Types of Evolutionary Stability and the Problem of Cooperation

Total Page:16

File Type:pdf, Size:1020Kb

Types of Evolutionary Stability and the Problem of Cooperation Proc. Natl. Acad. Sci. USA Vol. 92, pp. 3596-3600, April 1995 Evolution Types of evolutionary stability and the problem of cooperation (evolution of cooperation/evolutionary game theory/evolutionarily stable strategies/iterated prisoner's dilemma/tit for tat) JONATHAN BENDORt AND PIOTR SWISTAKt tGraduate School of Business, Stanford University, Stanford, CA 94305-5015; and *Department of Government and Politics, University of Maryland, College Park, MD 20742-8221 Communicated by Robert Axelrod, University of Michigan, Ann Arbor, MI, November 14, 1994 ABSTRACT The evolutionary stability ofcooperation is a choices, to cooperate or defect; the same payoff matrix de- problem of fundamental importance for the biological and scribes the outcomes of these choices in all periods. The players social sciences. Different claims have been made about this observe each others' choices. A pure strategy in a repeated issue: whereas Axelrod and Hamilton's [Axelrod, R. & Ham- game between two players specifies an action for one player in ilton, W. (1981) Science 211, 1390-1398] widely recognized a current period as a function of the two players' past sequence conclusion is that cooperative rules such as "tit for tat" are of moves. A mixed strategy is a probability distribution on a set evolutionarily stable strategies in the iterated prisoner's of pure strategies. In dynamical analyses, it is assumed that dilemma (IPD), Boyd and Lorberbaum [Boyd, R. & Lorber- strategies that obtain higher payoffs reproduce at a higher rate. baum, J. (1987) Nature (London) 327, 58-59] have claimed (See ref. 7 for a discussion of the standard model and of its that no pure strategy is evolutionarily stable in this game. modifications.) Here we explain why these claims are not contradictory by In the one-shot PD when one player cooperates while the showing in what sense strategies in the IPD can and cannot be other defects, denote the payoff to the defector as T and the stable and by creating a conceptual framework that yields the cooperator as S; their payoff is R when both cooperate and P type of evolutionary stability attainable in the IPD and in when both defect. The PD structure of the game is given by the repeated games in general. Having established the relevant assumption that T > R > P > S. In the repeated version we concept of stability, we report theorems on some basic prop- further assume that 2R > T + S. The essence of the dilemma erties of strategies that are stable in this sense. We first show in a one-shot PD is that defection yields a higher payoff that the IPD has "too many" such strategies, so that being regardless of the opponent's action (T > R and P > S), yet stable does not discriminate among behavioral rules. Stable mutual defection is less rewarding than mutual cooperation (P strategies differ, however, on a property that is crucial for < R). Thus, in a one-shot PD, defection is the unique their evolutionary survival-the size of the invasion they can equilibrium strategy. Likewise perpetual defection is the resist. This property can be interpreted as a strategy's evo- unique best strategy when the game is iterated but the future lutionary robustness. Conditionally cooperative strategies does not matter "too much"; i.e., when w, the probability of such as tit for tat are the most robust. Cooperative behavior playing one more round, is low. The emergence and stability supported by these strategies is the most robust evolutionary of cooperation become meaningful issues only when w is equilibrium: the easiest to attain, and the hardest to disrupt. sufficiently large. Evolutionary Stability as Defined by Payoff Conditions: In the last decade, one of the most famous theoretical prob- Conceptual Issues lems of the biological and social sciences-how humans and other animals can cooperate despite temptations to defect- In games where w is sufficiently large, the conventional wisdom has attracted much interest. The issue has been approached via had been that conditionally cooperative strategies such as TFIl a new framework, evolutionary game theory, which has pro- are evolutionarily stable. This point was first made by Axelrod vided one of the most interesting ways of thinking about this and Hamilton (4) in their celebrated article in Science. The problem. However, different claims have been made about the claim-a deductive one-was backed by a proof showing that evolutionary stability of cooperation, and these solutions seem for all strategies j, V(TF[, TFT) 2 V(j,TFT), where V(i, j) to contradict each other. Several well-known though appar- denotes strategy i's payoffwhen it plays strategyj. (We use this ently incongruent results have