Potency Boost for Cells

Total Page:16

File Type:pdf, Size:1020Kb

Potency Boost for Cells One factor is enough for neural stem cells to become pluripotent. They can then be differentiated into smooth muscular cells that are found, for example, in blood and lymph vessels. The muscle cells are marked with red dye, and the cell nuclei fluoresce blue. 56 MaxPlanckForschung 3 | 09 BIOLOGY & MEDICINE_Stem Cells Potency Boost for Cells It is one of the dogmas of biology that no specialized cell could ever change its nature and become something different. However, the researchers working with Hans Schöler at the Max Planck Institute for Molecular Biomedicine in Münster have succeeded in using a single factor from adult brain stem cells to generate the cellular jacks-of-all-trades on which regenerative medicine is pinning its hopes. TEXT KLAUS WILHELM een from a purely optical per- emergence of Parkinson’s disease with ent’s immune system. There is, howev- spective through a microscope, a view to developing suitable drugs er, one catch: from today’s perspective, the test tube revolution doesn’t more easily and effectively. In this cut- this kind of individual form of regener- appear all that spectacular. ting-edge branch of research involving ative medicine entails enormous effort However, something extraordi- induced pluripotent stem cells, known and expense – and is conceivable only S nary recently occurred in the cells – as iPS cells for short, or “ipses” in labo- with the help of automation. which are identifiable as small dots – in ratory jargon, “we are without doubt As recently as 2005, Hans Schöler the laboratory of the Max Planck Insti- one of the world’s leading research would not have bet a single cent that tute for Molecular Biomedicine. Just groups,” says Hans Schöler. Very few the impossible would become possible two weeks ago these were skin cells teams have succeeded in reprogram- within the space of just one year, that from a patient with Parkinson’s disease – ming “diseased” human cells up to the skin cell of a mouse would be differentiated somatic cells that carry a now; in these cases, differentiation into transformed into a pluripotent stem genetic defect – and were harvested disease-specific nerve cells was success- cell by genetic manipulation alone. from a patient by doctors at the Dres- fully achieved for two rare brain and What this does, in effect, is turn the bi- den University of Technology. The cells muscle disorders. ological clock back. It is one of the were then handed over to the scientists dogmas of almost a century of modern working with Hans Schöler in Münster. FRESH REPLACEMENT CELLS biology that no specialized cell could This group provided the cells with a FOR DISEASED TISSUE ever change its nature and become mixture of nutrients and growth fac- something different. Once a cell has tors, and also infected them with virus Up to now, visionaries could conceive differentiated, it deactivates all of the particles loaded with four genes bear- of removing cells from patients suffer- genes in its genetic program that allow ing the cryptic abbreviations Oct4, ing from cardiac infarction, diabetes, it to divide without restraint. At the Sox2, c-Myc and Klf4. Parkinson’s and many other diseases, same time, it switches on the genes Over the course of about one reprogramming them into iPS cells and that specialize it, making a skin cell month, these four genes transformed replacing the diseased or injured tissue into a skin cell. some of the skin cells into “human in- with the fresh and vital cells. This Cells basically manufacture proteins duced pluripotent stem cells,” embry- would be the ideal solution and, from and other molecules that they need on onic stem cells without the embryos, so a purely technical perspective at least, the instruction of the genes. In hu- to speak. Stem cells are the cells from one that no longer seems utopian. mans, only a portion of the 25,000 or which all 200 cell types found in the Moreover, it would also eliminate one so genes are switched on in every cell. human organism develop – cells in the of the main problems faced by regener- Cells control the activity of their genes skin, bones, kidneys, stomach, and so ative medicine: the cells used in the via complicated signaling pathways in- on. Moreover, scientists hope that these treatment originate from the patient volving large numbers of proteins. This Photo: MPI for Molecular Biomedicine – Jeong Beom Kim cells will make it possible to trace the and are thus not rejected by the recipi- requires, above all, the services of tran- 4 | 09 MaxPlanckResearch 57 The pioneers of stem cell research: Shinya Yamanaka from the University of Kyoto (left) succeeded for the first time in transforming mouse skin cells into cells that are very similar to embryonic stem cells. Hans Schöler from the Max Planck Institute for Molecular Biomedicine (right) managed to propagate these pluripotent jacks-of-all-trades from mouse brain cells using a single factor (Oct4). scription factors – usually proteins that carried out successfully with 24 genes thereafter. The pluripotent stem cells switch genes on or off. But even the was amazing in itself. I would have supply the growing and increasingly transcription factors are coded by genes thought it was very unlikely to work,” complex embryo with all of the differ- and are controlled, in turn, by a com- says Schöler. ent cell types it needs to grow muscles, plex information network. In a series of follow-up experiments, internal organs, the brain, arms, legs, Yamanaka reduced the number of genes and so forth. KICK-START FROM JAPAN to just four: the quartet Oct4, Sox2, Back in 1998, it took enormous c-Myc and Klf4, all of which are normal- skill and ingenuity to propagate the Shinya Yamanaka from the University ly switched off in skin cells. In the end, extremely sensitive embryonic stem of Kyoto experimented with the genes he succeeded in harvesting pluripotent cells – as the pluripotent stem cells are for some transcription factors in 2006. stem cells. Although the process is not known when harvested from the em- When Hans Schöler describes the pio- exactly efficient – only one in every bryo – in the laboratory in a way that neering achievements and the persist- thousand to one in every ten thousand ensured they would remain unspecial- ence of his Japanese colleague, respect skin cells is reprogrammed – it works! ized and genetically intact. Today, shines through his every word, despite A new chapter in stem cell research be- there are over 500 human embryonic the intense competition in the field of gan with the unlimited self-renewing stem cell lines and the trend is rising. international stem cell research. “The iPS cells and continues to develop at an However, these cellular jacks-of-all- program of the somatic cells appeared ever-increasing pace. trades also raise ethical issues, as their to be so definite,” explains the Max As far back as 1998, US scientist harvesting results in the destruction of Planck scientist, “that most researchers James Thomson succeeded in repro- the embryo. This was among the rea- believed this could never work.” How- ducing human embryonic stem cells sons why, in the early years of this cen- ever, the unwavering Yamanaka provid- (ES cells) in the laboratory, which tury, German scientists in particular ed the kick-start for what has since been marked the very first milestone. concentrated on adult stem cells, unfolding “at breakneck speed” in the Pluripotent stem cells usually grow which can be harvested from various world’s stem cell laboratories. only at a very early stage in embryon- sources within the mature adult body. With the help of viruses that acted ic development: they collect in the in- However, these cells are not pluripo- as gene ferries of sorts, the Japanese terior of blastocysts, spherical struc- tent and can therefore differentiate to scientist transported 24 genes for tran- tures that comprise between 150 and form only a few specific cell types. scription factors in all conceivable 200 cells and that form just under one Yamanaka’s feat was a timely one. combinations into skin cells. “The fact week after the fertilization of an ovum Not only are his iPS cells pluripotent, that this kind of experiment could be and in the first eight or so cell divisions they have also succeeded in defusing Photo: dpa Picture-Alliance (left); MPI for Molecular Biomedicine – Sarah Eick 58 MaxPlanckResearch 4 | 09 BIOLOGY & MEDICINE_Stem Cells » Oct4 appears to command the reprogramming of cells like the captain of a ship. The other genes are the sailors. the stem cell debate, as they can be grown mice that develop into different Münster-based scientists even succeed- harvested without the use of embryos. cell types of the central nervous sys- ed in applying these results to stem However, one major problem re- tem. The Sox2 and c-Myc genes are al- cells from the human brain. mained: if these iPS cells are injected ready switched on in these cells. The It is clear from this “that Oct4 ap- into mice, many of the animals devel- two cell biologists quickly demonstrat- pears to command the reprogramming op tumors. The reasons for this are ed that a virus cocktail containing just of cells like the captain of a ship,” ex- clear. First, the viruses with the four in- Oct4 and Klf4 can reprogram these plains Hans Schöler. “The other genes, tegrated genes Oct4, Sox2, c-Myc and cells into iPS cells. such as Sox2, c-Myc and Klf4, are the Klf4 slot randomly into the genotype sailors.” Despite the fact that he has of the mice. As a result, things like can- TRANSFORMATION REQUIRES been working on this molecule and its cer genes can be activated or anti-can- PATIENCE functions for a good two decades, cer genes destroyed.
