Cryptobiotic Crusts: Enabling Nativeplants by Wayne P

Total Page:16

File Type:pdf, Size:1020Kb

Cryptobiotic Crusts: Enabling Nativeplants by Wayne P Cryptobiotic Crusts: Enabling NativePlants by Wayne P. Armstrong Arid desert regions where vegetation is sparse often have miniature communities of Close-up view of the soil lichen Th e slender black threads spore-bearing “plants” called Cryptobiotic crust along Placidium lacinulatum. Th e with forked branching are the cryptogams living together on the Travertine Palms Wash in thallus is composed of dark, rolled-up, desiccated thalli of soil surface. Th ey include colonies northeastern San Diego County. scalelike squamules. Th e a liverwort in Palm Canyon. of lichens, mosses, liverworts Th e dark crust is mostly the common name of “brown Th e hydrated green thalli and cyanobacteria. Unlike true squamulose soil lichen Placidium stipplescale” refers to the color in lower part of photo have vascular plants, their plant body is lacinulatum. and pitted squamules where the unrolled into their characteristic called a thallus and they have no fungal spores are released. fl attened,scalelike structure. fl owers or seeds. Th ese unique associations and their by-products form a crust of Cryptobiotic soil crusts are fragile and beautifully illustrated book A Field Guide soil particles bound together by organic easily damaged or destroyed by crushing to Biological Soil Crusts of Western U.S. materials. Th ey are commonly referred and trampling. Th is includes hikers and Drylands which is available on-line as a pdf to as biological soil crust or cryptobiotic horseback riders, not to mention off - fi le (see bibliography). Scytonema species crust, and are readily distinguished from road vehicles and the clearing of land for have an amazing worldwide distribution, nonbiological features, such as salt crusts agriculture and housing. In range lands of including black, fi brous, felt-like layers on desert playas. Th e name is derived from the western United States, well-developed on the surface of rocks and soil. Th ey are “crypto” (hidden) and “biotic” (life), and crust communities fl ourish only where one of the primary reasons why ancient literally refers to a layer of hidden life on cattle are excluded. It is very important to Maya pyramids in Guatemala appear the soil surface. Cryptobiotic crust is well stay on designated trails and roads. Even black. Another valuable contribution developed and widespread in Anza-Borrego when you are examining this remarkable by cyanobacteria is nitrogen fi xation, a Desert State Park. It forms a dark, thin desert phenomenon, it is important to remarkable bacterial skill in which inert layer on sun-baked soils of the badlands, tread lightly and not allow your shoes to atmospheric nitrogen gas is converted ancient riverbeds, and parched mountain penetrate the fragile crust. Like the Arctic into ammonia, thereby making the vital slopes. To appreciate these marvelous tundra, once this delicate community of element nitrogen available to the roots of organisms, you really need to get down on cryptogams has been damaged, it may take higher plants your knees, preferably with a good hand years to grow back. Large areas of crust In the Anza-Borrego Desert region, lens or magnifying glass. damaged by human activities may never several genera of lichens produce visible recover. Areas where cryptobiotic crusts Cryptobiotic crusts are important to desert soil crust that covers many miles of have been stripped away are vulnerable ecosystems throughout the world because undisturbed soils. Lichens are a very to wind and water erosion, fl ooding, dust they hold soils in place and protect the successful life form resulting from the storms and the invasion of naturalized underlying sediments from wind and water merging of genomes from two diverse weeds that thrive on disturbed soil. erosion. Members of the cryptobiotic crust kingdoms, the Fungi and Protista. Th ey stabilize soil particles with intertwining Cyanobacteria consist of microscopic contain fungal hyphae and photosynthetic cellular strands and intricate, root-like fi laments of cells with sticky polysaccharide algal cells living together in a mutualistic extensions called rhizoids and rhizines. sheaths that adhere to soil particles. relationship. Since the main body of All of these organisms promote soil water Th ey were once called blue-green algae; the lichen is composed of fungal tissue, retention which is vital to seed germination however, they share more characteristics they are usually referred to as lichenized and the survival of seedlings. Cryptobiotic with bacteria than true algae and are now fungi. In some species, the photosynthetic crusts are an important pioneer stage in placed in the kingdom Monera. Two symbiont is cyanobacteria rather than plant succession, thus enabling native fi lamentous species Microcoleus vaginatus algae. Lichens can survive in some of the grasses and herbs to become established in and Scytonema myochrous are listed as most inhospitable environments