Effective Actions from String and M-Theory: Compactifications on G2-Manifolds and Dark Matter in the KL Moduli Stabilization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Compactifying M-Theory on a G2 Manifold to Describe/Explain Our World – Predictions for LHC (Gluinos, Winos, Squarks), and Dark Matter
Compactifying M-theory on a G2 manifold to describe/explain our world – Predictions for LHC (gluinos, winos, squarks), and dark matter Gordy Kane CMS, Fermilab, April 2016 1 OUTLINE • Testing theories in physics – some generalities - Testing 10/11 dimensional string/M-theories as underlying theories of our world requires compactification to four space-time dimensions! • Compactifying M-theory on “G2 manifolds” to describe/ explain our vacuum – underlying theory - fluxless sector! • Moduli – 4D manifestations of extra dimensions – stabilization - supersymmetry breaking – changes cosmology first 16 slides • Technical stuff – 18-33 - quickly • From the Planck scale to EW scale – 34-39 • LHC predictions – gluino about 1.5 TeV – also winos at LHC – but not squarks - 40-47 • Dark matter – in progress – surprising – 48 • (Little hierarchy problem – 49-51) • Final remarks 1-5 2 String/M theory a powerful, very promising framework for constructing an underlying theory that incorporates the Standard Models of particle physics and cosmology and probably addresses all the questions we hope to understand about the physical universe – we hope for such a theory! – probably also a quantum theory of gravity Compactified M-theory generically has gravity; Yang- Mills forces like the SM; chiral fermions like quarks and leptons; softly broken supersymmetry; solutions to hierarchy problems; EWSB and Higgs physics; unification; small EDMs; no flavor changing problems; partially observable superpartner spectrum; hidden sector DM; etc Simultaneously – generically Argue compactified M-theory is by far the best motivated, and most comprehensive, extension of the SM – gets physics relevant to the LHC and Higgs and superpartners right – no ad hoc inputs or free parameters Take it very seriously 4 So have to spend some time explaining derivations, testability of string/M theory Don’t have to be somewhere to test theory there – E.g. -
Introductory Lectures on Quantum Field Theory
Introductory Lectures on Quantum Field Theory a b L. Álvarez-Gaumé ∗ and M.A. Vázquez-Mozo † a CERN, Geneva, Switzerland b Universidad de Salamanca, Salamanca, Spain Abstract In these lectures we present a few topics in quantum field theory in detail. Some of them are conceptual and some more practical. They have been se- lected because they appear frequently in current applications to particle physics and string theory. 1 Introduction These notes are based on lectures delivered by L.A.-G. at the 3rd CERN–Latin-American School of High- Energy Physics, Malargüe, Argentina, 27 February–12 March 2005, at the 5th CERN–Latin-American School of High-Energy Physics, Medellín, Colombia, 15–28 March 2009, and at the 6th CERN–Latin- American School of High-Energy Physics, Natal, Brazil, 23 March–5 April 2011. The audience on all three occasions was composed to a large extent of students in experimental high-energy physics with an important minority of theorists. In nearly ten hours it is quite difficult to give a reasonable introduction to a subject as vast as quantum field theory. For this reason the lectures were intended to provide a review of those parts of the subject to be used later by other lecturers. Although a cursory acquaintance with the subject of quantum field theory is helpful, the only requirement to follow the lectures is a working knowledge of quantum mechanics and special relativity. The guiding principle in choosing the topics presented (apart from serving as introductions to later courses) was to present some basic aspects of the theory that present conceptual subtleties. -
Andrew Thomson Dissertation.Pdf
