Evolutionary Game Theory ISCI 330

Total Page:16

File Type:pdf, Size:1020Kb

Evolutionary Game Theory ISCI 330 Evolutionary Game Theory ISCI 330 1 ISCI 330 Outline • A bit about historical origins of Evolutionary Game Theory • Main (competing) theories about how cooperation evolves • PD and other social dilemma games • Iterated PD, TFT, etc. • Evolutionary Stable Strategy (ESS) • N-player PD (and other games) • Simpson’s paradox and the role of assortment 2 ISCI 330 Evolution by Natural Selection • Lewontin’s principles (from Darwin) – 1) Phenotypic variation – 2) Differential fitness – 3) Heritability • In Evolutionary Game Theory – 1) Population of strategies – 2) Utility determines number of offspring (fitness) – 3) Strategies breed true • Frequency-dependent selection – One of the first examples is Fisher’s sex ratio findings – Introduces idea of strategic phenotypes 3 ISCI 330 Ritualized Fighting opponent’s behaviour Dove Hawk V / 2 Dove actor’s 5 0 behaviour V (V- c) / 2 Hawk 10 -5 • V = 10 ; c = 20 • The rare strategy has an advantage (i.e. frequency dependent selection) • Hawk-Dove, Chicken, Snowdrift, Brinkmanship • If 0 < c < V, then game is PD instead 4 ISCI 330 Main Theories: Evolution of Altruism • Multilevel Selection ∆Q = ∆QB + ∆QW (Price Equation) • Inclusive Fitness/Kin Selection – wincl. = wdirect + windirect ∆Q > 0 if rb > c (Hamilton’s rule) • Reciprocal Altruism ∆Q > 0 if altruists are sufficiently compensated for their sacrifices via reciprocity (ESS) 5 ISCI 330 Additive Prisoner’s Dilemma (PD) Actor's Fitness (Utility) opponent’s behaviour C D contributes b contributes 0 w0 + b – c w0 – c C actor’s sacrifices c 4 0 behaviour w0 + b w0 D sacrifices 0 5 1 • w0 = 1; b = 4; c = 1 6 ISCI 330 Non-Additive PD Actor's Fitness (Utility) opponent’s behavior C D contributes b contributes 0 w0 + b – c w0 – c C actor’s sacrifices c (+ d) 3 0 behavior w0 + b w0 D sacrifices 0 5 1 • w0 = 1; b = 4; c = 1 ; d = -1 7 ISCI 330 Main Theories: Evolution of Altruism • Multilevel Selection – Predominate models are in terms of public good • Inclusive Fitness/Kin Selection – Predominate models is in terms of individual contributions (b and c) • Reciprocal Altruism – Predominate models in terms of iterated PD (iPD) 8 ISCI 330 Evolutionarily Social Dilemma Games • What features do Hawk-Dove and the PD have in common? – Cs do better in CC pairs than Ds do in DD pairs – Ds do better than Cs in mixed pairs • Given 4 utility levels (1 st , 2 nd , 3 rd , 4 th ) how many 2-player, symmetric games are there that capture this idea of “social dilemma”? • Can you name them? 9 ISCI 330 6 evolutionarily interesting “social dilemmas” • How do these games compare in terms of – Nash equilibria? – Pareto optimality? – Is it better to be rare or common? • Consider populations of strategies rather than 2-players • Relative vs. Absolute fitness 10 ISCI 330 Common EGT Assumptions • Population of strategies • Replicator equations – Number of individuals of a certain strategy in next generation depends on: • Average fitness (utility) of individuals with that strategy • Which depends on frequency distribution of strategies • Often assume – infinite populations where replicator equations give proportion of strategy (scaled by average fitness) – continuous (or discrete) time – complete mixing (random interactions) – strategies breed true (no sex or mutation) 11 ISCI 330 Iterated Prisoner’s Dilemma • Robert Triver’s concept of reciprocal altruism • Robert Axelrod’s tournaments – Every strategy plays every other one • Or at random for evolutionary experiments – On average 200 rounds – Final score is cumulative payoffs from all rounds – Can condition current behaviour on any amount of history • opponent’s and actor’s 12 ISCI 330 Conditional Strategies • Anatol Rappoport’s Tit-For-Tat strategy – Unless provoked, the agent will always cooperate – If provoked, the agent will retaliate swiftly – The agent is quick to forgive – Susceptible to noise – Backwards induction issue • Imagine gene for when to start defecting • Alternatives – Forgiving TFT, TF2T, Pavlov, walk-away • Under what conditions does TFT beat it’s opponent? 