5- and 6-Pulse Electron Spin Echo Envelope Modulation (ESEEM) of Multi-Nuclear Spin Systems

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Available online at www.sciencedirect.com Journal of Magnetic Resonance 190 (2008) 233–247 www.elsevier.com/locate/jmr 5- and 6-pulse electron spin echo envelope modulation (ESEEM) of multi-nuclear spin systems B. Kasumaj *, S. Stoll 1 ETH Zurich, Laboratory of Physical Chemistry, 8093 Zurich, Switzerland Received 24 August 2007; revised 23 October 2007 Available online 6 November 2007 Abstract In 3-pulse ESEEM and the original 4-pulse HYSCORE, nuclei with large modulation depth (k 1) suppress spectral peaks from nuclei with weak modulations (k 0). This cross suppression can impede the detection of the latter nuclei, which are often the ones of interest. We show that two extended pulse sequences, 5-pulse ESEEM and 6-pulse HYSCORE, can be used as experimental alterna- tives that suffer less strongly from the cross suppression and allow to recover signals of k 0 nuclei in the presence of k 1 nuclei. In the extended sequences, modulations from k 0 nuclei are strongly enhanced. In addition, multi-quantum transitions are absent which sim- plifies the spectra. General analytical expressions for the modulation signals in these sequences are derived and discussed. Numerical simulations and experimental spectra that demonstrate the higher sensitivity of the extended pulse sequences are presented. Ó 2007 Elsevier Inc. All rights reserved. Keywords: Pulse EPR; ESEEM; HYSCORE; Cross-suppression effect; Multi-nuclear spin system; Phase cycling 1. Introduction small modulation depth parameter k, i.e. a hyperfine inter- action with a small anisotropic component and a small Pulse electron paramagnetic resonance (EPR) tech- quadrupole coupling, this effect is negligible, the nuclei niques in general and electron spin echo envelope modula- do not affect each other, and the spectrum equals the super- tion (ESEEM) techniques in particular are widely used to position of the single-nucleus spectra. On the other hand, determine the electronic and geometric structure of para- the cross-suppression effect can have a strong impact in magnetic species [1]. The results lead to unique insights into the presence of strongly modulating nuclei, as they can the electronic and geometric structure of paramagnetic cen- cause partial or complete suppression of signals from ters in biological systems [2,3], as they allow for the deter- weakly modulating nuclei coupled to the same electron mination of small hyperfine and quadrupole couplings of spin. In some circumstances, this results in spectra where nuclear spins in the molecular environment of unpaired weakly coupled nuclei cannot be observed at all, although electrons. they have a sufficiently large hyperfine coupling to be Recent studies found that a cross-suppression effect [4,5] resolved. As these nuclei are often of structural or func- distorts signal intensities in standard ESEEM experiments tional interest, experimental ways to circumvent or allevi- (3-pulse ESEEM and 4-pulse HYSCORE) if more than ate the impact of the cross suppression are desirable. one nucleus contribute to the signal and can thus lead to In this work, we examine two extended ESEEM pulse misinterpretation of ESEEM spectra. If all nuclei have a sequences, 5-pulse ESEEM [6] and 6-pulse HYSCORE [7], that can recover signals from weakly modulating nuclei and yield spectra that are less affected by cross suppression. * Corresponding author. Fax: +41 44 632 1021. E-mail address: [email protected] (B. Kasumaj). These sequences give ESEEM spectra with peaks at the 1 Present address: Department of Chemistry, University of California, same positions as in 3-pulse ESEEM [8] and standard 4- One Shields Ave, Davis, CA 95616, USA. pulse HYSCORE [9], respectively. 1090-7807/$ - see front matter Ó 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.jmr.2007.11.001 234 B. Kasumaj, S. Stoll / Journal of Magnetic Resonance 190 (2008) 233–247 There are two reasons why spectra obtained with these For an axially symmetric hyperfine interaction, Aq and Bq extended sequences are less affected by cross suppression are related to the principal values A^,q and Ai,q of the than the standard sequences. First, as we will show, they give hyperfine tensor and can be expressed as function of the substantially enhanced peak intensities for weakly modulat- isotropic and dipolar hyperfine coupling constants, aiso,q ing nuclei (those affected by cross suppression) and show and Tq,by decreased sensitivity towards strongly modulating nuclei 2 2 2 (which are responsible for the cross suppression). The second Aq ¼ Ak;q cos hq þ A?;q sin hq ¼ T qð3 cos hq À 1Þþaiso;q; reason is based on the occurence of blind spots [10,11]:In3- Bq ¼ 3T q sin hq cos hq; pulse ESEEM and standard HYSCORE, a fixed inter-pulse ð3Þ delay of s causes selective suppression of peaks at some fre- quencies, called blind spots. The cross-suppression effect where hq is the angle between the external magnetic field can be counteracted by choosing s so that peaks from and the electron–nucleus axis [1]. strongly modulating nuclei that cause cross suppression fall The resonance frequencies of nucleus q associated with 1 1 on blind spots. The two extended pulse sequences have two the aðmS ¼þ2Þ and bðmS ¼2Þ electron spin manifolds experimentally adjustable fixed delays, s and s , and they are 1 2 qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi thus offer more flexibility in choosing blind spots. 2 2 This article is structured as follows: The theoretical back- xa;b;q ¼ ðxI;q Æ Aq=2Þ þðÆBq=2Þ : ð4Þ ground needed to derive and discuss the analytical expres- The pseudo-secular part B of the hyperfine tensor tilts the sions for the two extended sequences is summarized in q quantization axes of the nuclear spins for each m manifold Section 2. Section 3 gives details of the system and experi- S by an angle ments used to illustrate our findings. The main part of the article is contained in Sections 5 and 6, where echo modula- ÆBq=2 ga;b;q ¼ arctan ð5Þ tion signals for 2-, 3- and 5-pulse ESEEM and 4- and 6-pulse xI;q Æ Aq=2 HYSCORE are compared theoretically and illustrated experimentally. Finally, Section 6 summarizes the insight with respect to B0. The half-angle between the two nuclear obtained. quantization axes is given by gq =(ga,q À gb,q)/2. The mod- ulation depth parameter kq, a fundamental quantity of 2. Theoretical background ESEEM, is 2 2 BqxI;q The rotating-frame spin Hamiltonian, in angular fre- kq ¼ sin ð2gqÞ¼ ð6Þ 1 xa;qxb;q quency units, of an electron spin ðS ¼ 2Þ coupled to NI 1 nuclei ðI1 ¼ÁÁÁ¼I N I ¼ 2Þ using the high-field approxima- with 0 6 kq 6 1. It is a measure of the degree of dissimilar- tion is given by [1,12] ity of the nuclear sublevels in the a and the b electron XN I manifolds. H 0 ¼ XS Sz þ ðxI;qI z;q þ AqSzIz;q þ BqSzIx;qÞ; ð1Þ The behavior of the spin system during a pulse sequence q¼1 is described by the evolution of the density operator r [1,14–16]. The density operator at a time t is given by where XS = xS À xmw is the offset between the electron res- 1 1 1 onance frequency xS and the frequency of the applied rðtÞ¼...P Q P r P À QÀ P À ... ð7Þ 2 t1 1 0 1 t1 2 microwave (mw) pulse, xmw. xI,q = Àgn,qlnB0/⁄ denotes the Larmor frequency of nucleus q. where Pj represent pulse propagators and Qtj free evolu- In general, the hyperfine part of the Hamiltonian is related tions. In the ideal pulse approximation, the static Hamilto- to the principal values A11,q, A22,q and A33,q of the ortho- nian H0 is neglected during the microwave pulse, so that rhombic hyperfine interaction matrix Aq, and two polar ÀibjSxðyÞ P j ¼ e ð8Þ angles hq and /q describing the orientation of the external magnetic field B0 = (0,0,B0) with respect to the frame where is the propagator for a pulse with flip angle bj and phase the hyperfine interaction matrix is diagonal [13]: x(y). The propagator during free evolution is 2 2 2 2 iH diagt Aq ¼ A33;q cos hq þ sin hqðA11;q cos /q þ A22;q sin /qÞ; y À 0 j qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi Qtj ¼ U e U ð9Þ B ¼ B2 þ B2 ; q x;q y;q with [1] 1 B A A A YN I x;q ¼ sin hq cos hq½ð2 33;q À 11;q À 22;qÞ diag 2 y Àiðga;qSaþgb;qSbÞIy;q H 0 ¼ UH 0U U ¼ e : ð10Þ þ cosð2/qÞðA22;q À A11;qÞ; q¼1 1 B ¼ sin h sinð2/ ÞðA À A Þ: At the beginning of the pulse sequence, the system is at y;q 2 q q 22;q 11;q thermal equilibrium. Conventionally,Q this is represented ð2Þ by r0 = ÀSz/M, where M ¼ qð2Iq þ 1Þ is the total num- B. Kasumaj, S. Stoll / Journal of Magnetic Resonance 190 (2008) 233–247 235 ber of nuclear sub-states per electron manifold. In order to mation, each density matrix corresponding to a particular simplify our calculations we use pathway can be written as a tensor product of density sub- 1 1 1 matrices of single-nucleus subsystems, so that the eCTP r ¼ S ¼ I À S ð11Þ signal from a multi-nuclear spin system is a product of sig- 0 M b M 2 z nals from spin systems with one nucleus each. Summing instead. Adding to r0 a term proportional to the unity over all contributing eCTPs, we get operator I does not affect the expectation value of S as + XN r YN I the unity operator is invariant during the pulse sequence ðiÞ E ¼ fi Eq ; ð14Þ and tr½SþðcI þ rÞ ¼ tr½Sþr is satisfied.
Recommended publications
  • Neutron Spin Echo Spectroscopy