been reported in many re- framing of the result, since this payoff condition was later nowned books (1-3) and journals (4-8). Clearly, those who adopted by Axelrod to define collective stability; see Eq. 1.) claim tit for tat (TFT) to be evolutionarily stable and those who This, however, does not imply that TFT meets Maynard claim it is not cannot both be right-if,.of course, they are using Smith's condition (see Eq. 2) for an evolutionarily stable the same concept of stability. Our first objective, then, is to strategy. clarify these seemingly contradictory claims by showing in what Indeed, Axelrod later (2, 6) distinguished collective stability sense strategies are and are not stable in the iterated prisoner's from evolutionary stability, defining strategy i as collectively dilemma (IPD) and other repeated games. Our second objec- stable if for all strategies j, tive is to report theorems, within the clarified conceptual framework, that establish some basic properties of strategies V(i, i) V(j, i). [1] which are stable in the IPD. The problem of cooperation among unrelated animals is On the other hand, by Maynard Smith's condition, strategy i is typically (1, 2, 4-6, 9-11) modeled as a population of indi- evolutionarily stable if, for all strategies j 0 i, viduals engaged in random pairwise prisoner's dilemmas V(i, i) 2 i), and if V(i, i) = V(j, i), (PDs). The players have a constant probability, w, of meeting V(j, in the next period (0 < w < 1). In each period there are two then V(i,j) > V(j, j). [2] The publication costs of this article were defrayed in part by page charge Abbreviations: PD, prisoner's dilemma; IPD, iterated PD; TFT, tit for payment. This article must therefore be hereby marked "advertisement" in tat; TF2T, tit for two tats; STFT, suspicious TFT; PFR, proportional accordance with 18 U.S.C. §1734 solely to indicate this fact. fitness rule. 3596 Downloaded by guest on October 1, 2021 Evolution: Bendor and Swistak Proc. Natl. Acad. Sci. USA 92 (1995) 3597 In fact, while Axelrod turned to distinguishing collective from three strategies-and a sufficiently high w, of course-TF2T evolutionary stability, others kept referring to TFT as evolu- has the highest fitness. tionarily stable in the standard sense of condition 2. Perhaps Yet what Boyd and Lorberbaum (5) have shown is not the most conspicuous example here is John Maynard Smith. In directly related to condition 1, 2, or 3. What they have proved his seminal work (1), Maynard Smith reported the Axelrod- is that any pure strategy, no matter how common in the Hamilton finding about TFT (ref. 1, pp. 167-168) and, having population, can be outscored by some strategy in an invading reproduced their proof, concluded that it shows that TFT is an group of mutants. (The assumption of heterogeneous mutants evolutionarily stable strategy. The idea that cooperation can be is essential for Boyd and Lorberbaum's result. If there is only made evolutionarily stable via reciprocity has been further one type of mutant strategy in the population, then TFT is disseminated by the exceptionally influential books of Axelrod indeed unbeatable for sufficiently large w.) Hence Boyd and (2) and Dawkins (3). Lorberbaum refer to an evolutionarily stable strategy as one Meanwhile, however, researchers started pointing out some which, once sufficiently frequent, is unbeatable. In general, problems. One problem related to condition 2, for instance, is however, satisfying Maynard Smith's condition 2 does not that neither TFT nor any other pure strategy in the IPD can imply unbeatability. This difference between Boyd and Lor- satisfy it. Selten and Hammerstein (12) pointed this out about berbaum's notion of stability and that implied by condition 2 TFT: if a neutral mutant strategy, such as tit for two tats becomes clear when we note that a strategy which is stable in (TF2T), invades a population of TFTs, all strategies will Boyd and Lorberbaum's sense-one that, when sufficiently cooperate with all; hence, all will score the same in all games. common, is maximally fit-can be equivalently described by This, of course, violates condition 2, since this condition's the following condition 4. (The easy proof is left to the reader.) second part requires strict inequality. And this problem is not We will say that strategy i meets condition 4 if for all strategies created by some arcane construction: every nice strategy-one J, that never defects first-is a neutral mutant of TFT. While Maynard Smith's condition 2 cannot be met by any V(i, i) 2 V(j, i), and if V(i, i) = V(j, i), pure strategy in the IPD, the following weaker version of condition 2 can. We will say that i meets condition 3 if for all then for allj*, V(i,j*) 2 V(j,j*). [4] strategies j, It is now easy to see how conditions 1-4 relate to one V(i, i) 2 V(j, i), and if V(i, i) = V(j, i), another.