13 ISCI 330 Simple Iterated PD Model TFT ALLD FT ALLD TFT TFT TFT T D ALLD TF TFT ALLD ALL T FT T TFT TFT LLD TFT A TFT A LLD ALLD ALLD TFT ALLD D T ALLD ALL TF pick pairs offspring opponent’s behaviour at random replace C D contributes b contributes 0 parents w0 + b – c w0 – c C actor’s sacrifices c 4 0 TFT ALLD TFT behaviour w0 + b w0 D ALLD FT ALLD T sacrifices 0 5 1 offspring TFT proportional to cumulative payoff play i times 14 ISCI 330 Numerical Simulations of Iterated PD varying Q, i, and b (c = 1) 0.1 ∆∆∆Q 0 Q = 0.2; i = 2 Q = 0.15; i = 2 Q = 0.15; i = 4 Q = 0.15; i = 15 Q = 0.1; i = 2 -0.1 1 3 5 7 9 11 13 15 b 15 ISCI 330 – Fletcher & Zwick, 2006. The American Naturalist Simple Iterated PD Model ALL D D ALLD LLDALLD D ALL ALL ALL A D D ALLD AL ALLD ALLD ALL LD ALLD D ALLD ALLD LL ALL A TFT A D LLD ALLD ALLD ALLD ALLD D LD ALLD ALL AL pick pairs offspring opponent’s behaviour at random replace C D contributes b contributes 0 parents w0 + b – c w0 – c C A actor’s sacrifices c 4 0 ALLD LLD ALLD behaviour w0 + b w0 D ALLD FT ALLD T sacrifices 0 5 1 offspring ALLD proportional to cumulative payoff play i times 16 ISCI 330 Simple Iterated PD Model TF TFT T TFT T TFT TF TFT TF T TFT TF TFT TFT TFT T FT T TFT TFT FT TF FT T T TFT T TFT TFT TFT ALLD T TFT TFT TF pick pairs offspring opponent’s behaviour at random replace C D contributes b contributes 0 parents w0 + b – c w0 – c C actor’s sacrifices c 4 0 TFT ALLD TFT behaviour w0 + b w0 D TFT T TFT TF sacrifices 0 5 1 offspring TFT proportional to cumulative payoff play i times 17 ISCI 330 Evolutionary Stable Strategy (ESS) • A strategy which if adopted by a population cannot be invaded by any competing alternative strategy • How does this compare to a Nash Equilibrium? – Here assume almost all players play the same strategy (call it S) – S is a Nash Eq. if u( S, S) ≥ u( S', S) for any S' – S is an ESS if • u( S, S) > u( S', S) for any S' (strict Nash) • Or u( S, S) = u( S', S) AND u( S, S’ ) > u( S', S' ) – If S is an ESS, then it is a Nash Eq. – If S is a strict Nash Eq. (given a population of S), then it is an ESS 18 ISCI 330 ESS and Hawk-Dove (Chicken) • Is Hawk an ESS? Is Dove and ESS? • Is there a mixture of playing Hawk and Dove that is an ESS? – Find it assuming original game • Note that we can think of this in 2 ways – Agents playing a mixed strategy • Monomorphic solution where an allele for this mixture has fixed in the population – A mixed population of strategies at this ratio opponent’s behaviour • Polymorphic stable equilibrium Dove Hawk • Learning vs. Evolving Dove actor’s 5 0 behaviour Hawk 10 -5 19 ISCI 330 ESS and the PD • Is C an ESS? Is D and ESS? • Is there a mixture of playing C and D that is an ESS? • What if we break the assumption of random interactions? • Is TFT an ESS? Is ALLD and ESS? – Does it depend on iterations in iPD? – Find game (payoff matrix) for TFT vs. ALLD if i = 3 – What do we call this game? • Can think of TFT in an iPD in two ways: – Conditional behaviour causes C opponent’s behaviour behaviours of others to be more C D contributes b contributes 0 assorted with TFT than with ALLD w0 + b – c w0 – c C – In iPD, TFT and ALLD actor’s sacrifices c 4 0 behaviour w0 + b w0 change the game to Assurance D sacrifices 0 5 1 20 ISCI 330 N-Player Prisoner’s Dilemma (Tragedy of the Commons) fitness to a defector, ws b average fitness, wav c fitness to a cooperator, wa fitness per individual per fitness 0 0 0.5 1.0 q, fraction of cooperators in a group • ai' = ai [1 + wa(qi)] si' = s i [1 + ws(qi)] • wa(qi) = bq i – c + w0 ws(qi) = bq i + w0 21 ISCI 330 – Fletcher & Zwick, 2007. Journal of Theoretical Biology Simpson’s Paradox Group 1 Group 2 Total Non-altruists Altruists Time • Altruists become a smaller portion of each group • But altruists become a larger portion of the whole 22 ISCI 330.