    Neutron Spin Echo Spectroscopy

    Neutron Spin Echo Spectroscopy Peter Fouquet [email protected] Institut Laue-Langevin Grenoble, France Oxford Neutron School 2017 What you are supposed to learn in this tutorial 1. The length and time scales that can be studied using NSE spectroscopy 2. The measurement principle of NSE spectroscopy 3. Discrimination techniques for coherent, incoherent and magnetic dynamics 4. To which scientific problems can I apply NSE spectroscopy? NSE-Tutorial Mind Map Quantum Mechanical Model Resonance Spin-Echo Classical Model Measurement principle “4-point Echo” NSE spectroscopy Instrument Frustrated Components Magnets Bio- molecules Time/Space Map NSE around Surface the globe Diffusion Science Cases Paramagnetic Spin Echo Experiment planning and Interpretation Diffusion Glasses Polymers Models Coherent and Incoherent Scattering Data Treatment The measurement principle of neutron spin echo spectroscopy (quantum mechanical model) • The neutron wave function is split by magnetic fields • The 2 wave packets arrive at magnetic coil 1 magnetic coil 2 polarised sample the sample with a time neutron difference t • If the molecules move between the arrival of the first and second wave packet then coherence is lost • The intermediate scattering t λ3 Bdl function I(Q,t) reflects this ∝ loss in coherence strong wavelength field integral dependence Return The measurement principle of neutron spin echo spectroscopy Dynamic Scattering NSE spectra for diffusive motion Function S(Q,ω) G(R,ω) I(Q,t) = e-t/τ Fourier Transforms temperature up ⇒ τ down Intermediate VanHove
  • Princeton University, Physics 311/312; NMR Andthe Spin Echo 1