PHENOMENOLOGY OF COMPACTIFICATIONS OF M-THEORY ON MANIFOLDS OF G2 HOLONOMY by Andrew James Thomson Supervisor: Kelly Stelle A dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science of Imperial College London 24 September 2010 Contents I. Introduction 3 II. Holonomy and G2 manifolds 7 III. Chirality and singular manifolds 11 IV. Moduli stabilization and the hierarchy problem 14 V. Conclusion 17 References 19 2 I. Introduction The Standard Model is a phenomenally successful theory of particle physics, well tested at quantum mechanical level up to the TeV energy scale, and renormalizable (notwithstanding that the Higgs particle has not been observed yet) [1]. However there are several issues (or at least perceived ones) with the model. First of all, it only describes three of the four fundamental forces (the strong, electromagnetic and weak forces) in a quantum manner, leaving gravity still described only in a classical fashion; however we will not be concerned with this any further during this dissertation. The primary issue with which we will be concerned is the so-called hierarchy problem (also known as the weak-scale instability) – why there are two (electroweak and Planck) mass scales and why they are so far apart, why the electroweak scale is not modified at loop level by the Planck scale and whether there are any other scales between them. [1,2] One wonders why we should be concerned with as yet purely theoretical imperfections which have not yet manifested themselves in any experimental observations. One only has to look to the history of the standard model itself for a precedent for looking for physics beyond it – the earliest theories of the weak interaction, which were based on the interaction of four fermions at a point, broke down when calculated to higher order at the then unimaginably high energies of 300 GeV (Heisenberg 1939) before they had been violated by any observation. -
TASI 2008 Lectures: Introduction to Supersymmetry And
TASI 2008 Lectures: Introduction to Supersymmetry and Supersymmetry Breaking Yuri Shirman Department of Physics and Astronomy University of California, Irvine, CA 92697. [email protected] Abstract These lectures, presented at TASI 08 school, provide an introduction to supersymmetry and supersymmetry breaking. We present basic formalism of supersymmetry, super- symmetric non-renormalization theorems, and summarize non-perturbative dynamics of supersymmetric QCD. We then turn to discussion of tree level, non-perturbative, and metastable supersymmetry breaking. We introduce Minimal Supersymmetric Standard Model and discuss soft parameters in the Lagrangian. Finally we discuss several mech- anisms for communicating the supersymmetry breaking between the hidden and visible sectors. arXiv:0907.0039v1 [hep-ph] 1 Jul 2009 Contents 1 Introduction 2 1.1 Motivation..................................... 2 1.2 Weylfermions................................... 4 1.3 Afirstlookatsupersymmetry . .. 5 2 Constructing supersymmetric Lagrangians 6 2.1 Wess-ZuminoModel ............................... 6 2.2 Superfieldformalism .............................. 8 2.3 VectorSuperfield ................................. 12 2.4 Supersymmetric U(1)gaugetheory ....................... 13 2.5 Non-abeliangaugetheory . .. 15 3 Non-renormalization theorems 16 3.1 R-symmetry.................................... 17 3.2 Superpotentialterms . .. .. .. 17 3.3 Gaugecouplingrenormalization . ..... 19 3.4 D-termrenormalization. ... 20 4 Non-perturbative dynamics in SUSY QCD 20 4.1 Affleck-Dine-Seiberg -
M-Theory Dynamics on a Manifold of G2 Holonomy
c 2001 International Press Adv. Theor. Math. Phys. 6 (2001) 1–106 M-Theory Dynamics On A Manifold of G2 Holonomy Michael Atiyah Mathematics Department University ofEdinburgh Edinburgh Scotland UK and Dept. ofPhysics, Caltech, Pasadena CA, USA [email protected] Edward Witten Department ofPhysics,Caltech, Pasadena, CA, USA and CIT-USC Center for Theoretical Physics, USC, Los Angeles, CA and Institute for Advanced Study Princeton, NJ [email protected] Abstract We analyze the dynamics of M-theory on a manifold of G2 holon- omy that is developing a conical singularity. The known cases involve a cone on CP3, where we argue that the dynamics involves restoration of a global symmetry, SU(3)/U(1)2, where we argue that there are phase transitions among three possible branches corresponding to three clas- sical spacetimes, and S3 × S3 and its quotients, where we recover and extend previous results about smooth continuations between different spacetimes and relations to four-dimensional gauge theory. 