Recommended publications
  • Evolutionary Game Theory: ESS, Convergence Stability, and NIS
    Evolutionary Ecology Research, 2009, 11: 489–515 Evolutionary game theory: ESS, convergence stability, and NIS Joseph Apaloo1, Joel S. Brown2 and Thomas L. Vincent3 1Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, Nova Scotia, Canada, 2Department of Biological Sciences, University of Illinois, Chicago, Illinois, USA and 3Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona, USA ABSTRACT Question: How are the three main stability concepts from evolutionary game theory – evolutionarily stable strategy (ESS), convergence stability, and neighbourhood invader strategy (NIS) – related to each other? Do they form a basis for the many other definitions proposed in the literature? Mathematical methods: Ecological and evolutionary dynamics of population sizes and heritable strategies respectively, and adaptive and NIS landscapes. Results: Only six of the eight combinations of ESS, convergence stability, and NIS are possible. An ESS that is NIS must also be convergence stable; and a non-ESS, non-NIS cannot be convergence stable. A simple example shows how a single model can easily generate solutions with all six combinations of stability properties and explains in part the proliferation of jargon, terminology, and apparent complexity that has appeared in the literature. A tabulation of most of the evolutionary stability acronyms, definitions, and terminologies is provided for comparison. Key conclusions: The tabulated list of definitions related to evolutionary stability are variants or combinations of the three main stability concepts. Keywords: adaptive landscape, convergence stability, Darwinian dynamics, evolutionary game stabilities, evolutionarily stable strategy, neighbourhood invader strategy, strategy dynamics. INTRODUCTION Evolutionary game theory has and continues to make great strides.
    [Show full text]
  • Statistical Mechanics of Evolutionary Dynamics
    Statistical Mechanics of Evolutionary Dynamics Kumulative Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakult¨at der Christian-Albrechts-Universit¨at zu Kiel vorgelegt von Torsten Rohl¨ Kiel 2007 Referent: Prof. Dr. H. G. Schuster Koreferent(en): Prof. Dr. G. Pfister Tagderm¨undlichenPr¨ufung: 4.Dezember2007 ZumDruckgenehmigt: Kiel,den12.Dezember2007 gez. Prof. Dr. J. Grotemeyer (Dekan) Contents Abstract 1 Kurzfassung 2 1 Introduction 3 1.1 Motivation................................... 3 1.1.1 StatisticalPhysicsandBiologicalSystems . ...... 3 1.1.1.1 Statistical Physics and Evolutionary Dynamics . ... 4 1.1.2 Outline ................................ 7 1.2 GameTheory ................................. 8 1.2.1 ClassicalGameTheory. .. .. .. .. .. .. .. 8 1.2.1.1 TheMatchingPenniesGame . 11 1.2.1.2 ThePrisoner’sDilemmaGame . 13 1.2.2 From Classical Game Theory to Evolutionary Game Theory.... 16 1.3 EvolutionaryDynamics. 18 1.3.1 Introduction.............................. 18 1.3.2 ReplicatorDynamics . 22 1.3.3 GamesinFinitePopulations . 25 1.4 SurveyofthePublications . 29 1.4.1 StochasticGaininPopulationDynamics. ... 29 1.4.2 StochasticGaininFinitePopulations . ... 31 1.4.3 Impact of Fraud on the Mean-Field Dynamics of Cooperative Social Systems................................ 36 2 Publications 41 2.1 Stochasticgaininpopulationdynamics . ..... 42 2.2 Stochasticgaininfinitepopulations . ..... 47 2.3 Impact of fraud on the mean-field dynamics of cooperative socialsystems . 54 Contents II 3 Discussion 63 3.1 ConclusionsandOutlook . 63 Bibliography 67 Curriculum Vitae 78 Selbstandigkeitserkl¨ arung¨ 79 Abstract Evolutionary dynamics is an essential component of a mathematical and computational ap- proach to biology. In recent years the mathematical description of evolution has moved to a description of any kind of process where information is being reproduced in a natural envi- ronment. In this manner everything that lives is a product of evolutionary dynamics.