Recommended publications
  • Dedifferentiation, Transdifferentiation, and Reprogramming: Future Directions in Regenerative Medicine
    82 Dedifferentiation, Transdifferentiation, and Reprogramming: Future Directions in Regenerative Medicine Cristina Eguizabal, PhD1 Nuria Montserrat, PhD1 Anna Veiga, PhD1,2 Juan Carlos Izpisua Belmonte, PhD1,3 1 Center for Regenerative Medicine in Barcelona Address for correspondence and reprint requests Juan Carlos Izpisua 2 Reproductive Medicine Service, Institut Universitari Dexeus, Belmonte, PhD, Gene Expression Laboratory, The Salk Institute for Barcelona, Spain Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 93027 3 Gene Expression Laboratory, The Salk Institute for Biological Studies, (e-mail: [email protected]). La Jolla, California Semin Reprod Med 2013;31:82–94 Abstract The main goal of regenerative medicine is to replace damaged tissue. To do this it is Keywords necessary to understand in detail the whole regeneration process including differenti- ► regenerative ated cells that can be converted into progenitor cells (dedifferentiation), cells that can medicine switch into another cell type (transdifferentiation), and somatic cells that can be ► stem cells induced to become pluripotent cells (reprogramming). By studying the regenerative ► dedifferentiation processes in both nonmammal and mammal models, natural or artificial processes ► transdifferentiation could underscore the molecular and cellular mechanisms behind these phenomena and ► reprogramming be used to create future regenerative strategies for humans. To understand any regenerative system, it is crucial to find the potency and differentiate and how they can revert to pluri- cellular origins of renewed tissues. Using techniques like potency (reprogramming) or switch lineages (dedifferentia- genetic lineage tracing and single-cell transplantation helps tion and transdifferentiation). to identify the route of regenerative sources. These tools were We synthesize the studies of different model systems to developed first in nonmammal models (flies, amphibians, and highlight recent insights that are integrating the field.
    [Show full text]
  • Cell Reprogramming: Expectations and Challenges for Chemistry in Stem Cell Biology and Regenerative Medicine
    Cell Death and Differentiation (2010) 17, 1230–1237 & 2010 Macmillan Publishers Limited All rights reserved 1350-9047/10 $32.00 www.nature.com/cdd Review Cell reprogramming: expectations and challenges for chemistry in stem cell biology and regenerative medicine L Anastasia*,1,2, G Pelissero2, B Venerando1,2 and G Tettamanti2 The possibility of reprogramming adult somatic cells into pluripotent stem cells (iPSCs) has generated a renewed interest into stem cell research and promises to overcome several key issues, including the ethical concerns of using human embryonic stem cells and the difficulty of obtaining large numbers of adult stem cells (Belmonte et al., Nat Rev Genet, 2009). This approach is also not free from challenges like the mechanism of the reprogramming process, which has yet to be elucidated, and the warranties for safety of generated pluripotent cells, especially in view of their possible therapeutic use. Very recently, several new reprogramming methods have surfaced, which seem to be more appropriate than genetic reprogramming. Particularly, chemically induced pluripotent cells (CiPSs), obtained with recombinant proteins or small synthetic molecules, may represent a valid approach, simpler and possibly safer than the other ones. Cell Death and Differentiation (2010) 17, 1230–1237; doi:10.1038/cdd.2010.14; published online 19 February 2010 Stem cells and cell reprogramming have generated an vitro to large numbers, in contrast to adult stem cells, that enormous interest in the past 2 years, since the generation normally possess very low self-renewal in vitro, and (3) iPSCs of induced pluripotent stem cells (iPSCs) from mouse can be patient customized, because they can be generated embryonic fibroblasts was first reported by Yamanaka and from an easily accessible source, that is fibroblasts, obtain- coworkers in 2006.1,2 In fact, it was shown that the forced able from any individual (Figure 1).