    Princeton University, Physics 311/312; NMR Andthe Spin Echo 1

    Princeton University, Physics 311/312; NMR andthe Spin Echo 1 NUCLEAR MAGNETIC RESONANCE AND THE SPIN ECHO Introduction In this experiment we investigate the properties of several materials using pulsed nuclear magnetic resonance (NMR). The NMR technique is used extensively for medical imaging and as a tool in condensed matter and materials physics. The physical mechanism behind NMR is a resonant transition between the energy states of a precessing spin 1/2 particle, specifically a proton, in an external magnetic field. By illuminating the atoms in a liquid, gas or solid with pulses of radio frequency (RF) radiation of various lengths, one can examine the interaction of the spins with the external field, with each other, and with the “lattice.” À Consider a particle with classical angular momentum J in a constant external magnetic field ¼ .The = ­ h  particle has a magnetic moment due to its angular momentum. From the classical equation of À motion we know that if ¼ and are not parallel, the magnetic moment will precess about the magnetic ! = ­À À ¼ field. The frequency of this precession, ¼ , is independent of the angle between and and is called the Larmor frequency. À In NMR, a sample is placed in a constant magnetic field ¼ as shown in Figure 1. All the spins of À the protons try to align with ¼ but the thermal motion (phonons) of the lattice, to some extent, prevents Å À ¼ this. There is still though a net magnetization, ¼ , parallel to . To manipulate the magnetization, we À apply an RF field perpendicular to ¼ . This results in an oscillating magnetic field that can be viewed as the superposition of two counter-rotating components; only the component rotating in the same direction as that of the spin’s precession has significant effect.
  • Double Spin-Echo Sequence for Rapid Spectroscopic Imaging of Hyperpolarized 13C

    Double Spin-Echo Sequence for Rapid Spectroscopic Imaging of Hyperpolarized 13C

    Journal of Magnetic Resonance 187 (2007) 357–362 www.elsevier.com/locate/jmr Communication Double spin-echo sequence for rapid spectroscopic imaging of hyperpolarized 13C Charles H. Cunningham a,*, Albert P. Chen b, Mark J. Albers b, John Kurhanewicz b, Ralph E. Hurd c, Yi-Fen Yen c, John M. Pauly d, Sarah J. Nelson b, Daniel B. Vigneron b a Department of Medical Biophysics, Sunnybrook Health Sciences Centre, 2075 Bayview Ave., Toronto, Ont., Canada M4N 3M5 b Department of Radiology, University of California at San Francisco, San Francisco, CA, USA c GE Healthcare Technologies, Menlo Park, CA, USA d Department of Electrical Engineering, Stanford University, Stanford, CA, USA Received 2 February 2007; revised 17 April 2007 Available online 2 June 2007 Abstract Dynamic nuclear polarization of metabolically active compounds labeled with 13C has been introduced as a means for imaging met- abolic processes in vivo. To differentiate between the injected compound and the various metabolic products, an imaging technique capa- ble of separating the different chemical-shift species must be used. In this paper, the design and testing of a pulse sequence for rapid magnetic resonance spectroscopic imaging (MRSI) of hyperpolarized 13C is presented. The pulse sequence consists of a small-tip exci- tation followed by a double spin echo using adiabatic refocusing pulses and a ‘‘flyback’’ echo-planar readout gradient. Key elements of the sequence are insensitivity to calibration of the transmit gain, the formation of a spin echo giving high-quality spectral information, and a small effective tip angle that preserves the magnetization for a sufficient duration.
  • Neutron Spin Echo Spectroscopy

    Neutron Spin Echo Spectroscopy

    Neutron Spin Echo Spectroscopy Peter Fouquet [email protected] Institut Laue-Langevin Grenoble, France September 2014 Hercules Specialized Course 17 - Grenoble What you are supposed to learn in this lecture 1. The length and time scales that can be studied using NSE spectroscopy 2. The measurement principle of NSE spectroscopy 3. Discrimination techniques for coherent, incoherent and magnetic dynamics 4. To which scientific problems can I apply NSE spectroscopy? The measurement principle of neutron spin echo spectroscopy (quantum mechanical model) The neutron wave function is split by magnetic fields magnetic coil 1 magnetic coil 2 polarised sample The 2 wave packets arrive at neutron the sample with a time difference t If the molecules move between the arrival of the first and second wave packet then coherence is lost t λ3 Bdl The intermediate ∝ scattering function I(Q,t) reflects this loss in coherence strong wavelength field integral dependence The measurement principle of neutron spin echo spectroscopy Dynamic Scattering NSE spectra for diffusive motion Function S(Q,ω) G(R,ω) I(Q,t) = e-t/τ Fourier Transforms temperature up ⇒ τ down Intermediate VanHove Correlation Scattering Function Function I(Q,t) G(R,t) Measured with Neutron Spin Echo (NSE) Spectroscopy Neutron spin echo spectroscopy in the time/space landscape NSE is the neutron spectroscopy with the highest energy resolution The time range covered is 1 ps < t < 1 µs (equivalent to neV energy resolution) The momentum transfer range is 0.01 < Q < 4 Å-1 Spin Echo The measurement principle
  • Echo-Detected Electron Paramagnetic Resonance Spectra of Spin-Labeled Lipids in Membrane Model Systems Denis A