2 M-Theory Dynamics 1 Introduction In studying supersymmetric compactifications ofstring theory, one ofthe important issues is the behavior at a singularity. For example, in compact- ifications of M-theory and ofType II superstring theory, an important role is played by the A − D − E singularities ofa K3 surfaceand by various singularities ofa Calabi-Yau threefold. Singularities ofheterotic string or D-brane gauge fields are also important, though in the present paper we focus on metric singularities. The basic questions about string theory and M-theory -
Almost Contact Structures on Manifolds with a G2 Structure
Almost contact structures on manifolds with a G2 structure Xenia de la Ossa,a Magdalena Larfors,b Matthew Magill.b aMathematical Institute, Oxford University Andrew Wiles Building, Woodstock Road Oxford OX2 6GG, UK bDepartment of Physics and Astronomy,Uppsala University SE-751 20 Uppsala, Sweden E-mail: [email protected], [email protected], [email protected] Abstract: We review the construction of almost contact metric (three-) structures on manifolds with a G2 structure. These are of interest for certain supersymmetric configurations in string and M-theory. We compute the torsion of the SU(3) struc- ture associated to an ACMS and apply these computations to heterotic G2 systems and supersymmetry enhancement. We initiate the study of the space of ACM3Ss, which is an infinite dimensional space with a local product structure and interesting topological features. Tantalising links between ACM3Ss and associative and coasso- ciative submanifolds are observed. arXiv:2101.12605v2 [hep-th] 8 Mar 2021 Contents 1 Introduction2 1.1 Preliminary notions4 2 SU(3) structures on manifolds with a G2 structure6 2.1 Almost contact metric structures on a manifold with a G2 structure7 2.2 Transverse geometry and SU(3) structures on Y 10 2.3 Decomposing the structure equations 15 3 Heterotic G2 systems under the ACMS 17 3.1 Heterotic G2 systems 18 3.2 Decomposition of the G2 structure equations with respect to the ACMS 19 3.3 Instanton conditions 19 3.4 Anomaly cancellation condition 20 3.5 N = 1 superpotential in terms of the -
G2–Instantons Over Twisted Connected Sums
Geometry & Topology 19 (2015) 1263–1285 msp G2–instantons over twisted connected sums HENRIQUE NSÁ EARP THOMAS WALPUSKI We introduce a method to construct G2 –instantons over compact G2 –manifolds arising as the twisted connected sum of a matching pair of building blocks. Our construction is based on gluing G2 –instantons obtained from holomorphic vector bundles over the building blocks via the first author’s work. We require natural compatibility and transversality conditions which can be interpreted in terms of certain Lagrangian subspaces of a moduli space of stable bundles on a K3 surface. 53C07, 53C25, 53C38 1 Introduction A G2 –manifold .Y; g/ is a Riemannian 7–manifold whose holonomy group Hol.g/ is contained in the exceptional Lie group G2 or equivalently, a 7–manifold Y together with a torsion-free G2 –structure, that is, a nondegenerate 3–form satisfying a certain nonlinear partial differential equation; see eg Joyce[14, Part I]. An important method to produce examples of compact G2 –manifolds with Hol.g/ G2 is the twisted D connected sum construction, suggested by Donaldson, pioneered by Kovalev[16] and later extended and improved by Kovalev and Lee[17] and Corti, Haskins, Nordström and Pacini[2]. Here is a brief summary of this construction: A building block consists of a smooth projective 3–fold Z and a smooth anticanonical K3 surface † Z with trivial normal bundle; see Definition 2.8. Given a choice of a hyperkähler structure .!I ;!J ;!K / on † such that !J i!K is of type .2; 0/ and Œ!I is the restriction C of a Kähler class on Z, one can make V Z † into an asymptotically cylindrical WD n (ACyl) Calabi–Yau 3–fold, that is, a noncompact Calabi–Yau 3–fold with a tubular end modeled on R S 1 †; see Haskins, Hein and Nordström[12]. -