    [Show full text]
  • Rational Optimization of Reprogramming Culture Conditions for the Generation of Induced Pluripotent Stem Cells with Ultra-High Efficiency and Fast Kinetics
    npg Rational medium optimization for efficient reprogramming Cell Research (2011) 21: 884-894. 884 © 2011 IBCB, SIBS, CAS All rights reserved 1001-0602/11 $ 32.00 npg ORIGINAL ARTICLE www.nature.com/cr Rational optimization of reprogramming culture conditions for the generation of induced pluripotent stem cells with ultra-high efficiency and fast kinetics Jiekai Chen1, *, Jing Liu1, *, You Chen1, Jiaqi Yang1, Jing Chen1, He Liu1, Xiangjie Zhao1, Kunlun Mo1, Hong Song1, Lin Guo1, Shilong Chu1, Deping Wang1, Ke Ding1, Duanqing Pei1 1Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine at Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China The ectopic expression of several transcription factors can restore embryonic cell fate to cultured somatic cells and generate induced pluripotent stem cells (iPSCs), revealing a previously unknown pathway to pluripotency. However, this technology is currently limited by low efficiency, slow kinetics and multi-factorial requirement. Here we show that reprogramming can be improved and dramatically accelerated by optimizing culture conditions. First, we developed an optimized defined medium, iCD1, which allows Oct4/Sox2/Klf4 (OSK)-mediated reprogramming to achieve ultra-high efficiency (~10% at day 8). We also found that this optimized condition renders both Sox2 and Klf4 dispensable, although the elimination of these two factors leads to lower efficiency and slower kinetics. Our studies define a shortened route, both in timing and factor requirement, toward pluripotency. This new paradigm not only provides a rationale to further improve iPSC generation but also simplifies the conceptual understanding of reprogramming by defined factors.
    [Show full text]
  • Experimental and Computational Approaches to Direct Cell Reprogramming: Recent Advancement and Future Challenges
    cells Review Experimental and Computational Approaches to Direct Cell Reprogramming: Recent Advancement and Future Challenges Rihab Gam *, Minkyung Sung and Arun Prasad Pandurangan MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK; [email protected] (M.S.); [email protected] (A.P.P.) * Correspondence: [email protected]; Tel.: +44-1223-267820 Received: 6 September 2019; Accepted: 1 October 2019; Published: 2 October 2019 Abstract: The process of direct cell reprogramming, also named transdifferentiation, permits for the conversion of one mature cell type directly into another, without returning to a dedifferentiated state. This makes direct reprogramming a promising approach for the development of several cellular and tissue engineering therapies. To achieve the change in the cell identity, direct reprogramming requires an arsenal of tools that combine experimental and computational techniques. In the recent years, several methods of transdifferentiation have been developed. In this review, we will introduce the concept of direct cell reprogramming and its background, and cover the recent developments in the experimental and computational prediction techniques with their applications. We also discuss the challenges of translating this technology to clinical setting, accompanied with potential solutions. Keywords: transdifferentiation; direct reprogramming; computational biology; regenerative medicine; cell therapy 1. Introduction The epigenetic landscape model proposed by Conrad Waddington in 1957 provided a framework to explain cellular differentiation through epigenetic changes rather than genetic inheritance [1]. In this model, a pluripotent cell takes a complex path defined by ridges and valleys on the developmental landscape to reach a final fully-differentiated and specialized cell (Figure1).
    [Show full text]
  • A New Model for Human Blastocyst Development
    Signal Transduction and Targeted Therapy www.nature.com/sigtrans RESEARCH HIGHLIGHT OPEN Blastoids: a new model for human blastocyst development Heiner Niemann1 and Bob Seamark2 Signal Transduction and Targeted Therapy (2021) 6:239; https://doi.org/10.1038/s41392-021-00663-8 Recently, two research groups report in Nature1,2 the ex-vivo and neither has yet been sufficiently disclosed for full assesment of production of blastocyst-like structures, called blastoids, that the blastoids. Given the specific embyo culture procedures required, exhibit many of the landmarks in human early development found the epigenetic status of the blastoids is of particular interest. in viable blastocysts (Fig. 1). Numerous studies have shown that in vitro culture of early embryos The formation of a blastocyst is a critical step in early embryo can profoundly affect normal patterns of DNA methylation, resulting development denoting a key change from the early cleavage stages in deviations from the physiological gene expression patterns.4 to gastrulation. Typically, the blastocyst, differentiated from the early Following fertilisation, the parental genomes undergo a wave of de- cleavage stages, is a fluid filled vesicular structure comprised of cells and re-methylation, during early embryogenesis, creating the of now, three distinct cell lineages, namely those of the trophoblast, methylation patterns, needed for normal development, through the outer enclosing cell layer, and those of the inner cell mass (ICM) the activation and silencing of specific genes. Typically, global with the hypoblast and epiblast, found in the central fluid filled methylation of the mammalian genome declines to a nadir at the cavity (the blastocoel).