    Echo-Detected Electron Paramagnetic Resonance Spectra of Spin-Labeled Lipids in Membrane Model Systems Denis A

    Subscriber access provided by MPI FUR BIOPHYS CHEM Article Echo-Detected Electron Paramagnetic Resonance Spectra of Spin-Labeled Lipids in Membrane Model Systems Denis A. Erilov, Rosa Bartucci, Rita Guzzi, Derek Marsh, Sergei A. Dzuba, and Luigi Sportelli J. Phys. Chem. B, 2004, 108 (14), 4501-4507• DOI: 10.1021/jp037249y • Publication Date (Web): 16 March 2004 Downloaded from http://pubs.acs.org on March 24, 2009 More About This Article Additional resources and features associated with this article are available within the HTML version: • Supporting Information • Links to the 1 articles that cite this article, as of the time of this article download • Access to high resolution figures • Links to articles and content related to this article • Copyright permission to reproduce figures and/or text from this article The Journal of Physical Chemistry B is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 J. Phys. Chem. B 2004, 108, 4501-4507 4501 Echo-Detected Electron Paramagnetic Resonance Spectra of Spin-Labeled Lipids in Membrane Model Systems Denis A. Erilov,†,| Rosa Bartucci,*,† Rita Guzzi,† Derek Marsh,§ Sergei A. Dzuba,‡ and Luigi Sportelli† Dipartimento di Fisica and Unita` INFM, UniVersita` della Calabria, I-87036 ArcaVacata di Rende (CS), Italy, Abteilung Spektroskopie, Max-Planck-Institut fur biophysikalische Chemie, 37077 Gottingen, Germany, and Institute of Chemical Kinetics and Combustion, Russian Academy of Science, 630090 NoVosibirsk, Russian Federation ReceiVed: October 28, 2003; In Final Form: February 5, 2004 The dynamics of spin-labeled lipid chains in the low-temperature phases of dipalmitoyl phosphatidylcholine (DPPC) membranes, with and without equimolar cholesterol, have been investigated by pulsed electron paramagnetic resonance (EPR) spectroscopy.
  • A New Mechanism for Electron Spin Echo Envelope Modulation ͒ John J

    A New Mechanism for Electron Spin Echo Envelope Modulation ͒ John J

    THE JOURNAL OF CHEMICAL PHYSICS 122, 174504 ͑2005͒ A new mechanism for electron spin echo envelope modulation ͒ John J. L. Mortona Department of Materials, Oxford University, Oxford OX1 3PH, United Kingdom Alexei M. Tyryshkin Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 Arzhang Ardavan Clarendon Laboratory, Department of Physics, Oxford University, Oxford OX1 3PU, United Kingdom Kyriakos Porfyrakis Department of Materials, Oxford University, Oxford OX1 3PH, United Kingdom S. A. Lyon Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544 G. Andrew D. Briggs Department of Materials, Oxford University, Oxford OX1 3PH, United Kingdom ͑Received 21 January 2005; accepted 18 February 2005; published online 2 May 2005͒ Electron spin echo envelope modulation ͑ESEEM͒ has been observed for the first time from a coupled heterospin pair of electron and nucleus in liquid solution. Previously, modulation effects in spin-echo experiments have only been described in liquid solutions for a coupled pair of homonuclear spins in nuclear magnetic resonance or a pair of resonant electron spins in electron paramagnetic resonance. We observe low-frequency ESEEM ͑26 and 52 kHz͒ due to a new mechanism present for any electron spin with SϾ1/2 that is hyperfine coupled to a nuclear spin. In ͑ ͒ ͑ ͒ our case these are electron spin S=3/2 and nuclear spin I=1 in the endohedral fullerene N@C60. The modulation is shown to arise from second-order effects in the isotropic hyperfine coupling of an electron and 14N nucleus. © 2005 American Institute of Physics. ͓DOI: 10.1063/1.1888585͔ I. INTRODUCTION electron spins with different Larmor frequencies͒ results in no modulation effects from this mechanism: The heterospin Measuring the modulation of a spin echo in pulsed coupling energy changes its sign upon application of the re- magnetic-resonance experiments has become a popular tech- focusing pulse ͑because only one spin flips͒, and the magne- nique for studying weak spin-spin couplings.
  • Lesion Enhancement in Radio-Frequency Spoiled Gradient-Echo Imaging: Theory, Experimental Evaluation, and Clinical Implications