on earth, an otherwise hostile environment. important soil binders by Rosentretor, where neither symbiont could survive on Bowker and Belnap (2007) in their its own. In fact, lichens are an excellent 11 Continued on Page 12 squamules. When Plantae. Th ey are small, spore-bearing, wet the thallus nonvascular plants without cones, fl owers turns olive green. or seeds. Th ey are fairy common in wet Psora decipiens has meadows and along the banks of mountain larger, pinkish- streams; however, they are also found tan squamules in desert habitats as a component of with several black, cryptobiotic crust. In the Anza-Borrego spore-bearing Desert they grow in mountain canyons apothecia along the where they receive some shade and margins. Because rain. Liverworts have a green, fl attened, of its distinctive branched thallus that superfi cially reddish-tan color, resembles a foliose lichen. Th e underside this species is called is black, and when the thallus becomes “blushing scale.” desiccated, it rolls up into tiny black Th e photosynthetic cylinders resembling black threads. Th is Close-up view of the dark soil lichen called tarpaper lichen. Th e symbiont strategy reduces the surface area of the thallus is composed of numerous spherical granules called isidia, each (photobiont) for delicate thallus exposed to the sun and capable of growing into a new colony. Several disk-shaped fungal both of these dry air. Desert liverworts are practically fruiting bodies (called apothecia) are also visible. Th e inset shows a soil lichens is a unrecognizable at this stage. Th e closely- greatly magnifi ed view of the photosynthetic partner of this lichen, unicellular green related desert mosses also lose water and cellular fi laments of the cyanobacterium Nostoc. alga. dry up. Th eir bright green leaves wither example of synergism, because the whole is Another widespread and fade to brown or pale greenish-white. truly greater than the sum of its parts. Th e soil lichen in Anza-Borrego Desert is Th e cryptobiotic crust is certainly not algal and fungal components develop into Collema coccophorum. Th e granular black as showy as fi elds of desert ephemeral a unique body form with morphological thallus resembles a thin layer of tar or wildfl owers or the lush creosote bush features quite diff erent from either dried oil and is the derivation of the scrub in full bloom. Nonetheless, it plays symbiont. Th e fungal component typically common name “tarpaper lichen.” When an important role in the desert ecosystem produces its characteristic reproductive wet the thallus imbibes water, swells and by stabilizing vital soils necessary for body consisting of a spore-bearing cup- becomes gelatinous and shiny olive-green the perpetuation of native seed-bearing like structure (apothecium) or a vase- to greenish-black. In this condition it fi ts species. shaped perithecium lined on the inside another common name of “jelly lichen.” with spores. Th ese same structures are Like Psora, the fungal component produces References also produced by non-lichenized fungi in a minute disk-shaped apothecium, 1. Armstrong, W.P. 2008. “Cryptobiotic forested areas. although it is often diffi cult to spot because Crust in Anza Borrego Desert State It is not surprising that lichens form an it blends in with the thallus. Unlike Park.” Available on-line at: http:// important component of cryptobiotic Placidium and Psora, the photosynthetic waynesword.palomar.edu/crypto1.htm. partner of Collema is Nostoc, a microscopic crust in desert regions. Some species are 2. Nash, T.H. III, Ryan, B.D., Diederich, extremely drought resistant and survive cyanobacterium. Nostoc is a widespread genus that is found in freshwater ponds P., Gries, C. and F. Bungartz. 2004. for many months in a desiccated, dormant Lichen Flora of the Greater Sonoran state. In fact, some lichens may lose up to and creeks, and as a symbiont in cavities within the leaves of the water fern (Azolla) Desert Region. Volumes 1 & 2. Arizona 98 percent of their water content. When State University, Tempe, Arizona. a lichen is wetted by an occasional rain, and the coralloid surface roots of many it quickly imbibes water like blotting cycads. It is also the primary ingredient of 3. Rosentretor, R., Bowker, M. and paper, and photosynthesis within its “fat choy” (Nostoc fl agelliforme) in Chinese Jane Belnap. 2007. A Field Guide to algal symbiont is revived for a while. Th e cuisine, an important member of the soil Biological Soil Crusts of Western U.S. body (thallus) of two common species crust in northern China. Under high Drylands. USGS Canyonlands Research in Anza Borrego Desert State Park is magnifi cation the cells occur in fi laments Station, Moab, Utah. Available on-line composed of overlapping, scalelike lobes resembling minute strings of beads. Several at: sbcs.wr.usgs.gov/products/pdfs/Field_ called squamules. Th e foliose soil lichen species of Collema, Placidium and Psora are Guide_Book_25.pdf. Placidium lacinulatum is fairly widespread listed in Lichen Flora of the Greater Sonoran in the Park.