    [Show full text]
  • Improve Induced Pluripotent Stem Cell Generation by Manipulating Epigenetic Statuses
    IMPROVE INDUCED PLURIPOTENT STEM CELL GENERATION BY MANIPULATING EPIGENETIC STATUSES Gaoyang Liang A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biochemistry and Biophysics. Chapel Hill 2012 Approved by Yi Zhang, Ph.D. William Marzluff, Ph.D. Larysa Pevny, Ph.D. Lishan Su, Ph.D. Yue Xiong, Ph.D. ©2012 Gaoyang Liang ALL RIGHTS RESERVED ii ABSTRACT GAOYANG LIANG: Improve induced pluripotent stem cell generation by manipulating epigenetic statuses (Under the direction of Dr. Yi Zhang) Reprogramming of somatic cells to a pluripotent state can be achieved by introduction of defined transcription factors. The derived induced pluripotent stem (iPS) cells have molecular profiles and developmental potentials similar to embryonic stem (ES) cells. However, this reprogramming process is inefficient and its underlying mechanisms are poorly understood. To improve the efficiency of iPS cell generation and shed light on its mechanisms, I aimed to identify epigenetic modulations that can enhance iPS cell generation. By studying chemicals modulating epigenetic status and ES-cell enriched epigenetic factors, I demonstrate that butyrate, a histone deacetylase (HDAC) inhibitor, and Kdm2b, a histone demethylase specific for H3 lysine 36 dimethylation (H3K36me2) are capable of facilitating iPS cell generation. Butyrate not only enhances the efficiency of iPS cell generation, but also suppresses the formation of partially reprogrammed cells and transformed cells. The enhancing effect of butyrate on reprogramming appears to depend on c-Myc and occurs early in reprogramming. Genome-wide microarray analysis shows that a set of ES cell-enriched genes are upregulated upon butyrate treatment.
    [Show full text]
  • Epigenetic Reprogramming by TET Enzymes Impacts Co-Transcriptional R-Loops 2 3 João C
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.441414; this version posted April 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Epigenetic reprogramming by TET enzymes impacts co-transcriptional R-loops 2 3 João C. Sabino1, Madalena R. de Almeida1, Patricia L. Abreu1, Ana M. Ferreira1, Marco M. 4 Domingues1, Nuno C. Santos1, Claus M. Azzalin1, Ana R. Grosso1†, Sérgio F. de Almeida1* 5 6 Affiliations: 1Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da 7 Universidade de Lisboa, Lisboa, Portugal. 8 *Correspondence to: [email protected] 9 †Current address: UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Faculdade de 10 Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal 11 12 13 Abstract 14 DNA oxidation by ten-eleven translocation (TET) family enzymes is essential for epigenetic 15 reprogramming. The conversion of 5-methylcytosine (5mC) into 5-hydroxymethylcytosine 16 (5hmC) initiates developmental and cell-type-specific transcriptional programs through 17 mechanisms that include changes in the chromatin structure. Here, we show that the 18 presence of 5hmC in the transcribed DNA promotes the annealing of the nascent RNA to its 19 template DNA strand, leading to the formation of an R-loop. The genome-wide distribution 20 of 5hmC and R-loops show a positive correlation in mouse and human embryonic stem cells 21 and overlap in half of all active genes.