7-Manifolds with G2 Holonomy
7-manifolds with G2 holonomy Mark Haskins Imperial College London 19 September 2016 Geometric Flows and the Geometry of Space-time Hamburg What is G2? G2 holonomy and Ricci-flat metrics i. the automorphism group of the octonions O ii. the stabilizer of a generic 3-form in R7 Define a vector cross-product on R7 = Im(O) u × v = Im(uv) where uv denotes octonionic multiplication. Cross-product has an associated 3-form '0(u; v; w) := hu × v; wi = huv; wi '0 is a generic 3-form so in fact ∗ G2 = fA 2 GL(7; R)j A '0 = ' ⊂ SO(7): G2 can arise as the holonomy group of an irreducible non-locally-symmetric Riemannian 7-manifold (Berger 1955, Bryant 1987, Bryant-Salamon 1989, Joyce 1995). Any such manifold is automatically Ricci-flat. 6 + 1 = 2 × 3 + 1 = 7 & SU(2) ⊂ SU(3) ⊂ G2 9 close relations between G2 holonomy and Calabi-Yau geometries in 2 and 3 dimensions. 7 3 3 Write R = R × C with (C ; !; Ω) the standard SU(3) structure then '0 = dt ^ ! + Re Ω Hence stabilizer of R factor in G2 is SU(3) ⊂ G2. More generally if (X ; g) is a Calabi-Yau 3-fold then product metric on S1 × X has holonomy SU(3) ⊂ G2. 7 3 2 3 Write R = R × C with coords (x1; x2; x3) on R , with standard SU(2) 2 structure (C ;!I ; Ω = !J + i!K ) then '0 = dx1 ^ dx2 ^ dx3 + dx1 ^ !I + dx2 ^ !J + dx3 ^ !K ; where !I and Ω = !J + i!K are the standard Kahler and holmorphic 2 3 3 2 (2; 0) forms on C . -
Aspects of Supersymmetry and Its Breaking
1 Aspects of Supersymmetry and its Breaking a b Thomas T. Dumitrescu ∗ and Zohar Komargodski † aDepartment of Physics, Princeton University, Princeton, New Jersey, 08544, USA bSchool of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey, 08540, USA We describe some basic aspects of supersymmetric field theories, emphasizing the structure of various supersym- metry multiplets. In particular, we discuss supercurrents – multiplets which contain the supersymmetry current and the energy-momentum tensor – and explain how they can be used to constrain the dynamics of supersym- metric field theories, supersymmetry breaking, and supergravity. These notes are based on lectures delivered at the Carg´ese Summer School 2010 on “String Theory: Formal Developments and Applications,” and the CERN Winter School 2011 on “Supergravity, Strings, and Gauge Theory.” 1. Supersymmetric Theories In this review we will describe some basic aspects of SUSY field theories, emphasizing the structure 1.1. Supermultiplets and Superfields of various supermultiplets – especially those con- A four-dimensional theory possesses = 1 taining the supersymmetry current. In particu- supersymmetry (SUSY) if it contains Na con- 1 lar, we will show how these supercurrents can be served spin- 2 charge Qα which satisfies the anti- used to study the dynamics of supersymmetric commutation relation field theories, SUSY-breaking, and supergravity. ¯ µ Qα, Qα˙ = 2σαα˙ Pµ . (1) We begin by recalling basic facts about super- { } multiplets and superfields. A set of bosonic and Here Q¯ is the Hermitian conjugate of Q . (We α˙ α fermionic operators B(x) and F (x) fur- will use bars throughout to denote Hermitian con- i i nishes a supermultiplet{O if these} operators{O satisfy} jugation.) Unless otherwise stated, we follow the commutation relations of the schematic form conventions of [1]. -
Introduction to Supersymmetry
Introduction to Supersymmetry Pre-SUSY Summer School Corpus Christi, Texas May 15-18, 2019 Stephen P. Martin Northern Illinois University [email protected] 1 Topics: Why: Motivation for supersymmetry (SUSY) • What: SUSY Lagrangians, SUSY breaking and the Minimal • Supersymmetric Standard Model, superpartner decays Who: Sorry, not covered. • For some more details and a slightly better attempt at proper referencing: A supersymmetry primer, hep-ph/9709356, version 7, January 2016 • TASI 2011 lectures notes: two-component fermion notation and • supersymmetry, arXiv:1205.4076. If you find corrections, please do let me know! 2 Lecture 1: Motivation and Introduction to Supersymmetry Motivation: The Hierarchy Problem • Supermultiplets • Particle content of the Minimal Supersymmetric