Recommended publications
  • Phytotaxa, a Synthesis of Hornwort Diversity
    Phytotaxa 9: 150–166 (2010) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Article PHYTOTAXA Copyright © 2010 • Magnolia Press ISSN 1179-3163 (online edition) A synthesis of hornwort diversity: Patterns, causes and future work JUAN CARLOS VILLARREAL1 , D. CHRISTINE CARGILL2 , ANDERS HAGBORG3 , LARS SÖDERSTRÖM4 & KAREN SUE RENZAGLIA5 1Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Storrs, CT 06269; [email protected] 2Centre for Plant Biodiversity Research, Australian National Herbarium, Australian National Botanic Gardens, GPO Box 1777, Canberra. ACT 2601, Australia; [email protected] 3Department of Botany, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605-2496; [email protected] 4Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway; [email protected] 5Department of Plant Biology, Southern Illinois University, Carbondale, IL 62901; [email protected] Abstract Hornworts are the least species-rich bryophyte group, with around 200–250 species worldwide. Despite their low species numbers, hornworts represent a key group for understanding the evolution of plant form because the best–sampled current phylogenies place them as sister to the tracheophytes. Despite their low taxonomic diversity, the group has not been monographed worldwide. There are few well-documented hornwort floras for temperate or tropical areas. Moreover, no species level phylogenies or population studies are available for hornworts. Here we aim at filling some important gaps in hornwort biology and biodiversity. We provide estimates of hornwort species richness worldwide, identifying centers of diversity. We also present two examples of the impact of recent work in elucidating the composition and circumscription of the genera Megaceros and Nothoceros.
    [Show full text]
  • Long-Term Changes in Biological Soil Crust Cover and Composition Eva Dettweiler-Robinson1*, Jeanne M Ponzetti2 and Jonathan D Bakker3
    Dettweiler-Robinson et al. Ecological Processes 2013, 2:5 http://www.ecologicalprocesses.com/content/2/1/5 RESEARCH Open Access Long-term changes in biological soil crust cover and composition Eva Dettweiler-Robinson1*, Jeanne M Ponzetti2 and Jonathan D Bakker3 Abstract Introduction: Communities change over time due to disturbances, variations in climate, and species invasions. Biological soil crust communities are important because they contribute to erosion control and nutrient cycling. Crust types may respond differently to changes in environmental conditions: single-celled organisms and bryophytes quickly recover after a disturbance, while lichens are slow growing and dominate favorable sites. Community change in crusts has seldom been assessed using repeated measures. For this study, we hypothesized that changes in crust composition were related to disturbance, topographic position, and invasive vegetation. Methods: We monitored permanent plots in the Columbia Basin in 1999 and 2010 and compared changes in crust composition, cover, richness, and turnover with predictor variables of herbivore exclosure, elevation, heat load index, time since fire, presence of an invasive grass, and change in cover of the invasive grass. Results: Bryophytes were cosmopolitan with high cover. Dominant lichens did not change dramatically. Indicator taxa differed by monitoring year. Bryophyte and total crust cover declined, and there was lower turnover outside of herbivore exclosures. Lichen cover did not change significantly. Plots that burned recently had high turnover. Increase in taxon richness was correlated with presence of an invasive grass in 1999. Change in cover of the invasive grass was positively related to proportional loss and negatively related to gain. Conclusions: Composition and turnover metrics differed significantly over 11 years, though cover was more stable between years.