Recommended publications
  • Evolutionary Game Theory: ESS, Convergence Stability, and NIS
    Evolutionary Ecology Research, 2009, 11: 489–515 Evolutionary game theory: ESS, convergence stability, and NIS Joseph Apaloo1, Joel S. Brown2 and Thomas L. Vincent3 1Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, Nova Scotia, Canada, 2Department of Biological Sciences, University of Illinois, Chicago, Illinois, USA and 3Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, Arizona, USA ABSTRACT Question: How are the three main stability concepts from evolutionary game theory – evolutionarily stable strategy (ESS), convergence stability, and neighbourhood invader strategy (NIS) – related to each other? Do they form a basis for the many other definitions proposed in the literature? Mathematical methods: Ecological and evolutionary dynamics of population sizes and heritable strategies respectively, and adaptive and NIS landscapes. Results: Only six of the eight combinations of ESS, convergence stability, and NIS are possible. An ESS that is NIS must also be convergence stable; and a non-ESS, non-NIS cannot be convergence stable. A simple example shows how a single model can easily generate solutions with all six combinations of stability properties and explains in part the proliferation of jargon, terminology, and apparent complexity that has appeared in the literature. A tabulation of most of the evolutionary stability acronyms, definitions, and terminologies is provided for comparison. Key conclusions: The tabulated list of definitions related to evolutionary stability are variants or combinations of the three main stability concepts. Keywords: adaptive landscape, convergence stability, Darwinian dynamics, evolutionary game stabilities, evolutionarily stable strategy, neighbourhood invader strategy, strategy dynamics. INTRODUCTION Evolutionary game theory has and continues to make great strides.
    [Show full text]
  • In the Light of Evolution VIII: Darwinian Thinking in the Social Sciences Brian Skyrmsa,1, John C
    FROM THE ACADEMY: COLLOQUIUM INTRODUCTION COLLOQUIUM INTRODUCTION In the light of evolution VIII: Darwinian thinking in the social sciences Brian Skyrmsa,1, John C. Aviseb,1, and Francisco J. Ayalab,1 norms are seen as a society’s way of coor- aDepartment of Logic and Philosophy of Science and bDepartment of Ecology and dinating on one of these equilibria. This, Evolutionary Biology, University of California, Irvine, CA 92697 rather than enforcement of out-of-equilibrium behavior, is seen as the function of these Darwinian thinking in the social sciences was Evolutionary game theory was initially norms. Fairness norms, however, may involve inaugurated by Darwin himself in The De- seen by some social scientists as just a way interpersonal comparisons of utility. This is scent of Man and Selection in Relation to to provide a low rationality foundation for true of egalitarian norms, and of the norms Sex high rationality equilibrium concepts. A Nash of proportionality suggested by Aristotle. In (8, 9). Despite various misappropriations ’ of the Darwinian label, true Darwinian think- equilibrium is a rest point of a large class of Binmore s account, the standards for such ing continued in the social sciences. However, adaptive dynamics. If the dynamics converges interpersonal comparisons themselves evolve. toarestpoint,itconvergestoNash.Thismay Komarova(22),inanarticlethatcould with the advent of evolutionary game theory Social Dynamics (10) there has been an explosion of Darwin- nothappeninallgames,butitmayhappen equally well be in ,discusses ian analysis in the social sciences. And it has in large classes of games, depending on the the speed evolution of complex phenotypes in led to reciprocal contributions from the social dynamics in question.