    [Show full text]
  • Econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Banerjee, Abhijit; Weibull, Jörgen W. Working Paper Evolution and Rationality: Some Recent Game- Theoretic Results IUI Working Paper, No. 345 Provided in Cooperation with: Research Institute of Industrial Economics (IFN), Stockholm Suggested Citation: Banerjee, Abhijit; Weibull, Jörgen W. (1992) : Evolution and Rationality: Some Recent Game-Theoretic Results, IUI Working Paper, No. 345, The Research Institute of Industrial Economics (IUI), Stockholm This Version is available at: http://hdl.handle.net/10419/95198 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Ind ustriens Utred n i ngsi nstitut THE INDUSTRIAL INSTITUTE FOR ECONOMIC AND SOCIAL RESEARCH A list of Working Papers on the last pages No.
    [Show full text]
  • Introduction to Game Theory I
    Introduction to Game Theory I Presented To: 2014 Summer REU Penn State Department of Mathematics Presented By: Christopher Griffin [email protected] 1/34 Types of Game Theory GAME THEORY Classical Game Combinatorial Dynamic Game Evolutionary Other Topics in Theory Game Theory Theory Game Theory Game Theory No time, doesn't contain differential equations Notion of time, may contain differential equations Games with finite or Games with no Games with time. Modeling population Experimental / infinite strategy space, chance. dynamics under Behavioral Game but no time. Games with motion or competition Theory Generally two player a dynamic component. Games with probability strategic games Modeling the evolution Voting Theory (either induced by the played on boards. Examples: of strategies in a player or the game). Optimal play in a dog population. Examples: Moves change the fight. Chasing your Determining why Games with coalitions structure of a game brother across a room. Examples: altruism is present in or negotiations. board. The evolution of human society. behaviors in a group of Examples: Examples: animals. Determining if there's Poker, Strategic Chess, Checkers, Go, a fair voting system. Military Decision Nim. Equilibrium of human Making, Negotiations. behavior in social networks. 2/34 Games Against the House The games we often see on television fall into this category. TV Game Shows (that do not pit players against each other in knowledge tests) often require a single player (who is, in a sense, playing against The House) to make a decision that will affect only his life. Prize is Behind: 1 2 3 Choose Door: 1 2 3 1 2 3 1 2 3 Switch: Y N Y N Y N Y N Y N Y N Y N Y N Y N Win/Lose: L W W L W L W L L W W L W L W L L W The Monty Hall Problem Other games against the house: • Blackjack • The Price is Right 3/34 Assumptions of Multi-Player Games 1.
