier Schnurr Summary Many brown dwarf (BD) neighbours have recently been discovered thanks to new surveys in the mid- and near-infrared (MIR,NIR) but the number of red dwarfs is also still growing (Fig.1). The number of BDs is now about six times lower than that of stars in the same volume (Kirkpatrick et al. 2012, see also Fig.2). Our aim is to detect and classify new nearby BDs, contributing to the eventual completeness of their census in the immediate solar neighbourhood. We combine multi-epoch data from optical, NIR, and MIR surveys (Fig.3) to detect BD neighbours of the Sun by their high proper motion (HPM), concentrating on relatively bright MIR (w2 < 13.5) BD candidates from the Wide-Field Infrared Survey Explorer (WISE). With low-resolution NIR spectroscopy (Fig.4) we classify the new BDs and estimate their distances and velocities. Fig.2: Update for the immediate solar neighbourhood with results from WISE. Among the BDs, there are some still lacking accurate trigonometric parallaxes, for which spectroscopic distances are used. Among the marked AIP discoveries, there are two M dwarfs, LHS 2090 (Scholz et al. 2001) and L 449-1 (Scholz et al. 2005), that were already listed in old HPM catalogues, and five T dwarfs, ε Indi Ba,Bb (Scholz et al. 2003, McCaughrean et al. 2004), WISE J0254+0223 and WISE J1741+2553 (Scholz et al. 2011), and WISE J0521+1025 (Bihain et al.
    [Show full text]
  • Science Highlights
    Science Highlights Low-Luminosity, Compact Accretion Sources in the Galaxy Josh Grindlay (Harvard Observatory and CfA) ccretion onto compact stellar objects (white dwarfs, careful treatment of astrometry for optical identifi cations, neutron stars, and black holes) from companions in and derived source fl uxes for a range of model spectra close binaries is the primary beacon for study of the and absorption columns for both the source number-fl ux Aastrophysics of the extreme: from endpoints of stellar and distribution, logN-logS, and X-ray spectral classifi cation. binary evolution, to the physical processes in the extremes of gravity, radiation, or magnetic fi elds. Accretion from the Initial ChaMPlane results were given for logN-logS in several interstellar medium on the presumed still larger population Galactic fi elds (Grindlay et al. 2003, AN, 324, 57), as well as an of isolated compact objects should, at least for relatively early description of the Mosaic imaging identifi cation survey more massive and low-velocity stellar black holes, also be (Zhao et al. 2003, AN, 324, 176). Th e survey has now achieved observable in certain conditions, yet never has been. Given nearly its original goal of ~100 Chandra ACIS-I or ACIS-S the fundamental role that accretion plays in so many key galactic plane fi elds, with in fact 94 now selected (through problems of interest in current astrophysics, it is surprising Chandra cycle 6). Th ese have |b| ≤ 12o, exposure times that the space density and luminosity function(s) of the most ≥12 ksec (most are >20–30 ksec), and are selected to avoid common accretion-powered compact objects—white dwarfs dense clusters or bright diff use optical emission, and accreting from low-mass stellar companions, or cataclysmic (if possible) to have a minimum hydrogen column density in variables (CVs)—has not been measured to better than a order to maximize the detection and subsequent identifi cation factor of ~10 in the solar neighborhood, and they have even of faint point sources.
    [Show full text]
  • The Solar Neighborhood XVII: Parallax Results from the CTIOPI 0.9 M Program--Twenty New Members of the RECONS 10 Parsec Sample
    accepted to the Astronomical Journal 31 July 2006 The Solar Neighborhood XVII: Parallax Results from the CTIOPI 0.9 m Program – Twenty New Members of the RECONS 10 Parsec Sample Todd J. Henry1, Wei-Chun Jao1, John P. Subasavage1, and Thomas D. Beaulieu1 Georgia State University, Atlanta, GA 30302-4106 [email protected], [email protected], [email protected], [email protected] Philip A. Ianna1 University of Virginia, Charlottesville, VA 22903 [email protected] and Edgardo Costa1, Ren´eA. M´endez1 Universidad de Chile, Santiago, Chile [email protected], [email protected] ABSTRACT arXiv:astro-ph/0608230v1 10 Aug 2006 Astrometric measurements for 25 red dwarf systems are presented, including the first definitive trigonometric parallaxes for 20 systems within 10 pc of the Sun, the horizon of the RECONS sample. The three nearest systems that had no previous trigonometric parallaxes (other than perhaps rough preliminary efforts) are SO 0253+1652 (3.84 ± 0.04 pc, the 23rd nearest system), SCR 1845-6357 AB (3.85 ± 0.02 pc, 24th), and LHS 1723 (5.32 ± 0.04 pc, 56th). In total, seven of the systems reported here rank among the nearest 100 stellar systems. Sup- porting photometric and spectroscopic observations have been made to provide 1Visiting Astronomer, Cerro Tololo Inter-American Observatory. CTIO is operated by AURA, Inc. under contract to the National Science Foundation. –2– full characterization of the systems, including complete VRIJHKs photometry and spectral types. A study of the variability of 27 targets reveals six obvious variable stars, including GJ 1207, for which we observed a flare event in the V band that caused it to brighten by 1.7 mag.
    [Show full text]
  • Spectroscopy of Faint, Red NLTT Dwarfs
    Draft: August 4, 2003 Meeting the Cool Neighbors VII: Spectroscopy of faint, red NLTT dwarfs I. Neill Reid1 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218; and Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104; [email protected] Kelle L. Cruz1, Peter Allen1, F. Mungall1 Department of Physics and Astronomy, University of Pennsylvania, 209 South 33rd Street, Philadelphia, PA 19104; [email protected] D. Kilkenny South African Astronomical Observatory, P.O. Box 9, Observatory 7935, South Africa James Liebert1 Department of Astronomy and Steward Observatory, University of Arizona, Tucson, AZ 85721; [email protected] Suzanne L. Hawley, Oliver J. Fraser, Kevin R. Covey Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 Patrick Lowrance1 IPAC, MS 100-22 Caltech, 770 S. Wilson Ave., Pasadena, CA 91125 ABSTRACT We present low-resolution optical spectroscopy and BVRI photometry of 453 can- didate nearby stars drawn from the NLTT proper motion catalogue. The stars were selected based on optical/near-infrared colours, derived by combining the NLTT pho- tographic data with photometry from the 2MASS Second Incremental Data Release. Based on the derived photometric and spectroscopic parallaxes, we identify 111 stars as lying within 20 parsecs of the Sun, including 9 stars with formal distance estimates 1Visiting Astronomer, Kitt Peak National Observatory, NOAO, which is operated by AURA under cooperative agreement with the NSF. { 2 { of less than 10 parsecs. A further 53 stars have distance estimates within 1σ of our 20- parsec limit. Almost all of those stars are additions to the nearby star census.
    [Show full text]