    [Show full text]
  • Econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Banerjee, Abhijit; Weibull, Jörgen W. Working Paper Evolution and Rationality: Some Recent Game- Theoretic Results IUI Working Paper, No. 345 Provided in Cooperation with: Research Institute of Industrial Economics (IFN), Stockholm Suggested Citation: Banerjee, Abhijit; Weibull, Jörgen W. (1992) : Evolution and Rationality: Some Recent Game-Theoretic Results, IUI Working Paper, No. 345, The Research Institute of Industrial Economics (IUI), Stockholm This Version is available at: http://hdl.handle.net/10419/95198 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu Ind ustriens Utred n i ngsi nstitut THE INDUSTRIAL INSTITUTE FOR ECONOMIC AND SOCIAL RESEARCH A list of Working Papers on the last pages No.
    [Show full text]
  • 8. Maxmin and Minmax Strategies
    CMSC 474, Introduction to Game Theory 8. Maxmin and Minmax Strategies Mohammad T. Hajiaghayi University of Maryland Outline Chapter 2 discussed two solution concepts: Pareto optimality and Nash equilibrium Chapter 3 discusses several more: Maxmin and Minmax Dominant strategies Correlated equilibrium Trembling-hand perfect equilibrium e-Nash equilibrium Evolutionarily stable strategies Worst-Case Expected Utility For agent i, the worst-case expected utility of a strategy si is the minimum over all possible Husband Opera Football combinations of strategies for the other agents: Wife min u s ,s Opera 2, 1 0, 0 s-i i ( i -i ) Football 0, 0 1, 2 Example: Battle of the Sexes Wife’s strategy sw = {(p, Opera), (1 – p, Football)} Husband’s strategy sh = {(q, Opera), (1 – q, Football)} uw(p,q) = 2pq + (1 – p)(1 – q) = 3pq – p – q + 1 We can write uw(p,q) For any fixed p, uw(p,q) is linear in q instead of uw(sw , sh ) • e.g., if p = ½, then uw(½,q) = ½ q + ½ 0 ≤ q ≤ 1, so the min must be at q = 0 or q = 1 • e.g., minq (½ q + ½) is at q = 0 minq uw(p,q) = min (uw(p,0), uw(p,1)) = min (1 – p, 2p) Maxmin Strategies Also called maximin A maxmin strategy for agent i A strategy s1 that makes i’s worst-case expected utility as high as possible: argmaxmin ui (si,s-i ) si s-i This isn’t necessarily unique Often it is mixed Agent i’s maxmin value, or security level, is the maxmin strategy’s worst-case expected utility: maxmin ui (si,s-i ) si s-i For 2 players it simplifies to max min u1s1, s2 s1 s2 Example Wife’s and husband’s strategies
    [Show full text]
  • 14.12 Game Theory Lecture Notes∗ Lectures 7-9
    14.12 Game Theory Lecture Notes∗ Lectures 7-9 Muhamet Yildiz Intheselecturesweanalyzedynamicgames(withcompleteinformation).Wefirst analyze the perfect information games, where each information set is singleton, and develop the notion of backwards induction. Then, considering more general dynamic games, we will introduce the concept of the subgame perfection. We explain these concepts on economic problems, most of which can be found in Gibbons. 1 Backwards induction The concept of backwards induction corresponds to the assumption that it is common knowledge that each player will act rationally at each node where he moves — even if his rationality would imply that such a node will not be reached.1 Mechanically, it is computed as follows. Consider a finite horizon perfect information game. Consider any node that comes just before terminal nodes, that is, after each move stemming from this node, the game ends. If the player who moves at this node acts rationally, he will choose the best move for himself. Hence, we select one of the moves that give this player the highest payoff. Assigning the payoff vector associated with this move to the node at hand, we delete all the moves stemming from this node so that we have a shorter game, where our node is a terminal node. Repeat this procedure until we reach the origin. ∗These notes do not include all the topics that will be covered in the class. See the slides for a more complete picture. 1 More precisely: at each node i the player is certain that all the players will act rationally at all nodes j that follow node i; and at each node i the player is certain that at each node j that follows node i the player who moves at j will be certain that all the players will act rationally at all nodes k that follow node j,...ad infinitum.