    Lesion Enhancement in Radio-Frequency Spoiled Gradient-Echo Imaging: Theory, Experimental Evaluation, and Clinical Implications

    Lesion Enhancement in Radio-Frequency Spoiled Gradient-Echo Imaging: Theory, Experimental Evaluation, and Clinical Implications 1 1 2 1 Scott Rand, Kenneth R. Maravilla, • and Udo Schmiedl PURPOSE: To investigate the lesser lesion conspicuity after gadolinium contrast infusion with radio-frequency spoiled gradient-echo (SPGR) sequences relative to conventional T1-weighted spin-echo techniques. METHODS: The influences of repetition time, echo time, and flip angle on spin-echo and SPGR signal were studied with mathematical modeling of the image signal amplitude for concentrations of gadopentetate dimeglumine solute from 0 to 10 mM. Predictions of signal strength were verified in vitro by imaging of a doped water phantom. The effects of standard (0.1 mmol/kg) and high-dose (0.3 mmol/kg) gadoteridol on spin-echo and SPGR images were also investigated in three patients. RESULTS: The measured amplitude of undoped water and the rate of increase of doped water signal with increasing gadopentetate concentration (slope) for spin­ echo 600/ 11/1/ 90° (repetition time/ echo time/excitations/flip angle) and SPGR (600/11/190°) were similar and exceeded those of SPGR (35/ 5/ 145°). Greater increases in SPGR doped water signal and its slope were produced by increasing TR than by varying echo-time or flip angle. The subjective lesion conspicuity and measured lesion contrast at 0.3 mmol/kg were greater with spin­ echo (600/11/ 1/90°) than with SPGR (35/5/145°) in all three patients; the measured lesion enhancement was similar for both techniques in two patients and decreased for SPGR in the third patient.
  • Introduction to Neutron Spin Echo Spectroscopy

