Callinectes Similis (Lesser Blue Crab)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
National Monitoring Program for Biodiversity and Non-Indigenous Species in Egypt
UNITED NATIONS ENVIRONMENT PROGRAM MEDITERRANEAN ACTION PLAN REGIONAL ACTIVITY CENTRE FOR SPECIALLY PROTECTED AREAS National monitoring program for biodiversity and non-indigenous species in Egypt PROF. MOUSTAFA M. FOUDA April 2017 1 Study required and financed by: Regional Activity Centre for Specially Protected Areas Boulevard du Leader Yasser Arafat BP 337 1080 Tunis Cedex – Tunisie Responsible of the study: Mehdi Aissi, EcApMEDII Programme officer In charge of the study: Prof. Moustafa M. Fouda Mr. Mohamed Said Abdelwarith Mr. Mahmoud Fawzy Kamel Ministry of Environment, Egyptian Environmental Affairs Agency (EEAA) With the participation of: Name, qualification and original institution of all the participants in the study (field mission or participation of national institutions) 2 TABLE OF CONTENTS page Acknowledgements 4 Preamble 5 Chapter 1: Introduction 9 Chapter 2: Institutional and regulatory aspects 40 Chapter 3: Scientific Aspects 49 Chapter 4: Development of monitoring program 59 Chapter 5: Existing Monitoring Program in Egypt 91 1. Monitoring program for habitat mapping 103 2. Marine MAMMALS monitoring program 109 3. Marine Turtles Monitoring Program 115 4. Monitoring Program for Seabirds 118 5. Non-Indigenous Species Monitoring Program 123 Chapter 6: Implementation / Operational Plan 131 Selected References 133 Annexes 143 3 AKNOWLEGEMENTS We would like to thank RAC/ SPA and EU for providing financial and technical assistances to prepare this monitoring programme. The preparation of this programme was the result of several contacts and interviews with many stakeholders from Government, research institutions, NGOs and fishermen. The author would like to express thanks to all for their support. In addition; we would like to acknowledge all participants who attended the workshop and represented the following institutions: 1. -
A New Record of Callinectes Sapidus Rathbun, 1896 (Crustacea: Decapoda: Brachyura) from the Cantabrian Sea, Bay of Biscay, Spain
Aquatic Invasions (2006) Volume 1, Issue 3: 186-187 DOI 10.3391/ai.2006.1.3.14 © 2006 The Author(s) Journal compilation © 2006 REABIC (http://www.reabic.net) This is an Open Access article Short communication A new record of Callinectes sapidus Rathbun, 1896 (Crustacea: Decapoda: Brachyura) from the Cantabrian Sea, Bay of Biscay, Spain Jesús Cabal1*, Jose Antonio Pis Millán2 and Juan Carlos Arronte3 1Instituto Español de Oceanografía, Centro Oceanográfico de Gijón, Avenida Príncipe de Asturias 70, Bis. 33212, Gijón, Spain, E-mail: [email protected] 2Centro de Experimentación Pesquera, Avenida Príncipe de Asturias, s/n. 33212 Gijón, Spain, E-mail: [email protected] 3Departamento de Biología de Organismos y Sistemas (Zoología), Universidad de Oviedo, Calle Catedrático Rodrigo Uria, s/n. 33071 Oviedo, Spain, E-mail: [email protected] *Corresponding author Received 19 June 2006; accepted in revised form 24 July 2006 Abstract A single immature female specimen of the blue crab, Callinectes sapidus Rathbun, 1896 was collected on 22 September 2004 in a refrigeration pipe of the power station at Port of El Musel, Gijón, Northern Spain. This is the first record of this alien species from northern Spain. Key words: Callinectes sapidus, alien species, blue crab, Biscay Bay, Spain A single immature female specimen of the estua- immature as the size for mature females is rine blue crab, Callinectes sapidus Rathburn, between 120-170 mm, as indicated in studies of 1896 (Figure 1) was collected on 22 September the Chesapeake Bay (Cadman and Weinstein 2004 from the grille of the refrigeration pipe in a 1985). -
Barnegat Bay— Year 2