    [Show full text]
  • Proquest Dissertations
    Sons of Barabbas or Sons of Descartes? An evolutionary game-theoretic view of psychopathy by Lloyd D. Balbuena A thesis submitted to the Faculty of Graduate Studies and Postdoctoral Affairs in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Cognitive Science Carleton University Ottawa, Ontario ©2010, Lloyd D. Balbuena Library and Archives Bibliotheque et 1*1 Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington OttawaONK1A0N4 OttawaONK1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-79631-3 Our file Notre reference ISBN: 978-0-494-79631-3 NOTICE: AVIS: The author has granted a non­ L'auteur a accorde une licence non exclusive exclusive license allowing Library and permettant a la Bibliotheque et Archives Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, preter, telecommunication or on the Internet, distribuer et vendre des theses partout dans le loan, distribute and sell theses monde, a des fins commerciales ou autres, sur worldwide, for commercial or non­ support microforme, papier, electronique et/ou commercial purposes, in microform, autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in this et des droits moraux qui protege cette these. Ni thesis. Neither the thesis nor la these ni des extraits substantiels de celle-ci substantial extracts from it may be ne doivent etre imprimes ou autrement printed or otherwise reproduced reproduits sans son autorisation.
    [Show full text]
  • On the Behavior of Strategies in Hawk-Dove Game
    Journal of Game Theory 2016, 5(1): 9-15 DOI: 10.5923/j.jgt.20160501.02 On the Behavior of Strategies in Hawk-Dove Game Essam EL-Seidy Department of Mathematics, Faculty of Science, Ain Shams University, Cairo, Egypt Abstract The emergence of cooperative behavior in human and animal societies is one of the fundamental problems in biology and social sciences. In this article, we study the evolution of cooperative behavior in the hawk dove game. There are some mechanisms like kin selection, group selection, direct and indirect reciprocity can evolve the cooperation when it works alone. Here we combine two mechanisms together in one population. The transformed matrices for each combination are determined. Some properties of cooperation like risk-dominant (RD) and advantageous (AD) are studied. The property of evolutionary stable (ESS) for strategies used in this article is discussed. Keywords Hawk-dove game, Evolutionary game dynamics, of evolutionary stable strategies (ESS), Kin selection, Direct and Indirect reciprocity, Group selection difference between both games has a rather profound effect 1. Introduction on the success of both strategies. In particular, whilst by the Prisoner’s Dilemma spatial structure often facilitates Game theory provides a quantitative framework for cooperation this is often not the case in the hawk–dove game analyzing the behavior of rational players. The theory of ([14]). iterated games in particular provides a systematic framework The Hawk-Dove game ([18]), also known as the snowdrift to explore the players' relationship in a long-term. It has been game or the chicken game, is used to study a variety of topics, an important tool in the behavioral and biological sciences from the evolution of cooperation to nuclear brinkmanship and it has been often invoked by economists, political ([8], [22]).