Standard Model • (MSSM) Need for “soft” breaking of supersymmetry • The Wess-Zumino Model • 3 People have cited many reasons why extensions of the Standard Model might involve supersymmetry (SUSY). Some of them are: A possible cold dark matter particle • A light Higgs boson, M = 125 GeV • h Unification of gauge couplings • Mathematical elegance, beauty • ⋆ “What does that even mean? No such thing!” – Some modern pundits ⋆ “We beg to differ.” – Einstein, Dirac, . However, for me, the single compelling reason is: The Hierarchy Problem • 4 An analogy: Coulomb self-energy correction to the electron’s mass A point-like electron would have an infinite classical electrostatic energy. Instead, suppose the electron is a solid sphere of uniform charge density and radius R. An undergraduate problem gives: 3e2 ∆ECoulomb = 20πǫ0R 2 Interpreting this as a correction ∆me = ∆ECoulomb/c to the electron mass: 15 0.86 10− meters m = m + (1 MeV/c2) × . -
Superconformal Algebras for Twisted Connected Sums and G2 Mirror Symmetry
Superconformal algebras for twisted connected sums and G2 mirror symmetry JHEP 1812, 011 (2018) [1809.06376] Marc-Antoine Fiset University of Oxford KITP, Santa Barbara, 12 April 2019 (Md ; g()Mj Ricci(d ; g) g) ≈ 0 2-dim Σ2 (complex curve; coords z; z¯) σ :Σ2 ! Md In coords: x i (z; z¯), i = 1;::: d (Field) Principle to select trajectory σ (Theory) (Polyakov action / Non-linear sigma model) RNS Superstrings RNS Superstrings (IIA, IIB, heterotic): (IIA, IIB, heterotic): Quantization Add fermions Add spinors (Canonical / WZW / α0-expansion) 2-dim2-dimN = QFT 1 SQFTSCFT Introduction d d 1;9−d (M ; g) M × R Not M-theory! (Md ; g()Mj Ricci(d ; g) g) ≈ 0 2-dim Σ2 (complex curve; coords z; z¯) σ :Σ2 ! Md In coords: x i (z; z¯), i = 1;::: d (Field) Principle to select trajectory σ (Theory) (Polyakov action / Non-linear sigma model) RNS Superstrings RNS Superstrings (IIA, IIB, heterotic): (IIA, IIB, heterotic): Quantization Add fermions Add spinors (Canonical / WZW / α0-expansion) 2-dim2-dimN = QFT 1 SQFTSCFT Introduction d d 1;9−d (M ; g) M × R Not M-theory! (Md ; g()Mj Ricci(d ; g) g) ≈ 0 2-dim Σ2 (complex curve; coords z; z¯) σ :Σ2 ! Md In coords: x i (z; z¯), i = 1;::: d (Field) Principle to select trajectory σ (Theory) (Polyakov action / Non-linear sigma model) RNS Superstrings RNS Superstrings (IIA, IIB, heterotic): (IIA, IIB, heterotic): Quantization Add fermions Add spinors (Canonical / WZW / α0-expansion) 2-dim2-dimN = QFT 1 SQFTSCFT Introduction d d 1;9−d (M ; g) M × R Not M-theory! (Md ; g()Mj Ricci(d ; g) g) ≈ 0 σ :Σ2 ! Md In coords: -
Lectures on N = 2 Gauge Theory
Preprint typeset in JHEP style - HYPER VERSION Lectures on N = 2 gauge theory Davide Gaiotto Abstract: In a series of four lectures I will review classic results and recent developments in four dimensional N = 2 supersymmetric gauge theory. Lecture 1 and 2 review the standard lore: some basic definitions and the Seiberg-Witten description of the low energy dynamics of various gauge theories. In Lecture 3 we review the six-dimensional engineering approach, which allows one to define a very large class of N = 2 field theories and determine their low energy effective Lagrangian, their S-duality properties and much more. Lecture 4 will focus on properties of extended objects, such as line operators and surface operators. Contents I Lecture 1 1 1. Seiberg-Witten solution of pure SU(2) gauge theory 5 2. Solution of SU(N) gauge theory 7 II Lecture 2 8 3. Nf = 1 SU(2) 10 4. Solution of SU(N) gauge theory with fundamental flavors 11 4.1 Linear quivers of unitary gauge groups 12 Field theories with N = 2 supersymmetry in four dimensions are a beautiful theoretical playground: this amount of supersymmetry allows many exact computations, but does not fix the Lagrangian uniquely. Rather, one can write down a large variety of asymptotically free N = 2 supersymmetric Lagrangians. In this lectures we will not include a review of supersymmetric field theory. We will not give a systematic derivation of the Lagrangian for N = 2 field theories either. We will simply describe whatever facts we need to know at the beginning of each lecture.