Plan 9: Research Barnegat Bay— Benthic Invertebrate Community Monitoring & Year 2 Indicator Development for the Barnegat Bay-Little Egg Harbor Estuary - Barnegat Bay Diatom Nutrient Inference Model Hard Clams as Indicators of Suspended Ecological Evaluation of Particulates in Barnegat Bay Sedge Island Marine Assessment of Fishes & Crabs Responses to Conservation Zone Human Alteration of Barnegat Bay Assessment of Stinging Sea Nettles (Jellyfishes) in Barnegat Bay Baseline Characterization Dr. Paul Jivoff, Rider University, Principal Investigator of Phytoplankton and Harmful Algal Blooms Project Manager: Joe Bilinski, Division of Science, Research and Environmental Health Baseline Characterization of Zooplankton in Barnegat Bay Thomas Belton, Barnegat Bay Research Coordinator Dr. Gary Buchanan, Director—Division of Science, Research & Environmental Health Multi-Trophic Level Modeling of Barnegat Bob Martin, Commissioner, NJDEP Bay Chris Christie, Governor Tidal Freshwater & Salt Marsh Wetland Studies of Changing Ecological Function & Adaptation Strategies 29 August 2014 Final Report Project Title: Ecological Evaluation of Sedge Island Marine Conservation Area in Barnegat Bay Dr. Paul Jivoff, Rider University, Manager [email protected] Joseph Bilinski, NJDEP Project Manager [email protected] Tom Belton, NJDEP Research Coordinator [email protected] Marc Ferko, NJDEP Quality Assurance Officer [email protected] Acknowledgements I would like to thank the Rutgers University Marine Field Station for providing equipment, facilities and logistical support that were vital to completing this project. I also thank Rider University students (Jade Kels, Julie McCarthy, Laura Moritzen, Amanda Young, Frank Pandolfo, Amber Barton, Pilar Ferdinando and Chelsea Tighe) who provided critical assistance in the field and laboratory. The Sedge Island Natural Resource Education Center provided key logistical support for this project. -
The First Recorded Occurrences of the Invasive Crab Callinectes Sapidus Rathbun, 1896 (Crustacea: Decapoda: Portunidae) in Coast
BioInvasions Records (2018) Volume 7, Issue 2: 191–196 Open Access DOI: https://doi.org/10.3391/bir.2018.7.2.12 © 2018 The Author(s). Journal compilation © 2018 REABIC Rapid Communication The first recorded occurrences of the invasive crab Callinectes sapidus Rathbun, 1896 (Crustacea: Decapoda: Portunidae) in coastal lagoons of the Balearic Islands (Spain) Lluc Garcia1, Samuel Pinya1,2,*, Victor Colomar3, Tomàs París3, Miquel Puig3, Maties Rebassa4 and Joan Mayol4 1Museu Balear de Ciències Naturals, Carretera Palma-Port de Sóller, km 30. P.O. Box 55. Sóller 07100, Balearic Islands, Spain 2Interdisciplinary Ecology Group, University of the Balearic Islands, Ctra. Valldemossa km 7,5, 07122 Palma, Balearic Islands, Spain 3Consorci per a la Recuperació de Fauna de les Illes Balears (COFIB), Ctra Sineu km 15.400, Santa Eugènia 07142, Balearic Islands, Spain 4Direcció General d’Espais Naturals i Biodiversitat, Conselleria de Medi Ambient Agricultura i Pesca, Gremi de Corredors, 10, Polígon Son Rossinyol, Palma 07009, Balearic Islands, Spain *Corresponding author E-mail: [email protected] Received: 26 September 2017 / Accepted: 31 January 2018 / Published online: 5 February 2018 Handling editor: Thomas Therriault Abstract The introduction of species is a major threat to biodiversity conservation. Island biodiversity is especially sensitive to the arrival of new species, and species introductions are one of the major concerns of conservation management policies. Here, we report for the first time the arrival of Callinectes sapidus, a new potentially invasive crab species from the East coast of America to the Balearic Islands (Spain). It appeared simultaneously in both Mallorca and Menorca islands. Nine different records of 20 individuals were documented in six different localities, suggesting an initial colonization process of the territory. -
Population Biology of Callinectes Ornatus Ordway, 1863 (Decapoda, Portunidae) from Ubatuba (SP), Brazil*
SCI. MAR., 63 (2): 157-163 SCIENTIA MARINA 1999 Population biology of Callinectes ornatus Ordway, 1863 (Decapoda, Portunidae) from Ubatuba (SP), Brazil* M.L. NEGREIROS-FRANSOZO1, F.L.M. MANTELATTO2 and A. FRANSOZO1 1Departamento de Zoologia, Instituto de Biociências, Centro de Aqüicultura - UNESP. C.P. 510 - Cep 18.618-000 Botucatu, São Paulo, Brasil. 2Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto – USP. Cep 14.040-901 Ribeirão Preto, São Paulo, Brasil. SUMMARY: Population structure and reproductive season of the portunid crab Callinectes ornatus were studied in animals collected from the Ubatuba bays, São Paulo, Brazil (23° 20’ to 23o 35’ S and 44o 50’to 45o 14’ W). The samples were taken in three trawls performed every other month from January 1991 to May 1993. A total of 3,829 specimens of C. ornatus were obtained. Their size ranged from 9.3 to 84.6 mm (carapace width). Their median size based on their cephalothoracic width and their size frequency were determined as well. Their reproduction was continuous, with variable proportions of ovigerous females. The highest incidence of ovigerous females occurred in January 1991, 1992 and 1993 and March and November 1992. The oscillations of the environmental factors between the seasons are not so intense in subtropical regions, therefore allowing the continuity of the physiological process of growth and reproduction throughout the year. Key words: Portunidae, reproduction, Callinectes, South Brazilian coast. INTRODUCTION Although representatives of the entire genus Callinectes are known as blue crabs, this name is The Portunidae family presents more than 300 most commonly applied to C. -
Dieta Natural Do Siri-Azul Callinectes Sapidus (Decapoda, Portunidae) Na Região
Dieta natural do siri-azul Callinectes sapidus (Decapoda, Portunidae) na região... 305 Dieta natural do siri-azul Callinectes sapidus (Decapoda, Portunidae) na região estuarina da Lagoa dos Patos, Rio Grande, Rio Grande do Sul, Brasil Alexandre Oliveira, Taciana K. Pinto, Débora P. D. Santos & Fernando D’Incao Fundação Universidade Federal do Rio Grande, Caixa Postal 474, 96201-900 Rio Grande, RS, Brasil. ([email protected], [email protected], [email protected], [email protected]) ABSTRACT. Natural diet of the blue crab Callinectes sapidus (Decapoda, Portunidae) in the Patos Lagoon estuary area, Rio Grande, Rio Grande do Sul, Brazil. The Southern Brazil blue crab Callinectes sapidus Rathbun, 1869 is the most abundant crab of the genus Callinectes in Patos Lagoon estuary. Although this species is widely distributed throughout the Patos Lagoon estuary area, there is little information about its natural diet. This species is an important predator and has a significant influence on its prey populations. The aim of this study was to check the natural diet of blue crab through the foregut contents analysis. Crabs were collected using an otter trawl net from March 2003 to March 2004. After collected, crabs were preserved immediately in 10% formaldehyde. The carapace width, weight and sex were measured for each individual. The foregut of each crab was removed and stored in 70% ethanol. Blue crab feeds on a wide variety of sessile and slow moving invertebrates. The main item was Detritus, followed by the suspension-feeder mollusk Erodona mactroides Bosc, 1802 (Erodonidae). Sand grains and the small crustaceans of class Ostracoda, were an important component of the foregut contents, but sand grains were not considered food. -
Diet, Feeding Habits, and Predator Size/Prey Size Relationships of Red Drum (Sciaenops Ocellatus) in Galveston Bay, Texas
Diet, Feeding Habits, and Predator Size/Prey Size Relationships of Red Drum (Sciaenops ocellatus) in Galveston Bay, Texas 233 Kurtis K. Schlicht Conservation Scientist II Texas Parks and Wildlife, Coastal Fisheries Division Seabrook Marine Laboratory B.S. Degree in Biology from Texas Tech University, Lubbock, Texas. Previous work includes Biologist Assistant for six years with Houston Lighting and Power's Environmental Division. Currently working as a Conservation Scientist II in the Coastal Fisheries Division of the Texas Parks and Wildlife, Seabrook Marine Laboratory. (281) 474-2811. 234 Feeding Habits of Red Drum (Sciaenops ocellatus) in Galveston Bay, Texas: Seasonal Diet Variation and Predator-Prey Size Relationships Frederick S. Scharf and Kurtis K. Schlicht Texas Parks and Wildlife, Coastal Fisheries Division, Seabrook Marine Laboratory, P.O. Box 8, Seabrook, TX 77586 Introduction The effect of predaceous fishes on the composition of aquatic ecosystems can be significant. Mortality induced by predation can reduce prey abundances locally and may limit prey recruitment in some systems. In order to begin to quantify the potential effects offish predation on community structure and prey populations, detailed information is needed on the feeding habits of important predators. The red drum (Sciaenops ocellatus) is an abundant estuarine-dependent fish that is widely distributed throughout the Gulf of Mexico. Adults spawn in near shore Gulf waters close to the mouths of passes and inlets during late summer and early fall. Larvae are transported through passes into estuaries via tidal currents, where they settle in shallow nursery areas and remain through the juvenile stage. Although older red drum may migrate to offshore waters during fall and winter, fish at least as old as age four commonly occur in Gulf of Mexico estuaries. -