    [Show full text]
  • Contemporaneous Perfect Epsilon-Equilibria
    Games and Economic Behavior 53 (2005) 126–140 www.elsevier.com/locate/geb Contemporaneous perfect epsilon-equilibria George J. Mailath a, Andrew Postlewaite a,∗, Larry Samuelson b a University of Pennsylvania b University of Wisconsin Received 8 January 2003 Available online 18 July 2005 Abstract We examine contemporaneous perfect ε-equilibria, in which a player’s actions after every history, evaluated at the point of deviation from the equilibrium, must be within ε of a best response. This concept implies, but is stronger than, Radner’s ex ante perfect ε-equilibrium. A strategy profile is a contemporaneous perfect ε-equilibrium of a game if it is a subgame perfect equilibrium in a perturbed game with nearly the same payoffs, with the converse holding for pure equilibria. 2005 Elsevier Inc. All rights reserved. JEL classification: C70; C72; C73 Keywords: Epsilon equilibrium; Ex ante payoff; Multistage game; Subgame perfect equilibrium 1. Introduction Analyzing a game begins with the construction of a model specifying the strategies of the players and the resulting payoffs. For many games, one cannot be positive that the specified payoffs are precisely correct. For the model to be useful, one must hope that its equilibria are close to those of the real game whenever the payoff misspecification is small. To ensure that an equilibrium of the model is close to a Nash equilibrium of every possible game with nearly the same payoffs, the appropriate solution concept in the model * Corresponding author. E-mail addresses: [email protected] (G.J. Mailath), [email protected] (A. Postlewaite), [email protected] (L.
    [Show full text]
  • Bargaining with Neighbors: Is Justice Contagious? (1999)
    Journal of Philosophy, Inc. Bargaining with Neighbors: Is Justice Contagious? Author(s): Jason Alexander and Brian Skyrms Source: The Journal of Philosophy, Vol. 96, No. 11 (Nov., 1999), pp. 588-598 Published by: Journal of Philosophy, Inc. Stable URL: http://www.jstor.org/stable/2564625 Accessed: 12-05-2016 19:03 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://about.jstor.org/terms JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Journal of Philosophy, Inc. is collaborating with JSTOR to digitize, preserve and extend access to The Journal of Philosophy This content downloaded from 128.91.58.254 on Thu, 12 May 2016 19:03:20 UTC All use subject to http://about.jstor.org/terms 588 THEJOURNAL OF PHILOSOPHY BARGAINING WITH NEIGHBORS: IS JUSTICE CONTAGIOUS ? What is justice? The question is llarder to answer in some cases than in others. We focus on the easiest case of dis- tributive justice. Two individuals are to decide how to dis- tribute a windfall of a certain amount of money. Neither is especially entitled, or especially needy, or especially anything their positions are entirely symmetric. Their utilities derived from the dis- tribution may be taken, for all intents and purposes, simply as the amount of money received.
    [Show full text]
  • Introduction to Game Theory I
    Introduction to Game Theory I Presented To: 2014 Summer REU Penn State Department of Mathematics Presented By: Christopher Griffin [email protected] 1/34 Types of Game Theory GAME THEORY Classical Game Combinatorial Dynamic Game Evolutionary Other Topics in Theory Game Theory Theory Game Theory Game Theory No time, doesn't contain differential equations Notion of time, may contain differential equations Games with finite or Games with no Games with time. Modeling population Experimental / infinite strategy space, chance. dynamics under Behavioral Game but no time. Games with motion or competition Theory Generally two player a dynamic component. Games with probability strategic games Modeling the evolution Voting Theory (either induced by the played on boards. Examples: of strategies in a player or the game). Optimal play in a dog population. Examples: Moves change the fight. Chasing your Determining why Games with coalitions structure of a game brother across a room. Examples: altruism is present in or negotiations. board. The evolution of human society. behaviors in a group of Examples: Examples: animals. Determining if there's Poker, Strategic Chess, Checkers, Go, a fair voting system. Military Decision Nim. Equilibrium of human Making, Negotiations. behavior in social networks. 2/34 Games Against the House The games we often see on television fall into this category. TV Game Shows (that do not pit players against each other in knowledge tests) often require a single player (who is, in a sense, playing against The House) to make a decision that will affect only his life. Prize is Behind: 1 2 3 Choose Door: 1 2 3 1 2 3 1 2 3 Switch: Y N Y N Y N Y N Y N Y N Y N Y N Y N Win/Lose: L W W L W L W L L W W L W L W L L W The Monty Hall Problem Other games against the house: • Blackjack • The Price is Right 3/34 Assumptions of Multi-Player Games 1.