    [Show full text]
  • Insights Into the Ecology and Genetics of Lichens with a Cyanobacterial Photobiont
    Insights into the Ecology and Genetics of Lichens with a Cyanobacterial Photobiont Katja Fedrowitz Faculty of Natural Resources and Agricultural Sciences Department of Ecology Uppsala Doctoral Thesis Swedish University of Agricultural Sciences Uppsala 2011 Acta Universitatis agriculturae Sueciae 2011:96 Cover: Lobaria pulmonaria, Nephroma bellum, and fallen bark in an old-growth forest in Finland with Populus tremula. Part of the tRNALeu (UAA) sequence in an alignment. (photos: K. Fedrowitz) ISSN 1652-6880 ISBN 978-91-576-7640-5 © 2011 Katja Fedrowitz, Uppsala Print: SLU Service/Repro, Uppsala 2011 Insights into the Ecology and Genetics of Lichens with a Cyanobacterial Photobiont Abstract Nature conservation requires an in-depth understanding of the ecological processes that influence species persistence in the different phases of a species life. In lichens, these phases comprise dispersal, establishment, and growth. This thesis aimed at increasing the knowledge on epiphytic cyanolichens by studying different aspects linked to these life stages, including species colonization extinction dynamics, survival and vitality of lichen transplants, and the genetic symbiont diversity in the genus Nephroma. Paper I reveals that local colonizations, stochastic, and deterministic extinctions occur in several epiphytic macrolichens. Species habitat-tracking metapopulation dynamics could partly be explained by habitat quality and size, spatial connectivity, and possibly facilitation by photobiont sharing. Simulations of species future persistence suggest stand-level extinction risk for some infrequent sexually dispersed species, especially when assuming low tree numbers and observed tree fall rates. Forestry practices influence the natural occurrence of species, and retention of trees at logging is one measure to maintain biodiversity. However, their long-term benefit for biodiversity is still discussed.
    [Show full text]
  • Anthocerotophyta
    Glime, J. M. 2017. Anthocerotophyta. Chapt. 2-8. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-8-1 sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 5 June 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 2-8 ANTHOCEROTOPHYTA TABLE OF CONTENTS Anthocerotophyta ......................................................................................................................................... 2-8-2 Summary .................................................................................................................................................... 2-8-10 Acknowledgments ...................................................................................................................................... 2-8-10 Literature Cited .......................................................................................................................................... 2-8-10 2-8-2 Chapter 2-8: Anthocerotophyta CHAPTER 2-8 ANTHOCEROTOPHYTA Figure 1. Notothylas orbicularis thallus with involucres. Photo by Michael Lüth, with permission. Anthocerotophyta These plants, once placed among the bryophytes in the families. The second class is Leiosporocerotopsida, a Anthocerotae, now generally placed in the phylum class with one order, one family, and one genus. The genus Anthocerotophyta (hornworts, Figure 1), seem more Leiosporoceros differs from members of the class distantly related, and genetic evidence may even present
    [Show full text]
  • Nostocaceae (Subsection IV
    African Journal of Agricultural Research Vol. 7(27), pp. 3887-3897, 17 July, 2012 Available online at http://www.academicjournals.org/AJAR DOI: 10.5897/AJAR11.837 ISSN 1991-637X ©2012 Academic Journals Full Length Research Paper Phylogenetic and morphological evaluation of two species of Nostoc (Nostocales, Cyanobacteria) in certain physiological conditions Bahareh Nowruzi1*, Ramezan-Ali Khavari-Nejad1,2, Karina Sivonen3, Bahram Kazemi4,5, Farzaneh Najafi1 and Taher Nejadsattari2 1Department of Biology, Faculty of Science, Tarbiat Moallem University, Tehran, Iran. 2Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran. 3Department of Applied Chemistry and Microbiology, University of Helsinki, P.O. Box 56, Viikki Biocenter, Viikinkaari 9, FIN-00014 Helsinki, Finland. 4Department of Biotechnology, Shahid Beheshti University of Medical Sciences, Tehran, Iran. 5Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Accepted 25 January, 2012 Studies of cyanobacterial species are important to the global scientific community, mainly, the order, Nostocales fixes atmospheric nitrogen, thus, contributing to the fertility of agricultural soils worldwide, while others behave as nuisance microorganisms in aquatic ecosystems due to their involvement in toxic bloom events. However, in spite of their ecological importance and environmental concerns, their identification and taxonomy are still problematic and doubtful, often being based on current morphological and