    Introduction to Neutron Spin Echo Spectroscopy

    6/15/12 Introduction to Neutron Spin Echo Spectroscopy Antonio Faraone NIST Center for Neutron research & Dept. of Material Science and Engineering, U. of Maryland Methods and Applicaons of SANS, NR, and NSE NCNR, June 18th – 23rd, 2012 Outline • History • Dynamic Neutron Scattering (Recap) • The principles of Neutron Spin Echo • Instrumental Setup of Neutron Spin Echo • Conclusion 1 6/15/12 The beginning F. Mezei, Z. Physik. 255, 146 (1972). NSE Today in the World SPAN MUSES RESEDA NG5-NSE IN11 J-NSE IN15 (SNS-NSE) iNSE + NSE option for triple-axis spectrometers! + developing ones! 2 6/15/12 What does a NSE Spectrometer Look Like? IN-11 @ ILL The first IN-11c @ ILL; Wide Detector Option 3 6/15/12 IN-15 @ ILL MUSES, Resonance Spin Echo @ LLB 4 6/15/12 NSE @ NCNR NSE @ SNS 5 6/15/12 NSE Publications 60 total number of Papers Spectrometer polymer 50 glass membrane SolidStatePhysics 40 Further improvement and development of P. G. de Gennes the NSE technique! Nobel Prize in Physics 1991 30 The technique papers Number ofPapers Number 20 discovery of the principle are still increasing by F. Mezei in 1972 10 polymer dynamics researches by D. Richter in 1980’s 0 1975 1980 1985 1990 1995 2000 2005 Year publication record; searched using web of science: keyword=neutron spin echo! 6 6/15/12 Static and Dynamic Scattering Sample ki, Ei θ ki Probe: photons (visible light, X-rays), kf Q neutrons, electrons, … kf, Ef Momentum Exchanged: Q=ki-kf Energy Exchanged: E=Ei-Ef Detector dσ d 2σ StaticScattering: ≈ S(Q) Dynamic Scattering: ≈ S(Q, E) dΩ dΩdE Static and Dynamic Scattering S(Q) = FTS {exp[−iQ(ri −r j )] } Fourier Transform of the Space Correlation Function S(Q, E) = FTT {exp[−iQ(r(t) −r(0))] }= FTT {I(Q,t)}= FTST {G(r,t)} Fourier Transform of the Space-Time Correlation Function I(Q,t) Intermediate Scattering Function (ISF) G(r,t) van Hove Correlation Function 7 6/15/12 S(Q,E) Inelastic Scattering Q=x.xx Å-1 excitation: neutrons Instrumental exchange energy with an Resolution oscillatory motion which has a finite energy transfer Quasielastic Ex: phonon, magnon, ..
  • Pulsed Epr Primer

    Pulsed Epr Primer

    PULSED EPR PRIMER Dr. Ralph T. Weber Bruker Instruments, Inc. Billerica, MA USA Pulsed EPR Primer Copyright © 2000 Bruker Instruments, Inc. The text, figures, and programs have been worked out with the utmost care. However, we cannot accept either legal responsibility or any liability for any incorrect statements which may remain, and their consequences. The following publication is protected by copyright. All rights reserved. No part of this publication may be reproduced in any form by photocopy, microfilm or other proce- dures or transmitted in a usable language for machines, in particular data processing systems with- out our written authorization. The rights of reproduction through lectures, radio and television are also reserved. The software and hardware descriptions referred in this manual are in many cases registered trademarks and as such are subject to legal requirements. Preface I gratefully acknowledge the many useful comments and discus- sions with Professor Gareth Eaton of the University of Denver and Dr. Peter Hoefer of Bruker Analytik. This document is best viewed with Adobe AcrobatTM 4.0. If you are using a PC running Microsoft WindowsTM, you can also view the several animations that are interspersed throughout the text. Simply click the movie poster with the blue frame and the movie will play in a floating window. To close the floating win- dow, place your cursor in the frame and press the <Esc> key. A Movie Poster iv Table of Contents 1 Pulse EPR Theory..................................................................3 1.1 The Rotating Frame..................................................................................... 3 Magnetization in the Lab Frame ................................................................... 4 Magnetization in the Rotating Frame ........................................................... 6 Viewing the Magnetization from Both Frames: The FID ..........................
  • AN ABSTRACT for the THESIS of Jacqueline K. Garcia for the Degree of Master of Science in Radiation Health Physics Presented On

    AN ABSTRACT for the THESIS of Jacqueline K. Garcia for the Degree of Master of Science in Radiation Health Physics Presented On

    AN ABSTRACT FOR THE THESIS OF Jacqueline K. Garcia for the degree of Master of Science in Radiation Health Physics presented on June 18, 2020. Title: Creating Anthropomorphic Models with Mesh Phantoms in MCNP to Simulate Mammography Abstract approved: ______________________________________________________________ Steven R. Reese Breast cancer is the most common cancer among women as it accounts for about 25% of all female cancer cases. Studies have shown that early detection of breast cancer increases the chances of a positive prognosis amongst patients therefore it is crucial to provide accurate diagnosis tools in routine exams. Experimenting with new techniques and tools that can provide increased accuracy requires time-consuming and costly studies, therefore, simulating outcomes that have high potential can provide guidance for increased accuracy without requiring expensive tests. This project outlines the possibility of developing an advanced anthropomorphic mesh phantom of the breast to experiment different contrast agents with. The phantom would contain all the components of a real breast and it would be able to simulate the physiological and metabolic components that play a role in the outcome of a real tomosynthesis-mammography scan. This project focuses on creating a basic model of a breast and a tomosynthesis system that provides an indication on whether a simulation system can be produced. The materials used for this project include Abaqus/CAE software, Python, MCNP6.2, and scripting tools as well as resources on tomosynthesis equipment. The results demonstrated a positive outcome thus indicating that the model can be further developed to incorporate the multiple components of a real breast scan to increase the simulation’s realism.
  • 1 Spin Echo Method in Pulsed Nuclear Magnetic Resonance (NMR