    [Show full text]
  • The Interface Theory of Perception
    !1 The Interface Theory of Perception (To appear in The Stevens' Handbook of Experimental Psychology and Cognitive Neuroscience) DONALD D. HOFFMAN ABSTRACT Our perceptual capacities are products of evolution and have been shaped by natural selection. It is often assumed that natural selection favors veridical perceptions, namely, perceptions that accurately describe those aspects of the environment that are crucial to survival and reproductive fitness. However, analysis of perceptual evolution using evolutionary game theory reveals that veridical perceptions are generically driven to extinction by equally complex non-veridical perceptions that are tuned to the relevant fitness functions. Veridical perceptions are not, in general, favored by natural selection. This result requires a comprehensive reframing of perceptual theory, including new accounts of illusions and hallucinations. This is the intent of the interface theory of perception, which proposes that our perceptions have been shaped by natural selection to hide objective reality and instead to give us species-specific symbols that guide adaptive behavior in our niche. INTRODUCTION Our biological organs — such as our hearts, livers, and bones — are products of evolution. So too are our perceptual capacities — our ability to see an apple, smell an orange, touch a grapefruit, taste a carrot and hear it crunch when we take a bite. Perceptual scientists take this for granted. But it turns out to be a nontrivial fact with surprising consequences for our understanding of perception. The
    [Show full text]
  • Navigating the Landscape of Multiplayer Games ✉ Shayegan Omidshafiei 1,4 , Karl Tuyls1,4, Wojciech M
    ARTICLE https://doi.org/10.1038/s41467-020-19244-4 OPEN Navigating the landscape of multiplayer games ✉ Shayegan Omidshafiei 1,4 , Karl Tuyls1,4, Wojciech M. Czarnecki2, Francisco C. Santos3, Mark Rowland2, Jerome Connor2, Daniel Hennes 1, Paul Muller1, Julien Pérolat1, Bart De Vylder1, Audrunas Gruslys2 & Rémi Munos1 Multiplayer games have long been used as testbeds in artificial intelligence research, aptly referred to as the Drosophila of artificial intelligence. Traditionally, researchers have focused on using well-known games to build strong agents. This progress, however, can be better 1234567890():,; informed by characterizing games and their topological landscape. Tackling this latter question can facilitate understanding of agents and help determine what game an agent should target next as part of its training. Here, we show how network measures applied to response graphs of large-scale games enable the creation of a landscape of games, quanti- fying relationships between games of varying sizes and characteristics. We illustrate our findings in domains ranging from canonical games to complex empirical games capturing the performance of trained agents pitted against one another. Our results culminate in a demonstration leveraging this information to generate new and interesting games, including mixtures of empirical games synthesized from real world games. 1 DeepMind, Paris, France. 2 DeepMind, London, UK. 3 INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal. 4These authors ✉ contributed equally: Shayegan Omidshafiei, Karl Tuyls. email: somidshafi[email protected] NATURE COMMUNICATIONS | (2020) 11:5603 | https://doi.org/10.1038/s41467-020-19244-4 | www.nature.com/naturecommunications 1 ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-19244-4 ames have played a prominent role as platforms for the games.
    [Show full text]
  • Evolutionary Game Theory: a Renaissance
    games Review Evolutionary Game Theory: A Renaissance Jonathan Newton ID Institute of Economic Research, Kyoto University, Kyoto 606-8501, Japan; [email protected] Received: 23 April 2018; Accepted: 15 May 2018; Published: 24 May 2018 Abstract: Economic agents are not always rational or farsighted and can make decisions according to simple behavioral rules that vary according to situation and can be studied using the tools of evolutionary game theory. Furthermore, such behavioral rules are themselves subject to evolutionary forces. Paying particular attention to the work of young researchers, this essay surveys the progress made over the last decade towards understanding these phenomena, and discusses open research topics of importance to economics and the broader social sciences. Keywords: evolution; game theory; dynamics; agency; assortativity; culture; distributed systems JEL Classification: C73 Table of contents 1 Introduction p. 2 Shadow of Nash Equilibrium Renaissance Structure of the Survey · · 2 Agency—Who Makes Decisions? p. 3 Methodology Implications Evolution of Collective Agency Links between Individual & · · · Collective Agency 3 Assortativity—With Whom Does Interaction Occur? p. 10 Assortativity & Preferences Evolution of Assortativity Generalized Matching Conditional · · · Dissociation Network Formation · 4 Evolution of Behavior p. 17 Traits Conventions—Culture in Society Culture in Individuals Culture in Individuals · · · & Society 5 Economic Applications p. 29 Macroeconomics, Market Selection & Finance Industrial Organization · 6 The Evolutionary Nash Program p. 30 Recontracting & Nash Demand Games TU Matching NTU Matching Bargaining Solutions & · · · Coordination Games 7 Behavioral Dynamics p. 36 Reinforcement Learning Imitation Best Experienced Payoff Dynamics Best & Better Response · · · Continuous Strategy Sets Completely Uncoupled · · 8 General Methodology p. 44 Perturbed Dynamics Further Stability Results Further Convergence Results Distributed · · · control Software and Simulations · 9 Empirics p.