    [Show full text]
  • Biological Soil Crust Community Types Differ in Key Ecological Functions
    UC Riverside UC Riverside Previously Published Works Title Biological soil crust community types differ in key ecological functions Permalink https://escholarship.org/uc/item/2cs0f55w Authors Pietrasiak, Nicole David Lam Jeffrey R. Johansen et al. Publication Date 2013-10-01 DOI 10.1016/j.soilbio.2013.05.011 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Soil Biology & Biochemistry 65 (2013) 168e171 Contents lists available at SciVerse ScienceDirect Soil Biology & Biochemistry journal homepage: www.elsevier.com/locate/soilbio Short communication Biological soil crust community types differ in key ecological functions Nicole Pietrasiak a,*, John U. Regus b, Jeffrey R. Johansen c,e, David Lam a, Joel L. Sachs b, Louis S. Santiago d a University of California, Riverside, Soil and Water Sciences Program, Department of Environmental Sciences, 2258 Geology Building, Riverside, CA 92521, USA b University of California, Riverside, Department of Biology, University of California, Riverside, CA 92521, USA c Biology Department, John Carroll University, 1 John Carroll Blvd., University Heights, OH 44118, USA d University of California, Riverside, Botany & Plant Sciences Department, 3113 Bachelor Hall, Riverside, CA 92521, USA e Department of Botany, Faculty of Science, University of South Bohemia, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic article info abstract Article history: Soil stability, nitrogen and carbon fixation were assessed for eight biological soil crust community types Received 22 February 2013 within a Mojave Desert wilderness site. Cyanolichen crust outperformed all other crusts in multi- Received in revised form functionality whereas incipient crust had the poorest performance. A finely divided classification of 17 May 2013 biological soil crust communities improves estimation of ecosystem function and strengthens the Accepted 18 May 2013 accuracy of landscape-scale assessments.
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]
  • Biological Soil Crust Rehabilitation in Theory and Practice: an Underexploited Opportunity Matthew A
    REVIEW Biological Soil Crust Rehabilitation in Theory and Practice: An Underexploited Opportunity Matthew A. Bowker1,2 Abstract techniques; and (3) monitoring. Statistical predictive Biological soil crusts (BSCs) are ubiquitous lichen–bryo- modeling is a useful method for estimating the potential phyte microbial communities, which are critical structural BSC condition of a rehabilitation site. Various rehabilita- and functional components of many ecosystems. How- tion techniques attempt to correct, in decreasing order of ever, BSCs are rarely addressed in the restoration litera- difficulty, active soil erosion (e.g., stabilization techni- ture. The purposes of this review were to examine the ques), resource deficiencies (e.g., moisture and nutrient ecological roles BSCs play in succession models, the augmentation), or BSC propagule scarcity (e.g., inoc- backbone of restoration theory, and to discuss the prac- ulation). Success will probably be contingent on prior tical aspects of rehabilitating BSCs to disturbed eco- evaluation of site conditions and accurate identification systems. Most evidence indicates that BSCs facilitate of constraints to BSC reestablishment. Rehabilitation of succession to later seres, suggesting that assisted recovery BSCs is attainable and may be required in the recovery of of BSCs could speed up succession. Because BSCs are some ecosystems. The strong influence that BSCs exert ecosystem engineers in high abiotic stress systems, loss of on ecosystems is an underexploited opportunity for re- BSCs may be synonymous with crossing degradation storationists to return disturbed ecosystems to a desirable thresholds. However, assisted recovery of BSCs may trajectory. allow a transition from a degraded steady state to a more desired alternative steady state. In practice, BSC rehabili- Key words: aridlands, cryptobiotic soil crusts, cryptogams, tation has three major components: (1) establishment of degradation thresholds, state-and-transition models, goals; (2) selection and implementation of rehabilitation succession.