    [Show full text]
  • Working Party of National Coordinators of the Test Guidelines Programme
    Organisation for Economic Co-operation and Development ENV/CBC/TG(2021)31 For Official Use English - Or. English 7 May 2021 ENVIRONMENT DIRECTORATE CHEMICALS AND BIOTECHNOLOGY COMMITTEE Working Party of National Coordinators of the Test Guidelines Programme Adverse Outcome Pathway 220 on Cyp2E1 Activation Leading to Liver Cancer Nathalie Delrue, Administrator [email protected] JT03476102 OFDE This document, as well as any data and map included herein, are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. 2 ENV/CBC/TG(2021)31 Foreword This Adverse Outcome Pathway (AOP) on Cyp2E1 Activation Leading to Liver Cancer, has been developed under the auspices of the OECD AOP Development Programme, overseen by the Extended Advisory Group on Molecular Screening and Toxicogenomics (EAGMST), which is an advisory group under the Working Party of the National Coordinators of the Test Guidelines Programme (WNT). The AOP has been reviewed internally by the EAGMST, externally by experts nominated by the WNT, and has been endorsed by the WNT and the Working Party on Hazard Assessment (WPHA) on XXX. Through endorsement of this AOP, the WNT and the WPHA express confidence in the scientific review process that the AOP has undergone and accept the recommendation of the EAGMST that the AOP be disseminated publicly. Endorsement does not necessarily indicate that the AOP is now considered a tool for direct regulatory application. The OECD's Chemicals and Biotechnology Committee agreed to declassification of this AOP on XXX.
    [Show full text]
  • Reprogramming of the Paternal Genome Upon Fertilization Involves Genome-Wide Oxidation of 5-Methylcytosine
    Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine Khursheed Iqbala,1, Seung-Gi Jinb,1, Gerd P. Pfeiferb,2, and Piroska E. Szabóa,2 Departments of aMolecular and Cellular Biology and bCancer Biology, Beckman Research Institute of the City of Hope, Duarte, CA 91010 Edited by Peter A. Jones, University of Southern California, Los Angeles, CA, and accepted by the Editorial Board January 28, 2011 (received for review September 17, 2010) Genome-wide erasure of DNA cytosine-5 methylation has been direct removal of 5mC by DNA glycosylase activity has been reported to occur along the paternal pronucleus in fertilized oocytes identified (27, 28), but these proteins do not have mammalian in an apparently replication-independent manner, but the mecha- homologs. Furthermore, it was reported that the protein nism of this reprogramming process has remained enigmatic. Re- GADD45A promotes demethylation of CpG-methylated DNA cently, considerable amounts of 5-hydroxymethylcytosine (5hmC), (29), perhaps in conjunction with excision repair activities (23, most likely derived from enzymatic oxidation of 5-methylcytosine 30). However, a role of GADD45A in DNA demethylation has (5mC) by TET proteins, have been detected in certain mammalian fi fi tissues. 5hmC has been proposed as a potential intermediate in not been con rmed (31, 32). Speci cally addressing active de- active DNA demethylation. Here, we show that in advanced pro- methylation of the paternal genome in zygotes, Okada et al. have nuclear-stage zygotes the paternal pronucleus contains substantial used a siRNA knockdown strategy in oocytes followed by in- amounts of 5hmC but lacks 5mC.
    [Show full text]
  • Epigenetic Reprogramming, Apoptosis, and Developmental Competence in Cloned Embryos
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2019 Epigenetic Reprogramming, Apoptosis, and Developmental Competence in Cloned Embryos Laura A. Moley Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Animal Sciences Commons Recommended Citation Moley, Laura A., "Epigenetic Reprogramming, Apoptosis, and Developmental Competence in Cloned Embryos" (2019). All Graduate Theses and Dissertations. 7571. https://digitalcommons.usu.edu/etd/7571 This Dissertation is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. EPIGENETIC REPROGRAMMING, APOPTOSIS, AND DEVELOPMENTAL COMPETENCE IN CLONED EMBRYOS by Laura A. Moley A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Animal, Dairy, and Veterinary Sciences Approved: ______________________ ____________________ S. Clay Isom, Ph.D. Abby D. Benninghoff, Ph.D. Major Professor Committee Member ______________________ ____________________ John Stevens, Ph.D. Trista Strauch, Ph.D. Committee Member Committee Member ______________________ ____________________ Aaron Thomas, Ph.D. Richard S. Inouye, Ph.D. Committee Member Vice Provost for Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2019 ii Copyright © Laura Moley 2019 All Rights Reserved iii ABSTRACT Epigenetic Reprogramming, Apoptosis, and Developmental Competence in Cloned Embryos by Laura A. Moley, Doctor of Philosophy Utah State University, 2019 Major Professor: Dr. S. Clay Isom Department: Animal, Dairy, and Veterinary Sciences Cloning through somatic cell nuclear transfer (SCNT) remains highly inefficient twenty years after the first demonstration of the technology.