    1 Spin Echo Method in Pulsed Nuclear Magnetic Resonance (NMR

    Spin echo method in pulsed nuclear magnetic resonance (NMR) Masatsugu Sei Suzuki Department of Physics, SUNY at Binghamton (February 26, 2011) Spin echo method is one of the elegant and most useful features in pulsed nuclear magnetic resonance (NMR). In the Phys.427, 429 (Senior laboratory) and Phys.527 (Graduate laboratory) of Binghamton University (we call simply Advanced laboratory hereafter), both undergraduate and graduate students studies the longitudinal relaxation time T1 and the transverse relaxation time T2 of mineral oil and water solution of CuSO4 using the spin echo method. The instrument we use in the Advanced laboratory is a TeachSpin PS1-A, a pulsed NMR apparatus. It focuses on the spin echo method using the CPMG (Carr-Purcell-Meiboom-Gill) sequence with the combinations of 90 and 180 pulses for the measurement of T1 and T2. Through these studies students will understand the fundamental physics underlying in NMR. From a theoretical view point, the dynamics of nuclear spins is uniquely determined by the Bloch equation. This equations are formed of the first order differential equations. The solutions of these equations with appropriate initial conditions can be exactly solved. The motions of the nuclear spin during the application of the 90 pulse and 180 pulse for the Carr-Purcell (CP) sequence, and Carr- Purcell-Meiboom-Gill (CPMG) sequence, can be visualized using the Mathematica. Here we present a lecture note on the principle of the spin echo method in pulsed NMR, which has been given in the class of the Advanced laboratory. This note may be useful to students who start to do the spin echo experiment of pulsed NMR in the Advanced laboratory.
  • Pulsed NMR Review

    Pulsed NMR Review

    Pulsed Nuclear Magnetic Resonance John Stoltenberg, David Pengra, Oscar Vilches, and Robert Van Dyck Department of Physics, University of Washington 3910 15th Ave. NE, Seattle, WA 98195-1560 1 Background What we call “nuclear magnetic resonance” (NMR) was developed simultaneously but independently by Edward Purcell and Felix Bloch in 1946. The experimental method and theoretical interpretation they developed is now called “continuous-wave NMR” (CWNMR). A different experimental technique, called “pulsed NMR” (PNMR), was introduced in 1950 by Erwin Hahn. Pulsed NMR is used in magnetic resonance imaging (MRI). Purcell and Bloch won the Nobel Prize in Physics in 1952 for NMR; more recently NMR was the subject of Nobel Prizes in Chemistry in 1991 and 2002. We have both NMR setups in the advanced labs: one is a variation of the CWNMR method, and the other is a pulsed NMR system. The physics underlying NMR is the same for both the continuous and pulsed methods, but the information obtained may be different. Certainly, the words used to describe what is being done in the experiments are different: in the continuous-wave case one tunes a radio-frequency oscillator to “beat” against the resonance of a nuclear magnetic moment in a magnetic field; in the pulsed case, one applies a sequence of RF pulses called π-pulses (180 degree pulses) or π/2- pulses (90 degree pulses) and looks for “free induction decay” and “spin echoes”. Below, we give a very simplified introduction, based on classical ideas, to the physics of NMR. More thorough discussions, focusing on the CWNMR technique, may be found in in the books by Preston and Dietz [1] and Melissinos [2] (see references).