    [Show full text]
  • The Nitrogen-Fixing Symbiotic Cyanobacterium, Nostoc Punctiforme Can Regulate Plant Programmed Cell Death
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.13.249318; this version posted August 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. The nitrogen-fixing symbiotic cyanobacterium, Nostoc punctiforme can regulate plant programmed cell death Samuel P. Belton1,4, Paul F. McCabe1,2,3, Carl K. Y. Ng1,2,3* 1UCD School of Biology and Environmental Science, 2UCD Centre for Plant Science, 3UCD Earth Institute, O’Brien Centre for Science, University College Dublin, Belfield, Dublin, DN04 E25, Republic of Ireland 4Present address: DBN Plant Molecular Laboratory, National Botanic Gardens of Ireland, Dublin, D09 E7F2, Republic of Ireland *email: [email protected] Acknowledgements This work was financially supported by a Government of Ireland Postgraduate Scholarship from the Irish Research Council (GOIPG/2015/2695) to SPB. Author contributions S.P.B., P.F.M, and C.K.Y.N conceived of the study and designed the experiments. S.B. performed all the experiments and analysed the data. S.B. prepared the draft of the manuscript with the help of P.F.M and C.K.Y.N. All authors read, edited, and approved the manuscript. Competing interests The authors declare no competing interests. 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.13.249318; this version posted August 14, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Cyanobacteria such as Nostoc spp.
    [Show full text]
  • Water Regulation in Cyanobacterial Biocrusts from Drylands: Negative Impacts of Anthropogenic Disturbance
    water Article Water Regulation in Cyanobacterial Biocrusts from Drylands: Negative Impacts of Anthropogenic Disturbance Yolanda Cantón 1,2,*, Sonia Chamizo 1,2, Emilio Rodriguez-Caballero 1,2 , Roberto Lázaro 3, Beatriz Roncero-Ramos 1 , José Raúl Román 1 and Albert Solé-Benet 3 1 Department of Agronomy, University of Almeria, Carretera de Sacramento sn., La Cañada de San Urbano, 04120 Almeria, Spain; [email protected] (S.C.); [email protected] (E.R.-C.); [email protected] (B.R.-R.); [email protected] (J.R.R.) 2 Research Centre for Scientific Collections from the University of Almería (CECOUAL), Carretera de Sacramento sn., La Cañada de San Urbano, 04120 Almeria, Spain 3 Experimental Station of Arid Zones, CSIC, Carretera de Sacramento sn., La Cañada de San Urbano, 04120 Almeria, Spain; [email protected] (R.L.); [email protected] (A.S.-B.) * Correspondence: [email protected] Received: 26 December 2019; Accepted: 4 March 2020; Published: 6 March 2020 Abstract: Arid and semi-arid ecosystems are characterized by patchy vegetation and variable resource availability. The interplant spaces of these ecosystems are very often covered by cyanobacteria-dominated biocrusts, which are the primary colonizers of terrestrial ecosystems and key in facilitating the succession of other biocrust organisms and plants. Cyanobacterial biocrusts regulate the horizontal and vertical fluxes of water, carbon and nutrients into and from the soil and play crucial hydrological, geomorphological and ecological roles in these ecosystems. In this paper, we analyze the influence of cyanobacterial biocrusts on water balance components (infiltration-runoff, evaporation, soil moisture and non-rainfall water inputs (NRWIs)) in representative semiarid ecosystems in southeastern Spain.