    [Show full text]
  • Beyond Competition in Evolution and Social Learning Communities
    Beyond Competition in Evolution and Social Learning communities. Jordan Pollack Brandeis University DEMO.CS.BRANDEIS.EDU EUCognition January 2008 My Lab’s Research ! How do biological systems progress without a designer? ! Can we understand open- ended evolution in enough formal detail to replicate the process using computer technology? ! What are beneficial applications? Demo.cs.brandeis.edu 1 Co-Evolution as Arms-race ! In Nature, Co-evolution means contingent development between species. ! But in Machine Learning the goal is an unstoppable “arms race” towards complexity. Demo.cs.brandeis.edu Canonical Coev. Algorithm Initialize random “genotypes” Pop. Evaluate Members Fitness computed By complete mixing y Output Done? Fittest Individuals n Select Parents New Generation Generate/Insert Offspring Demo.cs.brandeis.edu 2 Open-ended Evolution as Learning by Playing a game Detects Invents “tells” The Bluff (signals) Learns Knows probabilities what to draw Demo.cs.brandeis.edu Co-evolutionary Success Stories ! Prisoner Dilemma (Axelrod & Forrest) ! Pursuer Evader (Cliff, Reynolds …) ! Sorting Nets (Hillis, Juille) ! Game Players (Rosin, Angeline, Tesauro, Blair, Fogel) ! Cell Automata Rules (Packard, Juille) ! Robotics (Sims, Floreano, Funes, Lipson, Hornby) ! Education Technology (Sklar, Bader-Natal) (My students) Demo.cs.brandeis.edu 3 Coevolutionary Robots Evolutionary Computing Virtual Reality Simulation Artificial Lifeforms Demo.cs.brandeis.edu Can we turn Virtual Creatures Real? 3d Printing Machine 1999=$50,000 2009= $5000 CNC, CIM,
    [Show full text]
  • Game Theory and Evolutionary Biology 1
    Chapter 28 GAME THEORY AND EVOLUTIONARY BIOLOGY PETER HAMMERSTEIN Max-Planck-Institut für Verhaltensphysiologie REINHARD SELTEN University of Bonn Contents 1. Introduction 931 2. Conceptual background 932 2.1. Evolutionary stability 932 2.2. The Darwinian view of natural selection 933 2.3. Payoffs 934 2.4. Game theory and population genetics 935 2.5. Players 936 2.6. Symmetry 936 3. Symmetric two-person games 937 3.1. Definitions and notation 937 3.2. The Hawk-Dove garne 937 3.3. Evolutionary stability 938 3.4. Properties ofevolutionarily stable strategies 940 4. Playing the field 942 5. Dynamic foundations 948 5.1. Replicator dynamics 948 5.2. Disequilibrium results 951 5.3. A look at population genetics 952 6. Asymmetric conflicts 962 * We are grateful to Olof Leimar, Sido Mylius, Rolf Weinzierl, Franjo Weissing, and an anonymous referee who all helped us with their critical comments. We also thank the Institute for Advanced Study Berlin for supporting the final revision of this paper. Handbook of Garne Theory, Volume 2, Edited by R.J. Aumann and S. Hart © Elsevier Science B.V., 1994. All rights reserved 930 P. Hammerstein and R. Selten 7. Extensive two-person games 965 7.1. Extensive garnes 965 7.2. Symmetric extensive garnes 966 7.3. Evolutionary stability 968 7.4. Image confrontation and detachment 969 7.5. Decomposition 970 8. Biological applications 971 8.1. Basic qnestions about animal contest behavior 972 8.2. Asymmetric animal contests 974 8.3. War of attrition, assessment, and signalling 978 8.4. The evolution of cooperation 980 8.5.