    [Show full text]
  • Mechanism of Human Somatic Reprogramming to Ips Cell Rika Teshigawara, Junkwon Cho, Masahiro Kameda and Takashi Tada
    Laboratory Investigation (2017) 97, 1152–1157 © 2017 USCAP, Inc All rights reserved 0023-6837/17 MINI REVIEW Mechanism of human somatic reprogramming to iPS cell Rika Teshigawara, Junkwon Cho, Masahiro Kameda and Takashi Tada Somatic reprogramming to induced pluripotent stem cells (iPSC) was realized in the year 2006 in mice, and in 2007 in humans, by transiently forced expression of a combination of exogenous transcription factors. Human and mouse iPSCs are distinctly reprogrammed into a ‘primed’ and a ‘naïve’ state, respectively. In the last decade, puzzle pieces of somatic reprogramming have been collected with difficulty. Collectively, dissecting reprogramming events and identification of the hallmark of sequentially activated/silenced genes have revealed mouse somatic reprogramming in fragments, but there is a long way to go toward understanding the molecular mechanisms of human somatic reprogramming, even with developing technologies. Recently, an established human intermediately reprogrammed stem cell (iRSC) line, which has paused reprogramming at the endogenous OCT4-negative/exogenous transgene-positive pre-MET (mesenchymal-to- epithelial-transition) stage can resume reprogramming into endogenous OCT4-positive iPSCs only by change of culture conditions. Genome-editing-mediated visualization of endogenous OCT4 activity with GFP in living iRSCs demonstrates the timing of OCT4 activation and entry to MET in the reprogramming toward iPSCs. Applications of genome-editing technology to pluripotent stem cells will reshape our approaches for exploring molecular mechanisms. Laboratory Investigation (2017) 97, 1152–1157; doi:10.1038/labinvest.2017.56; published online 22 May 2017 REPROGRAMMING OF SOMATIC CELLS use in exploring molecular mechanisms of many diseases and Reprogramming somatic cells into induced pluripotent stem embryonic development as models.
    [Show full text]
  • Single Cell Expression Analysis Uncouples Transdifferentiation And
    bioRxiv preprint doi: https://doi.org/10.1101/351957; this version posted June 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Single cell expression analysis uncouples transdifferentiation and 2 reprogramming 3 Mirko Francesconi1*, Bruno Di Stefano3,4,5*, Clara Berenguer3, Marisa de Andres3, Maria 4 Mendez Lago6,7, Amy Guillaumet-Adkins6,8, Gustavo Rodriguez-Esteban6, Marta Gut2,6, 5 Ivo G. Gut2,6, Holger Heyn2,6, Ben Lehner1,2,9,10 and Thomas Graf2,3,10 6 7 1Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona 8 Institute of Science and Technology (BIST), Dr. Aiguader 88, Barcelona 08003, Spain; 9 2Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain. 3Gene Regulation, Stem 10 Cells and Cancer Program, CRG, BIST, UPF, Barcelona, 08003 Spain. 4. Massachusetts 11 General Hospital Department of Molecular Biology, Harvard Medical School, 185 12 Cambridge Street, Boston, MA 02114, USA. 5. Department of Stem Cell and 13 Regenerative Biology, Harvard University, Cambridge, MA 02138, USA. 6Centro 14 Nacional de Análisis Genómico, Centre for Genomic Regulation (CNAG-CRG); BIST, 15 08028 Barcelona, Spain. 9Institució Catalana de Recerca i Estudis Avançats (ICREA), 16 Barcelona 08010, Spain. 17 18 * These authors contributed equally to the work 19 7Present address: Institute of Molecular Biology (IMB), Mainz, Germany 20 8Present address: Department of Pediatrics, Dana Farber Cancer Institute, Harvard 21 Medical School, Boston MA 02115 22 10Corresponding authors: [email protected], [email protected] 23 24 25 Abstract 26 Many somatic cell types are plastic, having the capacity to convert into other 27 specialized cells (transdifferentiation)(1) or into induced pluripotent stem cells (iPSCs, 28 reprogramming)(2) in response to transcription factor over-expression.
    [Show full text]