Physiological and Biochemical Responses to Hypoxia in the Blue Crab, Callinectes Sapidus Rathbun, the Lesser Blue Crab, Callinec
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1993 Physiological and Biochemical Responses to Hypoxia in the Blue Crab, Callinectes Sapidus Rathbun, the Lesser Blue Crab, Callinectes Similis Williams, and the Southern Oyster Drill, Stramonita Haemastoma Linnaeus. Tapash Das Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Das, Tapash, "Physiological and Biochemical Responses to Hypoxia in the Blue Crab, Callinectes Sapidus Rathbun, the Lesser Blue Crab, Callinectes Similis Williams, and the Southern Oyster Drill, Stramonita Haemastoma Linnaeus." (1993). LSU Historical Dissertations and Theses. 5625. https://digitalcommons.lsu.edu/gradschool_disstheses/5625 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. -
Worms, Germs, and Other Symbionts from the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor
h ' '' f MASGC-B-78-001 c. 3 A MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor NATIONAL SEA GRANT DEPOSITORY \ PELL LIBRARY BUILDING URI NA8RAGANSETT BAY CAMPUS % NARRAGANSETT. Rl 02882 Robin M. Overstreet r ii MISSISSIPPI—ALABAMA SEA GRANT CONSORTIUM MASGP—78—021 MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico by Robin M. Overstreet Gulf Coast Research Laboratory Ocean Springs, Mississippi 39564 This study was conducted in cooperation with the U.S. Department of Commerce, NOAA, Office of Sea Grant, under Grant No. 04-7-158-44017 and National Marine Fisheries Service, under PL 88-309, Project No. 2-262-R. TheMississippi-AlabamaSea Grant Consortium furnish ed all of the publication costs. The U.S. Government is authorized to produceand distribute reprints for governmental purposes notwithstanding any copyright notation that may appear hereon. Copyright© 1978by Mississippi-Alabama Sea Gram Consortium and R.M. Overstrect All rights reserved. No pari of this book may be reproduced in any manner without permission from the author. Primed by Blossman Printing, Inc.. Ocean Springs, Mississippi CONTENTS PREFACE 1 INTRODUCTION TO SYMBIOSIS 2 INVERTEBRATES AS HOSTS 5 THE AMERICAN OYSTER 5 Public Health Aspects 6 Dcrmo 7 Other Symbionts and Diseases 8 Shell-Burrowing Symbionts II Fouling Organisms and Predators 13 THE BLUE CRAB 15 Protozoans and Microbes 15 Mclazoans and their I lypeiparasites 18 Misiellaneous Microbes and Protozoans 25 PENAEID -
PARASITISMO Y EPIBIOSIS EN Callinectes Ornatus Ordway, 1863 (CRUSTACEA: PORTUNIDAE) EN AGUAS AL SUROESTE DE LA BAHÍA DE PORLAMAR, ISLA DE MARGARITA, VENEZUELA
SABER. Revista Multidisciplinaria del Consejo de Investigación de la Universidad de Oriente ISSN 1315-0162 [email protected] Universidad de Oriente Venezuela PARASITISMO Y EPIBIOSIS EN Callinectes ornatus Ordway, 1863 (CRUSTACEA: PORTUNIDAE) EN AGUAS AL SUROESTE DE LA BAHÍA DE PORLAMAR, ISLA DE MARGARITA, VENEZUELA Tenia, Robert; Figueredo, Arnaldo ; Lira, Carlos; Fuentes, José Luis PARASITISMO Y EPIBIOSIS EN Callinectes ornatus Ordway, 1863 (CRUSTACEA: PORTUNIDAE) EN AGUAS AL SUROESTE DE LA BAHÍA DE PORLAMAR, ISLA DE MARGARITA, VENEZUELA SABER. Revista Multidisciplinaria del Consejo de Investigación de la Universidad de Oriente, vol. 28, núm. 2, 2016 Universidad de Oriente Disponible en: http://www.redalyc.org/articulo.oa?id=427749623002 PDF generado por Redalyc a partir de XML-JATS4R Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto PARASITISMO Y EPIBIOSIS EN Callinectes ornatus Ordway, 1863 (CRUSTACEA: PORTUNIDAE) EN AGUAS AL SUROESTE DE LA BAHÍA DE PORLAMAR, ISLA DE MARGARITA, VENEZUELA PARASITISM AND EPIBIOSIS IN Callinectes ornatus Ordway, 1863 (CRUSTACEA: PORTUNIDAE) IN WATERS FROM SOUTHWESTERN PORLAMAR BAY, MARGARITA ISLAND, VENEZUELA Robert Tenia Universidad de Oriente, Venezuela Arnaldo Figueredo / arnaldo.fi[email protected] Universidad de Oriente, Venezuela Carlos Lira Universidad de Oriente, Venezuela José Luis Fuentes Universidad de Oriente, Venezuela Resumen: Callinectes ornatus es un crustáceo decápodo ampliamente distribuido Robert Tenia, Arnaldo Figueredo, en el Atlántico centro-occidental, con un rol ecológico significativo y una creciente Carlos Lira, et al. valoración socio-económica en las comunidades costeras. Hasta la fecha, existen pocos PARASITISMO Y EPIBIOSIS EN Callinectes ornatus Ordway, 1863 estudios sobre parásitos y simbiontes en esta especie, a pesar que tales investigaciones (CRUSTACEA: PORTUNIDAE) EN pueden brindar importante información sobre las relaciones ecológicas en que participa. -