    [Show full text]
  • Game Theory: Penn State Math 486 Lecture Notes
    Game Theory: Penn State Math 486 Lecture Notes Version 1.1.1 Christopher Griffin « 2010-2011 Licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License With Major Contributions By: James Fam George Kesidis Contents List of Figuresv Chapter 1. Preface and an Introduction to Game Theory xi 1. Using These Notes xi 2. An Overview of Game Theory xi Chapter 2. Probability Theory and Games Against the House1 1. Probability1 2. Random Variables and Expected Values6 3. Conditional Probability7 4. Bayes Rule 12 Chapter 3. Utility Theory 15 1. Decision Making Under Certainty 15 2. Advanced Decision Making under Uncertainty 23 Chapter 4. Game Trees, Extensive Form, Normal Form and Strategic Form 25 1. Graphs and Trees 25 2. Game Trees with Complete Information and No Chance 28 3. Game Trees with Incomplete Information 32 4. Games of Chance 35 5. Pay-off Functions and Equilibria 37 Chapter 5. Normal and Strategic Form Games and Matrices 47 1. Normal and Strategic Form 47 2. Strategic Form Games 48 3. Review of Basic Matrix Properties 50 4. Special Matrices and Vectors 52 5. Strategy Vectors and Matrix Games 53 Chapter 6. Saddle Points, Mixed Strategies and the Minimax Theorem 57 1. Saddle Points 57 2. Zero-Sum Games without Saddle Points 60 3. Mixed Strategies 63 4. Mixed Strategies in Matrix Games 66 5. Dominated Strategies and Nash Equilibria 66 6. The Minimax Theorem 71 7. Finding Nash Equilibria in Simple Games 76 8. A Note on Nash Equilibria in General 79 iii Chapter 7. An Introduction to Optimization and the Karush-Kuhn-Tucker Conditions 81 1.
    [Show full text]
  • Regulatory Analysis Form
    REVISED 12/16 Regulatory Analysis Form (Completed by Promulgating Agency) APR 6 2021 (MI Comments submitted on this regulation Will appear on IRRC’s websfte) (1) Agency: Independent Regulatory . Review Commission Department of Environmental Protection (2) Agency Number: 7 IRRC Number: 3227 Identification Number: 533 (3) PA Code Cite: 25 Pa. Code Chapter 91 (General Provisions) 25 Pa. Code Chapter 92a (National Pollutant Discharge Elimination System Permitting. Monitoring and Compliance) (4) Short Title: Water Quality Management (WQM) and National Pollution Discharge Elimination System (NPDES) Permit Application Fees and Annual Fees (5) Agency Contacts (List Telephone Number and Email Address): Primary Contact: Laura Griffin, (717) 772-3277, laurgriffipa.gov Secondary Contact: Jessica Shirley, (717) 783-8727, jesshirleypa.gov (6) Type of Rulemaking (check applicable box): H Proposed Regulation H Emergency Certification Regulation; Final Regulation H Certification by the Governor H Final Omitted Regulation H Certification by the Attorney General (7) Briefly explain the regulation in clear and nontechnical language. (100 words or less) This final-form rulemaking adjusts the fee schedules for permit applications, Notices of Intent (NOls), and annual fees contained in 25 Pa. Code § 91.22, 92a.26, and 92a.62. The Clean Streams Law requires the Department of Environmental Protection (DEP or Department) to develop and implement a permitting program to prevent and eliminate water pollution within the Commonwealth and authorizes the Department to charge and collect reasonable filing fees for applications filed and for permits issued. 35 P.S. § 691.4— 691.6. These fees support the whole range of activities involved with water quality protection by the Department.
    [Show full text]
  • Evolutionary Game Theory
    Game Theory and Evolution 02-251 Spring 2019 Much of this material is derived from the book Evolutionary Dynamics by Martin A. Nowak. 1. Evolutionary Games When looking at genetic algorithms, our fitness was a function only of the individual. It didn't take into account the other individuals in the environment. This is unrealistic. Evolution can be a competitive or cooperative process. An bird evolves a beak that can reach particular insects, insects evolve a poison to avoid being eaten by the bird, etc. Cells in a cancer tumor evolve to avoid particular treatments. A virus evolves to avoid a vaccine. A bacteria evolves to not be susceptible to antibiotics. Organisms are evolving various strategies in games of competition and cooperation. This leads to the use of game theory to try to model observed evolutionary phenomena. As with our model of evolution based on NAND gates, these game-theoretic models are idealized and omit many aspects of real evolution. By doing this, we can hope to gain some understanding about fundamental evolutionary principles. \Game theory" was introduced by John von Neumann, a mathematician (and computer scientist before that was a thing). He was one of the architects of the first computers. He also coined the terms \transcription" and \translation". 1.1 Two-player games • A two-player is given by a payoff grid P where the rows and columns represent actions that the players can take. • In each cell of the grid, there are two numbers rij; cij. • There is a \row" player and a \column" player (hence the name \two player") • The row player chooses a row i, the column player chooses a column j, and the row player wins rij and the column player wins cij.
    [Show full text]