    [Show full text]
  • Emergence of Cooperation and Evolutionary Stability in Finite
    letters to nature populations may decrease cooperation and lead to more frequent 10. Clutton-Brock, T. H. et al. Selfish sentinels in cooperative mammals. Science 284, 1640–1644 (1999). escalations of conflicts in situations in which cooperation persists in 11. Seyfarth, R. M. & Cheney, D. L. Grooming alliances and reciprocal altruism in vervet monkeys. Nature 308, 541–543 (1984). well-mixed populations. Thus, spatial structure may not be as 12. Milinski, M. Tit for tat in sticklebacks and the evolution of cooperation. Nature 325, 433–435 (1987). universally beneficial for cooperation as previously thought. A 13. Milinski, M., Lu¨thi, J. H., Eggler, R. & Parker, G. A. Cooperation under predation risk: experiments on costs and benefits. Proc. R. Soc. Lond. B 264, 831–837 (1997). 14. Turner, P. E. & Chao, L. Prisoner’s dilemma in an RNA virus. Nature 398, 441–443 (1999). Methods 15. Heinsohn, R. & Parker, C. Complex cooperative strategies in group-territorial African lions. Science Spatial structure 269, 1260–1262 (1995). In our spatially structured populations, individuals are confined to sites on regular 16. Clutton-Brock, T. Breeding together: kin selection and mutualism in cooperative vertebrates. Science 100 £ 100 lattices with periodic boundary conditions, and interact with their neighbours. 296, 69–72 (2002). We used square lattices with N ¼ 4 and N ¼ 8 neighbours, hexagonal lattices (N ¼ 6) and 17. Hofbauer, J. & Sigmund, K. Evolutionary Games and Population Dynamics (Cambridge Univ. Press, triangular lattices (N ¼ 3). Whenever a site x is updated, a neighbour y is drawn at random Cambridge, UK, 1998). among all N neighbours; the chosen neighbour takes over site x with probability 18.
    [Show full text]
  • Extensive Form Games
    Extensive Form Games Jonathan Levin January 2002 1 Introduction The models we have described so far can capture a wide range of strategic environments, but they have an important limitation. In each game we have looked at, each player moves once and strategies are chosen simultaneously. This misses a common feature of many economic settings (and many classic “games” such as chess or poker). Consider just a few examples of economic environments where the timing of strategic decisions is important: • Compensation and Incentives. Firms first sign workers to a contract, then workers decide how to behave, and frequently firms later decide what bonuses to pay and/or which employees to promote. • Research and Development. Firms make choices about what tech- nologies to invest in given the set of available technologies and their forecasts about the future market. • Monetary Policy. A central bank makes decisions about the money supply in response to inflation and growth, which are themselves de- termined by individuals acting in response to monetary policy, and so on. • Entry into Markets. Prior to competing in a product market, firms must make decisions about whether to enter markets and what prod- ucts to introduce. These decisions may strongly influence later com- petition. These notes take up the problem of representing and analyzing these dy- namic strategic environments. 1 2TheExtensiveForm The extensive form of a game is a complete description of: 1. The set of players 2. Who moves when and what their choices are 3. What players know when they move 4. The players’ payoffs as a function of the choices that are made.
    [Show full text]