Redalyc.Ontogenetic Distribution of Callinectes Ornatus
Ciencias Marinas ISSN: 0185-3880 [email protected] Universidad Autónoma de Baja California México Segura de Andrade, Luciana; Fransozo, Vívian; Cobo, Valter José; Leão Castilho, Antônio; Bertini, Giovana; Fransozo, Adilson Ontogenetic distribution of Callinectes ornatus (Decapoda, Portunoidea) in southeastern Brazil Ciencias Marinas, vol. 39, núm. 4, diciembre, 2013, pp. 371-385 Universidad Autónoma de Baja California Ensenada, México Available in: http://www.redalyc.org/articulo.oa?id=48029963004 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Ciencias Marinas (2013), 39(4): 371–385 http://dx.doi.org/10.7773/cm.v39i4.2280 C M Ontogenetic distribution of Callinectes ornatus (Decapoda, Portunoidea) in southeastern Brazil Distribución ontogenética de Callinectes ornatus (Decapoda, Portunoidea) en el sureste de Brasil Luciana Segura de Andrade1*, Vívian Fransozo2, Valter José Cobo3, Antônio Leão Castilho1, Giovana Bertini4, Adilson Fransozo1 1 Departamento de Zoologia, Instituto de Biociências, NEBECC (Crustacean Biology, Ecology and Culture Study Group), Universidade Estadual Paulista, Campus de Botucatu, Distrito de Rubião Junior, s/n, 18618- 000, Botucatu, SP, Brazil. 2 Departamento de Ciências Naturais, Universidade Estadual do Sudoeste da Bahia, Estrada do Bem Querer, Km 04, 45031-900, Vitória da Conquista, BA, Brazil. 3 Laboratório de Zoologia, Departamento de Biologia, Universidade de Taubaté. Praça Marcelino Monteiro 63, 12030-010, Taubaté, São Paulo, Brazil. 4 Universidade Estadual Paulista, Campus Experimental de Registro, Rua Nelson Brihi Badur, 430, 11900-000, Registro, SP, Brazil. * Corresponding author. -
A Review of the Impact of Diseases on Crab and Lobster Fisheries
A Review Of The Impact Of Diseases On Crab And Lobster Fisheries Jeffrey D. Shields Virginia Institute of Marine Science, The College of William and Mary, Gloucester Point, VA 23062 Abstract Diseases are a natural component of crustacean populations. Background levels of various agents are expected in fished populations, and there is good reason to establish baseline levels of pathogens in exploited fisheries before they become a problem. Such baselines are often difficult to fund or publish; nonetheless, outbreaks are an integral feature of heavily exploited populations. Mortalities or other problems can arise when an outbreak occurs, and all too often the underlying causes of an outbreak are poorly understood. A variety of stressors can lead to outbreaks of disease or contribute to their severity. Pollution, poor water quality, hypoxia, temperature extremes, overexploitation have all been implicated in various outbreaks. This review focuses on epidemic diseases of commercially important crabs and lobsters as well as a few examples of other disease issues in crustaceans that are ecologically important, but not of commercial significance. Key words: pathogens, crustaceans, mortality, Carcinonemertes, PaV1, overfishing, Rhizo- cephala, Paramoeba Introduction Pathogens cause direct and indirect losses to fish were thought to contain presumptive crustacean fisheries. Direct losses are obvi- toxins (Magnien 2001). At the time, the ous, resulting in morbidity or mortality to scare threatened the commercial fishing in- the fished species, but they can be difficult dustry of Chesapeake Bay because consum- to assess. However, mortality events can be ers did not purchase fish from the region. widespread and can even damage the socio- economics of impacted fishing communities, Direct losses are most visible to the fishery such as the lobster mortality event in Long because the outcome is usually morbidity or Island Sound during 1999 (Pearce and mortality to the targeted component of the Balcom 2005).