    [Show full text]
  • Adaptations of Cyanobacterium Nostoc Commune to Environ- Mental Stress: Comparison of Morphological and Physiological Markers
    CZECH POLAR REPORTS 8 (1): 84-93, 2018 Adaptations of cyanobacterium Nostoc commune to environ- mental stress: Comparison of morphological and physiological markers between European and Antarctic populations after re- hydration Dajana Ručová1, Michal Goga1, Marek Matik2, Martin Bačkor1* 1Department of Botany, Institute of Biology and Ecology, Faculty of Science, University of Pavol Jozef Šafárik, Mánesova 23, 041 67 Košice, Slovakia 2Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01 Košice, Slovakia Abstract Availability of water may influence activities of all living organisms, including cyano- bacterial communities. Filamentous cyanobacterium Nostoc commune is well adapted to wide spectrum of ecosystems. For this reason, N. commune had to develop diverse pro- tection strategies due to exposition to regular rewetting and drying processes. Few studies have been conducted on activities, by which cyanobacteria are trying to avoid water deficit. Therefore, the present study using physiological and morphological param- eters is focused on comparison between European and Antarctic ecotypes of N. commune during rewetting. Gradual increase of FV/FM ratios, as the markers of active PS II, demonstrated the recovery processes of N. commune colonies from Europe as well as from Antarctica after time dependent rehydration. During the initial hours of rewetting, there was lower content of soluble proteins in colonies from Antarctica in comparison to those from Europe. Total content of nitrogen was higher in European ecotypes of N. commune. Significantly higher frequency of occurrence of heterocysts in Antarctic ecotypes was observed. The heterocyst cells were significantly longer in Antarctic ecotypes rather than European ecotypes of N. commune. Key words: Antarctica, soluble proteins, cyanobacteria, chlorophyll fluorescence, heterocysts, nitrogen, James Ross Island DOI: 10.5817/CPR2018-1-6 ——— Received December 19, 2017, accepted April 4, 2018.
    [Show full text]
  • Lichens and Allied Fungi of the Indiana Forest Alliance
    2017. Proceedings of the Indiana Academy of Science 126(2):129–152 LICHENS AND ALLIED FUNGI OF THE INDIANA FOREST ALLIANCE ECOBLITZ AREA, BROWN AND MONROE COUNTIES, INDIANA INCORPORATED INTO A REVISED CHECKLIST FOR THE STATE OF INDIANA James C. Lendemer: Institute of Systematic Botany, The New York Botanical Garden, Bronx, NY 10458-5126 USA ABSTRACT. Based upon voucher collections, 108 lichen species are reported from the Indiana Forest Alliance Ecoblitz area, a 900 acre unit in Morgan-Monroe and Yellowwood State Forests, Brown and Monroe Counties, Indiana. The lichen biota of the study area was characterized as: i) dominated by species with green coccoid photobionts (80% of taxa); ii) comprised of 49% species that reproduce primarily with lichenized diaspores vs. 44% that reproduce primarily through sexual ascospores; iii) comprised of 65% crustose taxa, 29% foliose taxa, and 6% fruticose taxa; iv) one wherein many species are rare (e.g., 55% of species were collected fewer than three times) and fruticose lichens other than Cladonia were entirely absent; and v) one wherein cyanolichens were poorly represented, comprising only three species. Taxonomic diversity ranged from 21 to 56 species per site, with the lowest diversity sites concentrated in riparian corridors and the highest diversity sites on ridges. Low Gap Nature Preserve, located within the study area, was found to have comparable species richness to areas outside the nature preserve, although many species rare in the study area were found only outside preserve boundaries. Sets of rare species are delimited and discussed, as are observations as to the overall low abundance of lichens on corticolous substrates and the presence of many unhealthy foliose lichens on mature tree boles.
    [Show full text]